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Abstract. Daganzo’s criticisms of second-order fluid approximations of traffic flow [C. Daganzo, Transpn.
Res. B. 29, 277-286 (1995)] and Aw and Rascle’s proposal how to overcome them [A. Aw and M. Rascle,
SIAM J. Appl. Math. 60, 916-938 (2000)] have stimulated an intensive scientific activity in the field of
traffic modeling. Here, we will revisit their arguments and the interpretations behind them. We will start
by analyzing the linear stability of traffic models, which is a widely established approach to study the
ability of traffic models to describe emergent traffic jams. Besides deriving a collection of useful formulas
for stability analyses, the main attention is put on the characteristic speeds, which are related to the group
velocities of the linearized model equations. Most macroscopic traffic models with a dynamic velocity
equation appear to predict two characteristic speeds, one of which is faster than the average velocity.
This has been claimed to constitute a theoretical inconsistency. We will carefully discuss arguments for
and against this view. In particular, we will shed some new light on the problem by comparing Payne’s
macroscopic traffic model with the Aw-Rascle model and macroscopic with microscopic traffic models.

PACS. 89.40.Bb Land transportation – 45.70.Vn Granular models of complex systems; traffic flow –
83.60.Wc Flow instabilities

1 Introduction

Understanding traffic congestion has puzzled not only
traffic engineers, but also a large number of physicists [1–
4]. Scientists have been particularly interested in emergent
traffic jams, which are related to instabilities in the traffic
flow. Such instabilities have been found in empirical data
[5], but also in recent experiments [6].

The theoretical analysis is usually done by computer
simulation or by linear stability analysis. Both techniques
have been used since the early days of traffic engineering
[7] and traffic physics [8,9]. Here, we will perform the anal-
ysis for macroscopic and microscopic models in parallel, as
there should be a correspondence between the properties
of both kinds of models. In contrast to previous publica-
tions, the analysis of macroscopic traffic equations is done
for a model that considers a dependence of the optimal ve-
locity function and the traffic pressure on the average ve-
locity, not only the density. Such a dependence results for
models which represent vehicle interactions realistically,
taking into account a velocity-dependent safety distance
[10]. This is, for example, important to avoid accidents,
and it changes the instability conditions significantly (see
Sec. 3).

Besides determining the stability threshold, a partic-
ular focus will be put on the calculation of the group ve-
locities of the partial differential equations underlying the
macroscopic traffic model (see Sec. 3.2). For clarity, the

definition of the group velocities will be compared with
those of phase velocities and of characteristic speeds. All
three definitions describe propagation processes of waves.
It will be shown, that they lead to identical results under
certain circumstances, but not necessarily so.

Furthermore, we will derive conditions under which
one of the group velocities is greater than the average
velocity. In Sec. 2, we will shortly summarize the main
points of the controversial discussion that this observa-
tion has triggered. We will also address Daganzo’s other
criticisms of second-order fluid approximations of traffic
flow [11]. After the formal analysis in Sec. 3, Sec. 4 will
be dedicated to a careful discussion of the results. In par-
ticular, we will analyze different conceivable reasons for
characteristic speeds faster than the vehicle speeds: (1)
artifacts due to approximations underlying second-order
macroscopic traffic models, (2) indirect long-range forward
interactions with followers on a circular road, (3) the def-
inition of the propagation speed of perturbations, (4) the
variability of vehicle velocities, (5) the interpretation of
characteristic speeds. Since characteristic speeds are pri-
marily perceived as a problem of second-order macroscopic
traffic models, in Sec. 5 we will compare them with the
group velocities predicted by microscopic traffic models.
Finally, we will summarize our results in Sec. 6.
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2 Summary of the Controversy regarding
Second-Order Traffic Flow Models

In the area of macroscopic traffic flow modeling, it is com-
mon to formulate equations for the vehicle density ρ(x, t)
as a function of space x and time t and for the aver-
age velocity V (x, t). The most well-known model, some-
times called the LWR model, was proposed by Lighthill,
Whitham, and Richards [12,13]. It is based on the conti-
nuity equation

∂ρ(x, t)

∂t
+ V (x, t)

∂ρ(x, t)

∂x
= −ρ(x, t)

∂V (x, t)

∂x
(1)

for the density and a speed-density relationship

V (x, t) = Ve

(

ρ(x, t)
)

(2)

or, alternatively, a “fundamental diagram” Q(x, t) =
Qe(ρ(x, t)) for the vehicle flow Q(x, t) = ρ(x, t)V (x, t).
Obviously, the LWR model is based on a (hyperbolic) par-
tial differential equation of first order. A detailed analysis
is given in Refs. [12,14]. It is well-known, that it describes
the generation of shock waves characterized by discontin-
uous density changes.

