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Abstract. We study the duration of “high-flow states” in freeway traffic, defined as the time periods for
which traffic flows exceed a given flow threshold. Our empirical data are surprisingly well represented by
a power law. Moreover, the power law exponent for a two-lane freeway seems to be independent of the
chosen flow threshold. In order to interpret this discovery, we investigate a simple theoretical model of
heterogeneous traffic with overtaking maneuvers, which is able to reproduce both, the empirical power law
and its exponent.

PACS. 89.40.Bb Land transportation – 89.75.Da Systems obeying scaling laws – 89.75.Kd Patterns –
51.10+y Kinetic and transport theory of gases

1 Introduction

Efficient transport systems are needed to fulfil the re-
quirements of industrialized societies. However, studies of
traffic physicists have shown that the capacity of a free-
way is reduced by the breakdown of traffic flows [1–4], a
phenomenon which is widely known as “capacity drop”.
Moreover, when the vehicle density increases, the traffic
flow becomes metastable, i.e. a breakdown of traffic flow
can be triggered by perturbations, if they exceed a critical
perturbation threshold [1,5,6,3]. At even higher densities,
traffic flow becomes linearly unstable, and a breakdown
may be triggered by the slightest perturbation [7,3].

Due to the dependence of traffic breakdowns on pertur-
bations of the traffic flow, it is essential to know the char-
acteristic properties of vehicle flows. While much attention
has been paid to the measurement and explanation of the
wide scattering of vehicle flows after the breakdown of free
traffic (see e.g. Refs. [8–11] and citations therein), the fea-
tures of flows before the breakdown have not found the
attention they deserve. For example, the time period im-
mediately before the breakdown is characterized by “high-
flow states” [12–15] (see Fig. 1). These high-flow states are
produced by small time gaps between subsequent vehicles,
i.e. by vehicle clusters. Before we study these states, let
us therefore shortly discuss some previous literature on
vehicle platoons (see Ref. [3]).

The formation of platoons is typically a result of the
fact that vehicles do not behave identically. Driver-vehicle
behavior is rather heterogeneous, which is typically re-
flected by fluctuation terms and distributed model pa-
rameters. The simplest models of stochastic and het-
erogeneous transport are particle hopping models with
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Fig. 1. Time-dependent traffic flows Q(x, t) (here: five-minute
averages) measured at different cross sections x of a the Dutch
freeway A9 on October 14, 1994. Vehicles move from left to
right. One can clearly see the large variability of high flows.
Complementary empirical analyses show that the truck frac-
tion on the freeway changes considerably with time as well,
between about 8 and 80% trucks [9]. Vehicles flows in the left
(truck) lane reach values upto Qmax = 3, 200 vehicles per hour,
while the flows in the right (truck) lane do not exceed values of
2,500 vehicles per hour (when flows are determined as averages
over 50 vehicles) [16]. For further details see Refs. [9,16].

quenched disorder. For example, Evans [17], Krug and
Ferrari [18], Karimipour [19,20], as well as Seppäläinen
and Krug [21] study a simplified version of a model by
Benjamini, Ferrari, and Landim [22]. It corresponds to
the one-dimensional driven lattice gas known as TASEP,
but with particle-specific, constant jump rates qα. If over-
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taking is not allowed, Krug and Ferrari [18] find a sharp
phase transition between a low-density regime, where all
particles are queueing behind the slowest particle, and a
high-density regime, where the particles are equally dis-
tributed. Note that the slow particles “feel free traffic”
until the critical density is reached, at which traffic flow
becomes unstable (cf. the truck curve in Fig. 2).
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Fig. 2. Average speed of vehicles as a function of the vehicle
density in (a) the left lane and (b) the right (fast) lane (after
[23]). The curves have been determined from single vehicle data
of the Dutch freeway A9 close to Amsterdam. Note that the av-
erage velocity of trucks stays constant upto the critical density,
where the speed of cars and trucks drops simulaneously. This
incidates that trucks “feel” free traffic conditions at all vehi-
cle densities upto the occurence of the transition to congested
traffic.

Close to the critical density, where the traffic flow be-
comes unstable, the growth of vehicle platoons is charac-
terized by a power-law coarsening. If particles move bal-
listically with individual velocities vα and form a platoon
when a faster particle reaches a slower one, the platoon
size npl(t) grows according to

npl(t) ∼ t(γ+1)/(γ+2) , (1)

where the exponent γ characterizes the distribution
P0(v) ∼ (v − vmin)

γ of free velocities in the neighbor-
hood of the minimal desired velocity vmin [24–30]. Beyond
it, the differences among fast and slow particles become
irrelevant, because there is so little space that all particles
have to move slower than preferred.

Platoon formation and power-law coarsening has also
been found in microscopic models with parallel update [24,
29,25–27,30–32]. An example is the Nagel-Schreckenberg
model with vehicle-specific slow-down probabilities [33,
34].

An empirical measurement of platoon sizes has been
performed by Neubert et al., based on velocity correla-
tions between subsequent cars [35]. Our own approach will
rather be focussed on time periods with small time gaps
between vehicles. For a model for platoon size distribu-
tions see Islam and Consul [36]. Furthermore, we point
to the nice analyses of vehicle clustering based on master
and Fokker-Planck equations [37–39], and to the deter-
mination of gap distributions for free traffic with vehicle
platoons [40].

In the following, we will relate the distribution of pla-
toon sizes with their growth dynamics, and study the

importance of overtaking maneuvers for both. Before we
start our theoretical considerations, however, Sec. 2 will
present data of “high-flow states” and discuss their unex-
pected power-law statistics. Afterwards, Sec. 3 will present
a theoretical explanation, based on platoon formation
due to overtaking maneuvers by slow vehicles, specifically
trucks. This does, of course, not exlude the theoretical
possibility of other explanations, e.g. based on the vehi-
cle dynamics in single lanes. This alternative approach is
discussed in Sec. 3.1. A summary of this paper is finally
presented in Sec. 4.

2 Power Law Distribution of High-Flow

States

As high flows are unstable to medium-sized perturbations
[5,3], it is important to learn more about their statistics.
Here, we define “high-flow states” by exceeding a given
flow threshold Qthres (which may be chosen much smaller
than the maximum flow Qmax or the dynamic capacity
Qout, i.e. the outflow from seriously congested traffic).

In the following, we study the duration of “high flow
states” by analyzing single-vehicle data of the Dutch free-
way A9 from Haarlem to Amsterdam in the Netherlands
(see Ref. [41,9,16] for details of the data). Specifically, we
aggregated the data to obtain 2-minute averages Q(x, t)
of the flow as a function of time t at a certain location x
of the freeway. Afterwards, we determined the frequency
of time periods ∆T over which the flows Q(x, t) stayed
above a certain threshold Qthres. A representative exam-
ple is shown in Fig. 3.
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Fig. 3. Typical scaling law for the distribution of durations,
for which the vehicle flow Q(x, t) at the cross section x of a
freeway exceeds the threshold Qthres = 1400 vehicles/h. The
distribution follows a power law and has been determined from
two-minute averages of single vehicle data of the Dutch freeway
A9 from Rottepolderplein to Badheuvedorp close to Amster-
dam.

Similar pictures as for Qthres = 1400 vehicles/h are
found for other threshold values Qthres, but the data tend
to be more noisy for large values of Qthres, as the typical
durations of high-flow states become shorter. Generally,
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however, the probability distribution P (∆T ) of durations
of high-flow states can be surprisingly well approximated
by the power law

P (∆T ) = Fthr∆t−α , (2)

where Fthr is a proportionality factor and α the power law
exponent. As the distribution P (∆T ) obviously depends
on the chosen threshold value Qthres, it would be natural
to assume that not only the proportionality factor Fthr,
but also the respective power law exponent α depends
on Qthres. However, Fig. 4 suggests that we have α ≈ 2,
irrespective of the value of Qthres. Therefore, we need to
find an explanation for both, the occurence of the power
law and the value α ≈ 2 of its exponent. Note, however,
that the results of Fig. 4 are for a two-lane freeway with
different speed limits for cars and trucks. In fact, for the
three-lane freeway A8 close to Munich, Germany, there
is empirical evidence of power laws, but the exponents
somewhat depend on the freeway lane [42]. This will be
relevant for the interpretation of the power law.
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Fig. 4. Exponents of the power law of high-flow states, see
Eq. (2), for different flow thresholds Qthres. One can see that
the exponents, fitted within the interval ∆T ∈ [6, 50] min,
are of the order of 2 in both lanes. The exponents have been
determined from two-minute averages of single vehicle data of
the Dutch freeway A9 close to Amsterdam (after [43]).

3 Interpretation of the Power Law

3.1 Explanation of 1/f Fluctuations by Single-Lane
Models

The empirical power law is quite intriguing, and its in-
terpretation appears to be far from obvious. As the flow
is basically given by the inverse time gaps, however, pe-
riods of high flow must be characterized by short time
gaps between vehicles. Therefore, rather than a homoge-
neous flow with uniform time gaps between vehicles, the
explanation of the above power law (2) must be related
to the occurence of vehicle clusters. Their statistics must
be characterized by largely varying sizes, to generate a

time-dependence of the flow which shares features with a
fractal curve [44,46].