Therefore, in his famous “Requiem for Second-Order
Fluid Approximations of Traffic Flow” [11], Carlos Da-
ganzo correctly notes on page 285 that, “Besides a coarse
representation of shocks, other deficiencies of the LWR
theory include its failure to describe platoon diffusion
properly ... and its inability to explain the instability of
heavy traffic, which exhibits oscillatory phenomena on the
order of minutes.” However, he also criticizes theoreti-
cal inconsistencies of alternative models, which, at that
time, were mainly second-order models containing diffu-
sion, pressure, or viscosity terms. The Payne-Whitham
model [14–16], for example, has a dynamic velocity equa-
tion of the form

∂V (x, t)

∂t
+ V (x, t)

∂V (x, t)

∂x

= − ν

ρ(x, t)

∂ρ(x, t)

∂x
+

1

τ

[

Ve

(

ρ(x, t)
)

− V (x, t)
]

(3)

with

ν = − 1

2τ

dVe(ρ)

dρ
=

1

2τ

∣

∣

∣

∣

dVe(ρ)

dρ

∣

∣

∣

∣

≥ 0 . (4)

Here, the term containing ν is called anticipation term,
while the last term is known as relaxation term. Ve(ρ)
denotes the equilibrium velocity and τ the relaxation time.

Some of the second-order models, including the Payne-
Whitham model [15,16], can be derived from car-following
models by certain approximations. This involves gra-
dient expansions of non-local, forwardly directed (i.e.
anisotropic) vehicle interactions [10]. Such approximations
are problematic, since they lead to terms containing spa-
tial derivatives, which imply undesired backward interac-
tion effects as well. The related theoretical inconsistencies
were elaborated by Daganzo. In the following, we will sum-
marize his critique by quotes from Ref. [11] (page numbers
in square brackets):

1. Lack of anisotropy: “A fluid particle responds to
stimuli from the front and from behind, but a car is
an anisotropic particle that mostly responds to frontal
stimuli” [p. 279].

2. Insufficient description of jam fronts: “The width
of a traffic shock only encompasses a few vehicles”,
while second-order models involving viscosity terms
would typically imply extended jam fronts [p. 279].
Daganzo argues that “the smoothness of the shock is
inherently unreasonable” [p. 282], because “spacings
and density must change abruptly whenever the road
behind is empty” [p. 282]. Based on the analysis of con-
crete examples, Daganzo further finds that “the cars
at the end of the queue move back and the behavior
spreads to the remaining vehicles in the queue ... from
the back to the front!” [p. 283]. Further on, new arrivals
of vehicles would “compress a queue from behind” [p.
283].

3. Insufficient representation of acceleration pro-

cesses and driver characteristics: According to the
“relaxation” mechanism for the velocity distribution
assumed in the gas-kinetic traffic model by Prigogine
et al. [17], the “desired speed distribution is a property
of the road and not the drivers, as noted by Paveri-
Fontana (1975)” [p. 280]. However, “Unlike molecules,
vehicles have personalities (e.g., aggressive and timid)
that remain unchanged by motion” [p. 279], and mod-
els should make sure “that interactions do not change
the ‘personality’ (agressive/timid) of any car” [p. 280].
Therefore, “a slow car should be virtually unaffected
by its interaction with faster cars passing it (or queue-
ing behind it) ...” [p. 280].

A further criticism concerns the propagation speeds of
perturbations in the traffic flow, predicted by second-
order traffic models, which will be addressed after we have
replied to the above, well-taken points:

1. The lack of anisotropy is a consequence of gradient ex-
pansions and can be avoided by non-local macroscopic
traffic models [10], such as the gas-kinetic-based traffic
model (GKT model) [18,19].

2. Non-local traffic models can represent sharp shock
fronts well, as has been demonstrated for the GKT
model [20]. They are also capable of avoiding negative
vehicle velocities, if properly specified [20]. For exam-
ple, the speed variance θ appearing in some macro-
scopic traffic models, in particular in the “pressure
term” (see below) must vanish, whenever the average
velocity V vanishes. This can be reached by a rela-
tionship of the form θ(ρ, V ) = α(ρ)V 2 with a suitable,
density-dependent function α(ρ) ≥ 0 [18,19].

3. The personality of drivers can be represented by multi-
class traffic models [19,21,22]. Moreover, the unrealis-
tic acceleration-behavior implied by Prigogine’s gas-
kinetic traffic model [17] has been overcome by the
gas-kinetic model by Paveri-Fontana [23] and its gener-
alizations to different driver-vehicle classes [19,21]. In
these models, it is not the velocity distribution which
relaxes to a desired velocity distribution (which would
imply discontinuous velocity jumps at a certain rate).
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Rather they describe a continuous adaptation of indi-
vidual vehicle velocities to their desired speeds.