It is conceivable that such a dynamics could be pro-
duced by single-lane traffic models implementing a com-
plex vehicle dynamics. In fact, previous publications have
revealed 1/fα fluctuations of the flow and other quanti-
ties in empirical data [45] and various traffic models. This
includes cellular automata models [46–51], coupled maps
[52], and fluid-dynamics traffic models [45,53]. As none of
the publications has studied the frequency distribution of
high-flow states we are focussing on in this paper, it is
hard to say whether it is reproduced by any of these mod-
els. However, since the respective power law exponents
depend on the choice of the model, it is conceivable that
Eq. (2) could be reproduced by suitable specifications of
one-lane models.

A comparison with the models discussed in Sec. 1
shows that, besides stochasticity, such a model would have
to contain non-linear vehicle interactions. Otherwise all
cars would finally queue up behind the slowest vehicle(s)
with identical time gaps, which does not reproduce the
empirical data. 1/f fluctuations of traffic flows can, for
example, be explained by turbulent behavior of the noisy
Burgers equation [45]. They can also be derived as result
of self-organized criticality, if the traffic state with the
largest throughput is critical and characterized by jams
of all sizes [46,47]. As the dynamics of the underlying
particle hopping models can be related to the stochastic
Burgers equation [54], both approaches are mutually con-
sistent. However, both of them are not so well compatible
with some empirically observed features of congested traf-
fic flows [55,56]. For this reason, the above traffic models
have been continuously refined.

In recent models, noise is much less dominating as
compared to the interactions between vehicles, and it is
therefore questionable whether these models show 1/f
fluctuations in the flow dynamics or the power-law (2) of
high-flow states. Furthermore, data for a three-lane free-
way show power laws, but their exponents depend on the
flow threshold Qthres and somewhat on the lane. In partic-
ular, they can be different from 2. Therefore, modeling the
high-flow power law based on longitudinal vehicle dynam-
ics may not be the best possible approach, as it cannot
explain the difference between a freeway with 2 or more
lanes. We rather think that one needs to take into ac-
count the interactions between lanes, i.e. the transversal
dynamics. The model suggested in the following is a first
modeling attempt in this direction.

While the above one-lane models basically assume one
vehicle type and find 1/f fluctuations primarily in the
congested regime, the following proposal assumes two dis-
tinctly different vehicle types (cars and trucks) and implies
a high-flow power law already before the traffic flow breaks
down (i.e. before traffic becomes unstable and a capacity
drop occurs).
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3.2 Multi-Lane Model of High-Flow States Based on
Vehicle Bunching behind Overtaking Cars

While we do not exclude the possibility of other model-
ing approaches, we will now focus on an interpretation of
our empirical observations, assuming heterogeneous traf-
fic including overtaking maneuvers. As we will see, this
predicts a power law for high-flow states even for deter-
ministic models of longitudinal vehicle interactions. Our
analysis focusses on the case of a two-lane freeway, and it
contains several steps:

1. First we will give a qualitative analysis of lane chang-
ing processes.

2. We will argue that they can cause the formation of
vehicle platoons, and that this process is dominated
by overtaking maneuvers at low speed, i.e. primarily
by overtaking maneuvers of trucks.

3. We will determine the statistics of the duration of over-
taking maneuvers by trucks from their speed distribu-
tion.

4. We will give reasons why they couple the dynamics on
both freeway lanes and why the platoons forming on
both lanes are expected to be comparable in size.

5. We will analyze the length of forming vehicle platoons
and the time period until they dissolve.

6. We will show that high-flow vehicle clusters persist for
a very long time, even after the dissolution of the ve-
hicle platoons.

7. We will discuss, what will be the result, if such vehicle
clusters are measured at a local cross section of the
freeway.

It will turn out that both, the lifetime of vehicle platoons
and the local measurement of vehicle clusters scale with
the duration of the overtaking maneuvers of trucks, and
that the power law of high-flow states results as a super-
position of power laws with the same exponent α = 2.

3.2.1 Qualitative Analysis of Overtaking Maneuvers on
Two-Lane Freeways

In the following, we will assume that the desired velocities
of vehicles are heterogeneous (see Fig. 5). This is typical
for many European countries including Germany and the
Netherlands, where the use of automatic cruise control is
not common. The heterogeneity of desired speeds typi-
cally implies relative velocities among neighboring cars.
The faster car will usually try to overtake a slower ve-
hicle in front. We can distinguish two situations: Either
the traffic situation on the lane to the left will admit an
overtaking maneuver,1 or the vehicle will be obstructed by
a slower vehicle and decelerate to its speed. During light
traffic conditions, we may assume unobstructed overtak-
ing most of the time, but already at moderate densities,
long before the breakdown of traffic flow, obstructions oc-
cur. These obstructions persist for a certain time period
∆t and lead to the formation of vehicle platoons.

1 in Great Britain or Japan, for example, it will be the lane
to the right.
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Fig. 5. Speed distributions of cars and trucks under free traffic
conditions. Normal distributions fit the data reasonably well,
in agreement with theoretical results. The distributions have
been determined from single vehicle data of the Dutch freeway
A9 close to Amsterdam. Note that the left lane is the fast lane
and that the speed limits for cars is 120 km/h on this freeway
stretch, while it is 80 km/h for trucks.

Besides the duration of the overtaking maneuver, the
size of the forming vehicle platoon depends primarily on
two factors: (1) the absolute speed difference between the
overtaking vehicle and the ones following it and (2) the
surrounding vehicle density ρfr. As our high flow power
law concerns time periods from 2 minutes to 2 hours, we
are particularly interested in large vehicle clusters and,
therefore, in the overtaking maneuvers of trucks. These
are characterized by particularly long durations ∆t and
by a large absolute speed difference with respect to fol-
lowing cars, so that a considerable number of vehicles can
accumulate behind the overtaking trucks.

On a two-lane freeway, the overtaking maneuver of
trucks will create a moving bottleneck [57] on both lanes,
while on a freeway with three or more lanes, passing of ve-
hicles may still be possible.2 The moving bottleneck prop-
agates at the speed of trucks, i.e. at Vtr ≈ 80 km/h. Behind
this moving bottleneck, more and more vehicles will accu-
mulate, which generates growing vehicle platoons (see Fig.
6). Due to lane-changing maneuvers of impatient drivers,
the vehicle platoons on both lanes are expected to grow
approximately at the same speed. Such synchronized be-
havior of neighboring lanes under obstructed flow condi-
tions is well-known [59]. However, our calculations below
would also work, if the platoon in one lane would grow
faster by a certain proportionality factor.

2 How this can account for the different exponents observed
in Ref. [42] shall be studied in another paper.
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Fig. 6. Illustration of a traffic breakdown detected on the Ger-
man freeway A5 close to Frankfurt (after [56]). The measure-
ment of a peak in the truck fraction (see solid arrow) is fol-
lowed by a time period of lower speeds and higher flows (see
circles). The spatial extension of the high-flow area is growing
(symbolized by larger circles), while it propagates along the
freeway with about 75 km/h, i.e. at about the truck speed.
We interpret this as growing vehicle platoons behind overtak-
ing trucks. Approximately at kilometer 487, shortly upstream
of a freeway junction characterized by many disturbing lane
changes, the perturbation in the traffic flow starts to travel
upstream. While we had a growing spatial extension before,
we now find a growing perturbation amplitude (see dashed ar-
row). This eventually causes a breakdown of the traffic flow.

3.3 Duration of Overtaking Maneuvers of Trucks

Figure 5 shows the speed distributions of cars and trucks
in free traffic of low vehicle density. It can be seen that the
speed of trucks varies around the applicable speed limit
for trucks of 80 km/h, and that the distribution is quite
narrow (i.e. speed differences are small). Furthermore, the
speed distributions of cars and trucks can be reasonably
well approximated by Gaussian distributions [61,62], in
agreement with theoretical predictions [63,64].

Note that there is no distribution of desired speeds
for trucks in the left lane, as they have to stay in the
right lane according to applicable traffic law (when they

do not overtake other vehicles). Overtaking maneuvers are
started whenever two trucks in closeby locations move at
different speeds, no matter how small the relative veloc-
ity is. Trucks often enter the left lane relentlessly, without
waiting for a gap, i.e. vehicles in the left lane basically
have to break if a truck driver decides to move over to
the left lane. Moreover, during the overtaking maneuver,
the speed of the trucks usually stays the same. Therefore,
the distribution of speed differences ∆v between an over-
taking and an overtaken truck can be derived from the
distribution of desired truck speeds in the right lane.

From statistics, it is well-known that the difference of
two identically, independently, Gaussian distributed vari-
ables is Gaussian distributed as well. That is, the relative
speeds ∆v of trucks obey a Gaussian distribution

N(∆v) d∆v =
1√
2πθ

e−(∆v)2/(2θ) d∆v . (3)

This will be relevant for the derivation of the high-flow
power law later on.

We will now determine the distribution of the time
period ∆t required for the overtaking maneuver of trucks.
If ∆leff denotes the typical effective distance, over which
an overtaking maneuver takes place (e.g. ∆leff = 20 m)
and ∆v is the relative speed between an overtaking vehicle
and the slower one it overtakes, we find the proportionality
relation

∆t =
∆leff
∆v

. (4)

As a consequence, the distribution of ∆t is given by the
distribution of 1/∆v.