Let us now turn to the discussion of the “characteristic
speeds”. Characteristic speeds relate to the eigenvalues of
hyperbolic partial differential equations. They determine
the solutions for given initial and boundary conditions, in
particular which locations influence the solution at other
locations at a given time [24,25] (see Appendix A). The
characteristic speeds are also important for the stability
of numerical solution schemes for partial differential equa-
tions [26].

What implications does this have for macroscopic traf-
fic models based on systems of hyperbolic partial differ-
ential equations with source terms? In his “Requiem for
second-order fluid approximations of traffic flow” [11], Da-
ganzo argues that “high-order models always exhibit one
characteristic speed greater than the macroscopic fluid ve-
locity. ... This is highly undesirable because it means that
the future conditions of a traffic element are, in part, de-
termined by what is happening ... BEHIND IT! ... it is a
manifestation of the erroneous cause and effect relation-
ship between current and future variables that is at the
heart of all high-order models” [p. 281].

Is this violation of causality a result of crude approxi-
mations underlying second-order macroscopic traffic mod-
els? Or could the assumption of circular boundary condi-
tions explain an influence from behind, even in the case
where vehicle interactions are exclusively directed to the
front? Or is the faster characteristic speed related to ve-
hicle interactions at all? Until today, the problem of char-
acteristic speeds is puzzling, and it has stimulated many
scientists to develop and investigate improved macroscopic
traffic models [27–36]. Here, we restrict our discussion to
the most prominent example: In their “Resurrection of
‘second order’ models of traffic flow” [27], Aw and Rascle
propose a new model with two characteristic speeds, one
of which is smaller than and the other one equal to V ,
where V denotes the macroscopic vehicle speed. Details
are discussed in Sec. 4.1. While, without any doubt, such
an approach is interesting and worth pursuing, we will ad-
dress the question, whether it is necessary to overcome the
problem pointed out by Daganzo. This issue must be ana-
lyzed very carefully in order to exclude misunderstandings
and to avoid jumping to a conclusion. To provide a com-
plete chain of arguments, the main text of this paper is
supplemented by several appendices.

3 Linear Instability of Macroscopic Traffic
Models

Let us start our analysis with the continuity equation (1)
for the vehicle density ρ(x, t) and a macroscopic equation
for the average velocity V (x, t) of the type derived at the
end of Sec. 4.4.3 of Ref. [10]: Assuming repulsive vehicle
interactions that depend on the vehicle distance and vehi-
cle speed, but (for simplicity) not on the relative velocity,
it reads

∂V (x, t)

∂t
+ V (x, t)

∂V (x, t)

∂x

= −1

ρ

∂P1(ρ, V )

∂ρ

∂ρ(x, t)

∂x
− 1

ρ

∂P2(ρ, V )

∂V

∂V (x, t)

∂x

+
Vo(ρ, V ) − V (x, t)

τ
. (5)

Herein, P1 and P2 are contributions to the “traffic pres-
sure”, and Vo(ρ, V ) is the “optimal velocity” function.

Our stability analysis starts with an initial state of uni-
form vehicle density ρe. The related stationary and homo-
geneous (i.e. time- and location-independent) solution is
obtained by setting the partial derivatives ∂/∂t and ∂/∂x
to zero. In this way, Eq. (5) yields the implicit equation

Ve(ρe) = Vo

(

ρe, Ve(ρe)
)

(6)

for the equilibrium speed Ve(ρe). With this, we can define
the deviations

δρ(x, t) = ρ(x, t)− ρe and δV (x, t) = V (x, t)−Ve .
(7)

Inserting ρ(x, t) = ρe+δρ(x, t) and V (x, t) = Ve+δV (x, t)
into the continuity equation, performing Taylor approx-
imations, where necessary, and dropping all non-linear
terms because of the assumption of small deviations
δρ(x, t)/ρe ≪ 1 and δV (x, t)/Ve ≪ 1, we end up with
the following linearized equation:

∂ δρ(x, t)

∂t
+ Ve(ρe)

∂ δρ(x, t)

∂x
= −ρe

∂ δV (x, t)

∂x
. (8)

Analogously, the linerarized dynamical equation for the
average velocity becomes

∂ δV (x, t)

∂t
+ Ve

∂ δV (x, t)

∂x

= − 1

ρe

[

∂P1(ρe, Ve)

∂ρ

∂ δρ(x, t)

∂x
+

∂P2(ρe, Ve)

∂V

∂ δV (x, t)

∂x

]

+
1

τ

[

∂Vo(ρe, Ve)

∂ρ
δρ(x, t)

+
∂Vo(ρe, Ve)

∂V
δV (x, t) − δV (x, t)

]

. (9)

The terms on the right-hand side in the first square
bracket may be considered to describe dispersion and
interaction effects contributing to the “traffic pressure”,
while the terms in the second square bracket result from
the so-called relaxation term, i.e. the adaptation of the av-
erage velocity V (x, t) to some “optimal velocity” Vo(ρ, V )
with a relaxation time τ .