We will now derive the distribution of the variable
y = 1/∆v from Eq. (3) by an appropriate transformation.
Considering

dy

d∆v
= − 1

∆v2
= −y2 , (5)

we find

N(∆v) d∆v = −N(∆v)
1

y2
dy , (6)

where the minus sign is compensated for by integration
from small to large values of y = 1/∆v rather than vice
versa. Therefore, we get the distribution

P (y) dy =
1√
2πθ

1

y2
e−1/[2θy2] dy . (7)

In the limit of small speed differences ∆v, i.e. large values
of y, we finally obtain the power law

P (y) dy ∼ y−2 dy . (8)

Furthermore, as y = 1/∆v ∼ ∆t, see Eq. (4), this implies
the power-law distribution

P (∆t) d∆t ∼ (∆t)−2 d∆t . (9)

As this power law results in the limit of small ∆v, Eq.
(9) is also found, if the distribution of speed differences of
trucks is approximately Gaussian. With this, we mean

N(∆v) d∆v = N e−p(∆v) d∆v (10)
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with a normalization constant N and a Taylor expansion

p(∆v) = a2(∆v)2 + a3(∆v)3 + a4(∆v)4 + . . . (11)

Hence, our conclusions would stay the same, if the distri-
bution would be approximately Gaussian around ∆v = 0.
This should be true under the assumptions made above,
namely that an overtaking truck does not change its speed.
According to the observations of the authors, this assump-
tion appears to be quite realistic.

We have now to study, how the distribution of time pe-
riods ∆t translates into vehicle platoons behind the trucks
and into high-flow states measured at local cross sections
of the freeway. In particular, we have to explain why the
distribution of high-flow states extends upto 100 minutes,
while overtaking maneuvers of trucks only take a few min-
utes (in the worst case).

3.3.1 Platoon Formation During Overtaking Maneuvers

As discussed above, it is natural that overtaking maneu-
vers of slow vehicles, particularly trucks, constitute mov-
ing bottlenecks for faster vehicles for some time. These
faster vehicles will be queued up behind the slow ones
(the trucks) and form a platoon. We will now determine
the growth of the platoon length. Intuitively, the number
of vehicles in the platoon grows proportionally with the
time ∆t required for the overtaking maneuver of the slow
vehicles.

To quantify this, we may apply the well-known for-
mula for shock propagation (i.e. the propagation of fronts
between areas of different density) [65]. Let Ve(ρ) be the
equilibrium speed-density relation and ρfr the density per
lane upstream of the moving bottleneck and the forming
vehicle platoon. Moreover, let ρpl > ρfr be the density per
lane corresponding to the speed Vtr ≈ 80km/h of trucks,
i.e.

Ve(ρpl) = Vtr . (12)

Finally, let
Qe(ρ) = ρVe(ρ) (13)

represent the equilibrium flow-density relation, which is
sometimes called the “fundamental diagram”.3 Then, the
propagation speed of the upstream end of the vehicle pla-
toon forming behind the moving bottleneck is expected to
be

C(ρfr) =
Qe(ρpl) − Qe(ρfr)

ρpl − ρfr
=

ρplVtr − ρfrVe(ρfr)

ρpl − ρfr
. (14)

Relative to the truck speed Vtr, the propagation speed of
the upstream platoon front can be calculated as

c(ρfr) = C(ρfr) − Vtr = −Ve(ρfr) − Vtr

ρpl/ρfr − 1
< 0 . (15)

3 While the flow-density data scatter largely in the congested
area, here we require the flow-density relationship in the den-
sity regime before the capacity drop, which is well defined.

The negative values imply that the platoon is growing
backwards, as expected. Therefore, the platoon length
lpl(t) grows linearly with the time t at the rate |c(ρfr)|.
After an obstructed time period of duration ∆t, the pla-
toon is expected to have the length

lpl(∆t) = |c|∆t . (16)

Note that, in this paper, we assume that the vehicle den-
sity ρpl in the platoon is (meta)stable, i.e.

ρpl < ρc2 , (17)

see Refs. [6,58]. This situation may be compared with a

ρ
ρ
c2

ρ
pl

ρ
max

ρ
fr

0

Q (ρ)
e

Q
max

ρV ρV
0

tr

Fig. 7. Illustration of the various densities and flows deter-
mining the formation and dissolution of vehicle platoons. We
have ρfr ≤ ρmax and assume ρmax < ρpl < ρc2, which supports
the (meta-)stability of vehicle platoons. Therefore, they may
persist over a considerable time period without a breakdown
of “high-flow states”.

“widening synchronized pattern” [60,58], but with a mov-
ing rather than stationary downstream front. The density
ρc2 represents the threshold to linearly unstable traffic.