As is shown in Appendix B, a linear stability analysis
of Eqs. (8) and (9) leads to the characteristic polynomial

(λ̃)2 + λ̃

[

iκ

ρe

∂P2

∂V
+

1

τ

(

1 − ∂Vo

∂V

)]

+ iκρe

(

− iκ

ρe

∂P1

∂ρ
+

1

τ

∂Vo

∂ρ

)

= 0 . (10)

It has the two solutions (eigenvalues)

λ̃±(ρe, κ) = λ±(ρe, κ) − iω̃±(ρe, κ)

= − 1

2τ̂
− iκ

2ρe

∂P2

∂V
±
√

ℜ ± i|ℑ| (11)
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with

1

τ̂(ρe, κ)
=

1

τ

(

1 − ∂Vo

∂V

)

≥ 0 , (12)

ℜ(ρe, κ) =
1

4τ̂2
− κ2 ∂P1

∂ρ
− κ2

4ρe
2

(

∂P2

∂V

)2

, (13)

±|ℑ(ρe, κ)| = −κρe

τ

dVo

dρ
+

κ

2ρeτ̂

∂P2

∂V
. (14)

Here, we have used the abbreviations

λ̃ = λ − iω̃ and ω̃ = ω − κVe(ρe) . (15)

As the square root contains a complex number, it is
difficult to see the sign of the real value λ of λ̃. However,
we may apply the formula

√

ℜ± i|ℑ| =

√

1

2

(
√

ℜ2 + ℑ2 + ℜ
)

± i

√

1

2

(

√

ℜ2 + ℑ2 − ℜ
)

, (16)

which is derived in Appendix C. From this and Eq. (11),
we get the following relationship for the real part of the
eigenvalues λ̃±(ρe, κ):

λ±(ρe, κ) = Re
(

λ̃±(ρe, κ)
)

= − 1

2τ̂
±
√

1

2

(

√

ℜ2 + ℑ2 + ℜ
)

.

(17)
The expression for the imaginary part gives

−ω̃±(ρe, κ) = Im
(

λ̃±(ρe, κ)
)

= − κ

2ρe

∂P2

∂V
±
√

1

2

(

√

ℜ2 + ℑ2 −ℜ
)

. (18)

3.1 Derivation of the Instability Condition

A transition from stable to unstable behavior, i.e. the
change from negative to positive values of λ±(ρe, κ) oc-

curs only for the eigenvalue λ̃
+
(ρe, κ), namely under the

condition

λ+(ρe, κ) = − 1

2τ̂
+

√

1

2

(

√

ℜ2 + ℑ2 + ℜ
)

= 0 . (19)

This implies
(

1

4τ̂2
− ℜ

2

)2

=
1

4
(ℜ2 + ℑ2) (20)

and, therefore,

1

16τ̂4
=

ℜ
4τ̂2

+
ℑ2

4
. (21)

Inserting the above definitions of ℑ and ℜ, we eventually
find

κ2

4τ̂2

[

∂P1

∂ρ
+

1

4ρe
2

(

∂P2

∂V

)2
]

=
1

4

(

−κρe

τ

∂Vo

∂ρ
+

κ

2ρeτ̂

∂P2

∂V

)2

. (22)

From this and definition (12), we can derive the following
condition for the instability threshold:

1

τ̂

√

∂P1

∂ρ
+

1

4ρe
2

(

∂P2

∂V

)2

= −ρe

τ

∂Vo

∂ρ
+

1

2ρeτ̂

∂P2

∂V
. (23)

Assuming the relationships ∂Vo(ρ)/∂ρ ≤ 0, ∂Vo/∂V ≤ 0,

and ∂P2/∂V ≤ 0, the condition for Re(λ̃
+
) > 0 becomes

ρe

∣

∣

∣

∣

∂Vo

∂ρ

∣

∣

∣

∣

>





√

∂P1

∂ρ
+

1

4ρe
2

(

∂P2

∂V

)2

+
1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣





×
(

1 +

∣

∣

∣

∣

∂Vo

∂V

∣

∣

∣

∣

)

. (24)

We notice that this instability condition is not fulfilled, if
the average velocity Vo(ρ, V ) changes little with the den-
sity ρ, which is typically the case for small densities and, in
many models, also for large ones. However, λ+(ρe, κ) may
be greater than zero at medium densities, where |dVe/dρ|
is large according to empirical observations. The related
instability mechanism is based on a reduction of the aver-
age velocity with increasing density. Due to the continuity
equation, this tends to cause a further compression (but
the “traffic pressure” terms P1 and P2 partially counteract
this re-inforcement mechanism).

As a consequence of the inequality (24), we can state
that the speed-dependence of the traffic pressure term P2

and the optimal velocity Vo tends to make traffic flow
more stable with respect to perturbations. The speed-
dependence also resolves problems related to the fact
that ∂P1/∂ρ may become negative in a certain density
range. This would imply a negative discriminant of the
square root, if the negative contribution ∂P1/∂ρ < 0 was
not compensated for by (∂P2/∂V )2/(4ρe

2) [10]. The case
∂P1/∂ρ < 0 could also cause negative accelerations and
speeds, particularly at the end of congestion areas, which
would not be realistic [11]. Again, the second pressure con-
tribution P2 can resolve the problem, if properly chosen.

3.2 Characteristic Speeds, Phase, and Group Velocities

When neglecting the relaxation term (i.e. in the limit
τ → ∞), the so-called characteristics may be imagined
as (parametrized) space-time lines, along which the solu-
tion of a macroscopic traffic model based on partial dif-
ferential equations does not change in time. In Appendix
A, we derive the characteristics of the linearlized equa-
tions (8) and (9). In the following, we will compare the
characteristic speeds Cj(ρe) = Ve(ρe) + cj(ρe) given by
Eq. (66) with the phase velocities Ve(ρe) + ω̃±(ρe, κ)/κ
and the group velocities Ve(ρe) + ∂ω̃±(ρe, κ)/∂κ result-
ing from the above linear instability analysis. While the
phase velocity describes the propagation of a single wave
mode, the group velocity describes the propagation of a
wave packet composed of waves with different wave num-
bers κ (see Appendix D for details). The group velocity
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is usually considered to represent the speed of informa-
tion propagation.1 Due to dispersion effects, we may have
∂ω̃±(ρe, κ)/∂κ 6= ω̃±(ρe, κ)/κ.

Let us first study the situation in the limit τ → ∞ of
arbitrarily slow adaptation to changed traffic conditions.
Considering the definitions (12) to (14), we find 1/τ̂(κ) =
0, |ℑ(ρe, κ)| = 0, and

ℜ(ρe, κ) = −κ2 ∂P1

∂ρ
− κ2

4ρe
2

(

∂P2

∂V

)2

. (25)

For ℜ ≤ 0, we have
√
ℜ2 + ℑ2 = |ℜ| = −ℜ and, due to

Eqs. (17) and (18), we obtain

λ± = 0 and ω̃± = − κ

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

∓
√

|ℜ(ρe, κ)|
(26)

in the limit τ → ∞. This implies

∂ω̃±(ρe, κ)

∂κ
=

ω̃±(ρe, κ)

κ

= − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

∓

√

∂P1

∂ρ
+

1

4ρe
2

(

∂P2

∂V

)2

. (27)

Therefore, group and phase velocity in the limit τ → ∞
are the same. A comparison with Eq. (66) shows that they
also agree with the characteristic speeds. This is expected,
because of λ± = 0, which means that the wave amplitudes
do not grow or decay—they just propagate along the char-
acteristics.

For finite values of τ , which are typical for real traffic
flows, the phase and group velocities may be different,
and they also do not need to agree with the characteristic
speeds, as we will see below: The group velocities, i.e. the
propagation speeds of small perturbations, are given by

Cl(ρe, κ) =
∂ωl(ρe, κ)

∂κ
= Ve(ρe) +

∂ω̃l(ρe, κ)

∂κ
= Ve(ρe) + cl(ρe, κ) , (28)

as derived in Appendix D. Obviously, there are two group
velocities C± = Ve + c±, which can be determined by
differentiation of the expression for ω̃±(ρe, κ) given in Eq.
(18):

c±(ρe, κ) = +
1

2ρe

∂P2

∂V
∓ ∂

∂κ

√

1

2

(
√

ℜ2 + ℑ2 −ℜ
)

. (29)

Considering ∂P2/∂V ≤ 0 and

1

2

(

√

ℜ2 + ℑ2 −ℜ
)

=
1

2

(

√

ℜ2 + ℑ2 + ℜ
)

−ℜ

=

(

λ± +
1

2τ̂

)2

−ℜ , (30)

which is implied by Eqs. (17) and (18), we may also write

c±(ρe, κ) = − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

∓ ∂

∂κ

√

(

λ± +
1

2τ̂

)2

−ℜ . (31)