If relationship (17) is given, traffic flow only desta-
bilizes and suffers a breakdown of capacity,4 if there are
merging flows or strong local perturbations (see the exam-
ple in Fig. 6). Without such perturbations, the platoons
will expand in space without a breakdown of the flow.
Therefore, the outflow from the vehicle clusters, after the
trucks have finished their overtaking maneuver, is given
by the free flow capacity Qmax rather than the congested
flow capacity Qout [58].

3.3.2 Dissolution of Vehicle Platoons

After the overtaking maneuver is completed and the re-
lated obstruction of the vehicle flow has ended, the vehicle

4 namely, from the maximum flow Qmax to the outflow Qout

from seriously congested traffic
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platoon dissolves linearly in time. Let us denote the maxi-
mum flow by Qmax and the related density by ρmax, where
Qe(ρmax) = Qmax. According to the shock wave equation
for the propagation of discontinuous density changes [65],
the dissolution speed is then given by [58]

C∗ =
Qe(ρmax) − Qe(ρpl)

ρmax − ρpl
=

ρmaxVe(ρmax) − ρplVtr

ρmax − ρpl
.

(18)
Relative to the truck velocity Vtr, the propagation speed
is

c∗ = C∗ − Vtr = −Ve(ρmax) − Vtr

ρpl/ρmax − 1
< 0 . (19)

The dissolution process takes a time period ∆t∗. While
the vehicle platoon dissolves at the front, further vehicles
are joining it at its end. Therefore, we have the relation

lpl(∆t) + |c|∆t∗ = |c∗|∆t∗ . (20)

This results in

∆t∗ =
|c|∆t

|c∗| − |c| =
∆t

|c∗|/|c| − 1
. (21)

Hence, the existence of a platoon is observed for an overall
time period of

∆T∗ = ∆t∗ + ∆t =
∆t

1 − |c|/|c∗|
≥ ∆t . (22)

The quotient in the denominator can be determined as

|c|
|c∗|

=
ρfr

ρmax

∣

∣

∣

∣

Ve(ρfr) − Vtr

ρpl − ρfr

∣

∣

∣

∣

∣

∣

∣

∣

Ve(ρmax) − Vtr

ρpl − ρmax

∣

∣

∣

∣

≤ 1 . (23)

Both factors on the right-hand side of the equality are
smaller than or equal to 1, because we have

ρfr ≤ ρmax < ρpl (24)

and

Ve(ρfr) ≥ Ve(ρmax) > Ve(ρpl) (25)

(see Fig. 7). Therefore, Eqs. (22) and (23) imply a platoon
to exist for a time period ∆T∗ = ∆t, if ρfr → 0, while
it will exist for an extremely long time, as ρfr → ρmax.
Consequently, at low vehicle densities, most platoons are
expected to dissolve quickly. However, at moderate densi-
ties ρfr ≈ ρmax, the lifetime ∆T∗ = ∆t + ∆t∗ can be quite
long. For ρfr → ρmax, a vehicle cluster could, in principle,
even last forever. This (and the persistsence of high-flow
vehicle clusters after the dissolution of platoons, see next
subsection) is the reason, why overtaking maneuvers on
the scale of minutes can have effects on much longer time
scales.
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Fig. 8. Schematic illustration of vehicle trajectories on the
left lane before, during, and after an overtaking maneuver of
trucks. The triangular area represents the growth and disso-
lution of a vehicle cluster. When measuring the flow after the
dissolution of the platoon at some freeway cross section x, one
expects to detect the free flow Qe(ρfr), then a low-flow period
in front of the overtaking trucks, afterwards a high-flow period,
and finally again free flow. The measured duration ∆T of the
high-flow state, which is expected to persist for a long time, is
basically given by ∆t∗.

3.3.3 Measurement of High-Flow States

We will now have to relate the existence of vehicle platoons
to the local measurement of high-flow states. When a ve-
hicle platoon passes a cross section of the road, the traffic
flow is particularly high due to the small time gaps be-
tween its vehicles. In comparison with the situation before
the overtaking maneuver of trucks, the time gaps between
the freely flowing cars are considerably reduced. That is,
the flow is still higher than Qe(ρfr), the flow before pla-
toon formation, even after the vehicle platoon has dis-
solved. The related vehicle clusters are expected to exist
for a long time, much longer than the previous vehicle
platoon.5 The corresponding flows in both lanes qualify
as high-flow states, if they are larger than Qthres.

Let us now estimate the flow in both lanes after the
overtaking maneuver of trucks is finished. Then, vehicles
will pass the truck in the right lane at the maximum flow
rate Qmax. This flow will be distributed over both free-
way lanes. A fraction β = β(ρfr) will switch to the right
lane, while a fraction (1 − β) will stay on the left lane. In

5 There are basically two ways for them to disappear: 1. ve-
hicles leave the cluster via off-ramps of the freeway, 2. clusters
disperse due to a variation of the vehicle speeds, which can be
approximated by continuity equations for cars and trucks with
diffusion terms, see the Appendix.
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the right lane, in front of the overtaken truck, there will
be some additional truck traffic. If γ denotes the average
fraction of truck traffic on both freeway lanes, this corre-
sponds to an average truck traffic flow of Qtr ≈ γQe(ρfr).
Considering that most of these trucks are in the right lane,
the overall flow on the right lane after a completed over-
taking maneuver of trucks may be estimated as

Qright(ρfr, t) ≈ β(ρfr)Qmax + 2γ(t)Qe(ρfr) . (26)

In the right lane, we approximately expect to find the flow

Qleft(ρfr, t) ≈ [1 − β(ρfr)]Qmax . (27)

While the flow Qleft is typically above 2, 000 vehicles per
hour (we estimate that β ≈ 0.35), the flow in the right lane
exceeds high flow thresholds Qthres as well, if the surround-
ing density ρfr and the truck fraction γ are large enough.
Therefore, after an overtaking maneuver of trucks, we ex-
pect to find high-flow states in both lanes6. We will now
have to determine the time period over which they are
measured.

Previously, we have studied vehicle clusters in a moving
coordinate system, specifically in a system moving at the
speed of trucks. Our empirical distribution of high-flow
states, however, has been measured at a local cross section
of a two-lane freeway. In order to see how this affects the
measurement, it is useful to consult Fig. 8.

We see that the time period ∆T of high-flow clusters
is basically given by ∆t∗, which is proportional to ∆t, see
Eq. (21). The proportionality factor

A(ρfr) =
1

|c∗|/|c(ρfr)| − 1
(28)

depends on the surrounding vehicle density ρfr. But given
a certain density ρfr, we have the proportionality ∆T−2 ∼
∆t−2. Together with the power law distribution (9) for
∆t, this implies the power law distribution

P (∆T, ρfr) ∼ (∆T )−2 ∼ (∆t)−2 . (29)

As only the proportionality factor, but not the exponent
α = 2 depends on the density ρfr, the superposition of
distributions for different values of ρfr is again a power
law with exponent α = 2:

P (∆T ) ∼ (∆T )−2 ∼ ∆t−2 . (30)

Therefore, we have shown that the measured duration ∆T
of vehicle platoons is distributed according to a power law
P (∆T ) ∼ (∆T )−α with α = 2, in agreement with the
empirical measurement of high-flow states represented by
Eq. (2).

4 Summary and Outlook

In this paper, we have revealed a power law for the dura-
tion of high-flow states, where “high flow” means higher

6 at least if Qleft, Qright > Qthres and Qmax + 2γQe(ρfr) >

2Qe(ρfr)

than some given threshold Qthres. Not only was it surpris-
ing to find that our empirical data could be approximated
by a power law, but also that the power law exponents α
for the lanes of a two-lane freeway were approximately 2,
irrespective of the flow threshold Qthres.

Therefore, it was natural to look for an explanation of
these surprising findings. As the dependence of the expo-
nents on the number of freeway lanes does not support
explanations based on the longitudinal vehicle dynamics,
we have studied a model based on the transversal vehi-
cle dynamics, i.e. lane changes. Our hypothesis was that
high-flow states occured due to vehicle platoons, and that
these vehicle platoons would be caused by lasting over-
taking maneuvers of slow vehicles, particularly of trucks.
Based on an approximate Gaussian distribution of the
speed difference of trucks, we could, in fact, derive the
empirical power law and the exponent α = 2. For this, we
have studied the duration of overtaking maneuvers, the re-
sulting lifetime of forming vehicle platoons, and the mea-
surement process at a cross section of the freeway. The
lifetime ∆T∗ of a vehicle platoon and the measurement
∆T of the related high-flow vehicle cluster are propor-
tional to the duration ∆t of overtaking maneuvers. This
circumstance transfers the power law of the time periods
∆t to the periods of the high-flow states. The powerlaw
itself results from the approximate Gaussian distribution
of relative speeds ∆v, the fact that the duration ∆t of
overtaking maneuvers is inversely proportional to ∆v, and
the domination of long-lasting overtaking maneuvers with
∆v ≈ 0.