1 A typical example is the modulation of electromagnetic
waves used to transfer information via radio.

Taking into account Eq. (13), this is generally not the
same as ω̃±(ρe, κ)/κ, i.e. the phase velocities differ. Inter-
estingly enough, however, at the stability threshold given
by λ

+
= 0, we find

c
+
(ρe, κ) = − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

− ∂

∂κ

√

1

4τ̂2
−ℜ

= − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

−

√

∂P1

∂ρ
+

1

4ρe
2

(

∂P2

∂V

)2

. (32)

At the stability threshold we furthermore have λ− =
−1/τ̂ . Inserting this into Eq. (31) reveals

c
−

(ρe, κ) = − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

+
∂

∂κ

√

1

4τ̂2
−ℜ

= − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

+

√

∂P1

∂ρ
+

1

4ρe
2

(

∂P2

∂V

)2

. (33)

The same expressions are found for the phase velocities. A
comparison with Eq. (66) shows that they also agree with
the characteristic speeds. Note that c+ is smaller than
zero. However, we have c− ≤ 0 (corresponding to charac-
teristic speeds slower than the average vehicle velocity or
equal to it) only if

√

∂P1

∂ρ
+

1

4ρe
2

(

∂P2

∂V

)2

≤ 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

(34)

or

0 ≤ −∂P1

∂ρ
≤ 1

4ρe
2

(

∂P2

∂V

)2

. (35)

4 Discussion

For the discussion of our results regarding the character-
istic speeds, let us study two particular models first, the
Payne model [15,16] and the Aw-Rascle model [27].

4.1 Characteristic Speeds in the Aw-Rascle Model

The model proposed by Aw and Rascle [27] corresponds
to Eqs. (1) and (5) with τ → ∞,

∂P1(ρ, V )

∂ρ
= 0 and

∂P2(ρ, V )

∂V
= −γρ(x, t)γ+1 ≤ 0 ,

(36)
see Ref. [10]. γ is a positive constant. This implies 1/τ̂ =
0, ℜ(κ) = −κ2(∂P2/∂V )2/(4ρe

2) < 0 and |ℑ(κ)| = 0.
Therefore, Eq. (29) implies

c±(ρe, κ) = − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

∓ ∂

∂κ

√

1

2
(|ℜ| − ℜ)

= − 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

∓ 1

2ρe

∣

∣

∣

∣

∂P2

∂V

∣

∣

∣

∣

. (37)
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This leads to c+ = −γρ(x, t)γ and c− = 0, correspond-
ing to the characteristic speeds V − γρ(x, t)γ and V , in
agreement with Aw’s and Rascle’s calculations [27]. That
is, their model does not have a characteristic speed faster
than the average vehicle speed, which elegantly avoids the
problem raised by Daganzo [11].

However, is it really necessary to exclude the existence
of a characteristic speed faster than the vehicle speeds? In
order to address this problem, we will now study Payne’s
macroscopic traffic model, which has received most of the
criticism. We do this primarily for the sake of illustra-
tion, while we are well aware of the weaknesses of this
model (like the possibility of backward moving vehicles at
upstream jam fronts for certain initial conditions). There-
fore, the authors of this paper generally prefer the use of
non-local macroscopic traffic models [10], but this is not
the issue to be discussed, here.

4.2 Payne’s Traffic Model

Payne’s macroscopic traffic model [15,16] has a solely
density-dependent optimal velocity

Vo(ρ, V ) = Ve(ρ) (38)

and the pressure gradients

∂P1(ρ, V )

∂ρ
=

1

2τ

∣

∣

∣

∣

dVe(ρ)

dρ

∣

∣

∣

∣

≥ 0 ,
∂P2(ρ, V )

∂V
= 0 . (39)

This simplifies the instability condition (24) considerably,
and we get

ρe

∣

∣

∣

∣

dVe(ρe)

dρ

∣

∣

∣

∣

>
1

2ρeτ
. (40)

Traffic flow becomes unstable, if the equilibrium velocity
Ve(ρ) decreases too rapidly with an increase in the density
ρ, and greater relaxation times τ tend to imply larger
instability regimes. For the characteristic speeds at the
instability threshold, with ρe|dVe/dρ| = 1/(2ρeτ) we find

c±(ρe) = ∓
√

∂P1

∂ρ
= ∓

√

1

2τ

∣

∣

∣

∣

dVe(ρe)

dρ

∣

∣

∣

∣

= ∓ρe

∣

∣

∣

∣

dVe(ρe)

dρ

∣

∣

∣

∣

.

(41)
Clearly, c−(ρ) is non-negative, i.e. the related characteris-
tic speed Ve(ρ) + c−(ρ) tends to be larger than the av-
erage vehicle speed Ve(ρ). Nevertheless, by demanding
Ve(ρ) + c−(ρ) ≤ V 0, e.g. by assuming a linear speed-
density function

Ve(ρ) = V 0

(

1 − ρ

ρjam

)

, (42)

one could still reach that the characteristic speed Ve(ρ) +
c−(ρ) lies within the variability of the vehicle speeds. In
fact, we have c± = 0 whenever the vehicle speed cannot
vary, namely at density zero and at maximum density,
where ρe|dVe(ρe)/dρ| = 0. However, do we need to im-
pose such conditions on the characteristic speed and the

speed-density relationship? This shall be addressed in the
following and in Sec. 5.

In connection with this question, it is interesting to
note that, according to Eqs. (33) and (41), the group ve-
locity c

+
corresponding to the solution with the unstable

eigenvalue λ
+

is negative with respect to the average ve-
locity Ve. In contrast, propagation at the positive speed
c
−

with respect to the average velocity Ve is related with
an eigenmode that decays quickly, basically at the rate at
which the vehicle speeds adjust. Therefore, the forwardly
propagating mode cannot emerge by itself. It could only be
produced by a particular specification of the initial condi-
tion, enforcing a finite amplitude of the forwardly moving
mode. We will come back to this in Sec. 5.

It is noteworthy that already Whitham performed a
thorough analysis of the speeds characterizing the traffic
dynamics in what is known as the Payne model today (see
Ref. [14], Chaps. 3 and 10). He showed that the linearized
partial differential equations (8) and (9), when specified
in accordance with Eqs. (38) and (39), can be cast into
the equation

∂δρ(x, t)

∂t
+

(

Ve(ρ) + ρ
dVe(ρ)

dρ

)

∂δρ(x, t)

∂x

= −τ

(

∂

∂t
+
[

Ve(ρ) + c+(ρ)
] ∂

∂x

)

×
(

∂

∂t
+
[

Ve(ρ) + c−(ρ)
] ∂

∂x

)

δρ(x, t) . (43)

Whitham was perfectly aware of the fact that the char-
acteristic speed Ve(ρ) + c−(ρ) was faster than the average
vehicle velocity Ve(ρ), but not at all worried about this.
His perception was that all three velocities were meaning-
ful, and that the kinematic speed Ve(ρ) + ρ dVe/dρ would
dominate in the limit of small values of τ (which implies
stable vehicle flows). However, the open problem is still,
how a characteristic speed Ve(ρ) + c−(ρ) > Ve(ρ) can be
interpreted, without violating causality.

4.3 Characteristic Speeds vs. Vehicle Speeds

In physical systems, it is not necessarily surprising to find
characteristic speeds faster than the average speed. Let
us illustrate this for the example of sound propagation.
In one spatial dimension, this is described by the continu-
ity equation (1) in combination with the one-dimensional
velocity equation

∂V (x, t)

∂t
+ V (x, t)

∂V (x, t)

∂x
= −1

ρ

∂P(ρ)

∂x
. (44)

These so-called Euler equations [37] can be considered
to model frictionless fluid or gas flows in one dimension.
Compared to the velocity equation (5), we have dropped
the relaxation term [Ve(ρ) − V ]/τ . Therefore, we do not
have an equilibrium velocity-density relation Ve(ρ), now.

In order to determine the solution of the above equa-
tions, one can derive linearized equations for the case of
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small deviations δρ(x, t) = ρ(x, t) − ρe and δV (x, t) =
V (x, t) − Ve from the stationary and homogeneous solu-
tion ρ(x, t) = ρe and V (x, t) = Ve = 0. The quantity ρe

corresponds to the average density of the fluid or gas.
Inserting (7) into Eqs. (1) and (44) and neglecting non-

linear terms in the small deviations δρ, δV results in

∂δρ(x, t)

∂t
+ Ve

∂δρ(x, t)

∂x
= −ρe

∂δV (x, t)

∂x
(45)

and

∂δV (x, t)

∂t
+ Ve

∂δV (x, t)

∂x
= − 1

ρe

dP(ρe)

dρ

∂δρ(x, t)

∂x
. (46)

Considering Ve = 0, deriving Eq. (45) with respect to t,
and Eq. (46) with respect to x yields

∂2δρ(x, t)

∂t2
+ ρe

∂2δV (x, t)

∂t ∂x
= 0 (47)

and
∂2δV (x, t)

∂x ∂t
= − 1

ρe

dP(ρe)

dρ

∂2δρ(x, t)

∂x2
. (48)

Inserting Eq. (48) into Eq. (47) finally gives the so-called
wave equation

∂2δρ(x, t)

∂t2
− ĉ2 ∂2δρ(x, t)