Author contributions: B.T. performed the empirical data anal-
ysis, while D.H. developed the theoretical model.
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A Dispersion of Vehicle Clusters

For each vehicle class a (i.e. cars and trucks), the disper-
sion of vehicle clusters is described by the traffic pressure
Pa(x, t) = ρa(x, t)θa(x, t), which is proportional to the
vehicle density ρa(x, t) of vehicle type a and its velocity
variance θa(x, t) as a function of location x and time t [66].
In the limit of small adaptation times τa for the velocity
relaxation, the average speed Va of vehicle class a may be
approximated by

Va(x, t) = V e
a

(

∑

b

ρb(x, t)
)

− τa

ρa

∂Pa(x, t)

∂x
, (31)
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where V e
a (

∑

b ρb(x, t)) is the equilibrium relationship be-
tween speed Va and density ρ(x, t) =

∑

b ρb(x, t). Insert-
ing Eq. (31) into the continuity equation for each vehicle
class, the dispersion of vehicle clusters due to different
speeds can be reflected by diffusion terms Dab∂

2ρb/∂x2

(for details of the derivation see Ref. [67]):

∂ρa(x, t)

∂t
+ V e

a

(

∑

b

ρb(x, t)
)∂ρa

∂x
≈

∑

b

∂

∂x

(

Dab
∂ρb

∂x

)

.

(32)
Herein, the diffusion parameters Dab are given by

Dab(ρa, ρb) = τa
∂Pa(ρa, ρb)

∂ρb
. (33)

The diffusion terms on the right-hand side of Eq. (32)
imply a spatial dispersion of clusters in the course of time.
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1. B. S. Kerner and P. Konhäuser, Structure and parameters
of clusters in traffic flow, Phys. Rev. E 50, 54–83 (1994).

2. D. Chowdhury, L. Santen, and A. Schadschneider, Statis-
tical physics of vehicular traffic and some related systems.
Physics Reports 329, 199 (2000).

3. D. Helbing, Traffic and related self-driven many-particle
systems. Reviews of Modern Physics 73, 1067–1141 (2001).

4. T. Nagatani, The physics of traffic jams. Reports on

Progress in Physics 65, 1331–1386 (2002).
5. B. Persaud, S. Yagar, and R. Brownlee, Exploration of the

breakdown phenomenon in freeway traffic, Transpn. Res.

Rec. 1634, 64–69 (1998).
6. D. Helbing and M. Moussaid, Analytical calculation of

critical perturbation amplitudes and critical densities by
non-linear stability analysis of a simple traffic flow model,
European Physical Journal B, in print (2008).

7. Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A.
Nakayama, K. Nishinari, S.-i. Tadaki, and S, Yukawa, Traf-
fic jams without bottlenecks—experimental evidence for
the physical mechanism of the formation of a jam, New

Journal of Physics 10, 033001 (2008).
8. B. S. Kerner and H. Rehborn, Experimental properties of

complexity in traffic flow Phys. Rev. E 53, R4275–R4278
(1996).

9. M. Treiber and D. Helbing, Macroscopic simulation of
widely scattered synchronized traffic states. Journal of

Physics A: Mathematical and General 32, L17–L23 (1999).
10. K. Nishinari, M. Treiber, and D. Helbing (2003) Interpret-

ing the wide scattering of synchronized traffic data by time
gap statistics. Physical Review E 68, 067101.

11. M. Treiber, A. Kesting, and D. Helbing, Understanding
widely scattered traffic flows, the capacity drop and pla-
toons as effects of variance-driven time gaps. Physical Re-

view E 74, 016123 (2006).
12. J. Treiterer and J. A. Myers, The hysteresis phenomenon

in traffic flow. In Proceedings of the 6th International Sym-

posium on Transportation and Traffic Theory, edited by D.
Buckley (Reed, London, 1974), pp. 13–38.

13. B. S. Kerner and H. Rehborn, Experimental features and
characteristics of traffic jams. Phys. Rev. E 53, R1297–
R1300 (1996).

14. S. Krauss, P. Wagner, and C. Gawron, Metastable states
in a microscopic model of traffic flow. Physical Review E

55, 5597–5602 (1997).
15. M. Cassidy and R. L. Bertini, Some traffic features at

freeway bottlenecks. Transportation Research B 33, 25–42
(1999).

16. B. Tilch and D. Helbing, Evaluation of single vehicle data
in dependence of the vehicle-type, lane and site, in D. Hel-
bing et al. Traffic and Granular Flow ’99 (Springer, Berlin,
2000), pp. 333–338.

17. M. R. Evans, Bose-Einstein condensation in disordered ex-
clusion models and relation to traffic flow, Europhys. Lett.

36, 13–18 (1996).
18. J. Krug and P. A. Ferrari, Phase transitions in driven dif-

fusive systems with random rates, J. Phys. A: Math. Gen.

29, L465–L471 (1996).
19. V. Karimipour, A multi species asymmetric exclusion pro-

cess, steady state and correlation functions on a periodic
lattice, Europhys. Lett. 47, 304–310 (1999).

20. V. Karimipour, A remark on integrability of stochastic sys-
tems solvable by matrix product ansatz, Europhys. Lett.

47, 501–507 (1999).
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