∂x2
= 0 , (49)

which is well-known from one-dimensional sound propa-
gation. The constant

ĉ =

√

dP(ρe)

dρ
, (50)

corresponds to the speed of sound. In order to determine
the spatio-temporal solution of Eq. (49), we rewrite this
equation, inspired by the relationship (a2 − b2) = (a +
b)(a − b):

(

∂

∂t
− ĉ

∂

∂x

)(

∂

∂t
+ ĉ

∂

∂x

)

δρ(x, t) = 0 . (51)

According to this equation, perturbations propagate back-
ward and forward at the speed ±ĉ, although the average
speed is V = 0. However, for gases we may assume an ap-
proximate pressure law of the form P = ρθ0 [37], where θ0

is the velocity variance of gas molecules. Hence, the speed
of sound is given by ĉ =

√
θ0, i.e. by the standard devia-

tion of velocities. As a consequence, the speed of sound can
actually be propagated by the mobility of gas molecules.

In a similar way, we can understand characteristic
speeds faster than the average vehicle speed in the macro-
scopic model of Phillips [38] or Kühne [8], Kerner and
Konhäuser [39], and Lee et al. [40]. Their pressure func-
tions are also given by the formula “density times veloc-
ity variance”. Therefore, the faster characteristic speed of
these macroscopic traffic models is expected to lie within
the range of individual vehicle speeds.2

2 Note that the existence of perturbations in the traffic flow
always implies a variation of the vehicle speeds.

As we have seen above, the situation is generally differ-
ent for Payne’s model. However, it is illustrative to note
that Vo(ρ) + c

+
(ρ) may become negative, even when all

vehicles move forward. That is, it is possible to have char-
acteristic speeds outside of the range of vehicle speeds:
According to Eqs. (41) and (15), the slower characteristic
speed at the instability threshold is

Ve(ρ) + c
+
(ρ) = Ve(ρ) − ρ

∣

∣

∣

∣

dVe(ρ)

dρ

∣

∣

∣

∣

= Ve(ρ) + ρ
dVe(ρ)

dρ
=

dQe(ρ)

dρ
. (52)

Since Qe(ρ) = ρVe(ρ) represents the “fundamental dia-
gram”, dQe(ρ)/dρ describes the negative speed of kine-
matic waves in the congested regime [14]. This does not
constitute any theoretical inconsistency, even if Ve(ρe) +
c
+
(ρ) < 0. In fact, we all know situations involving neg-

ative group velocities from dissolving congestion fronts,
e.g. when a traffic light turns green: There, the negative
propagation speed just results from the fact that the con-
gestion front moves backward, whenever vehicles leave a
congested area with some delay. Hence, the negative char-
acteristic speed does not describe the speed of cars. It
reflects the propagation of gaps rather than vehicles.

Therefore, could we have a similar mechanism that
generates characteristic speeds faster than the vehicle
speeds? If vehicles would react to their leaders with a neg-
ative delay, this would in fact be the case, but it would
violate causality. Therefore, all possible explanations for
characteristic speeds faster than the vehicle speeds con-
sidered so far have failed to resolve the problem. However,
the problem may still be a result of the approximations
underlying second-order macroscopic traffic models. As we
have indicated before, the gradient expansion required to
derive them implies some degree of backward interactions.
Therefore, it is conceivable that following vehicles would
cause their leaders to accelerate, even beyond their desired
speed V 0.

If this would be the explanation of a characteristic
speed faster than the average speed V or free speed V 0,
we should not observe it in microscopic traffic models
with forward interactions only. Therefore, we will now de-
termine the characteristic speeds of the optimal velocity
model [9]. This car-following is chosen, because the Payne
model can be considered as a macroscopic approximation
of it (see [10] and references therein). Besides, we will com-
pare the instability conditions of both models.

5 Linear Instability and Characteristic Speeds
of the Optimal Velocity Model

We have seen that macroscopic traffic models behave un-
stable with respect to small perturbations in a certain den-
sity range, where the average velocity changes too rapidly
with the density. The same is true for many car-following
models. As an example, we will shortly discuss the dy-
namic behavior of the optimal velocity model. While its
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stability has been already studied in the past [9], we will
focus here on the characteristic speeds, in order to show
that characteristic speeds greater than the average veloc-
ity are not an artifact of macroscopic traffic models.

According to the optimal velocity model, the change
of the speed vi(t) of vehicle i is given by

dvi

dt
=

vo

(

di(t)
)

− vi(t)

τ
(53)

and the temporal change of the distance di(t) = xi−1(t)−
xi(t) to the leading vehicle i − 1 is determined by

ddi

dt
= vi−1(t) − vi(t) . (54)

In the above equations, the distance-dependent function
vo(di) is called the optimal velocity function and τ is again
the relaxation time for adjustments of the speed.

Appendix E sketches the linear stability analysis of the
optimal velocity model. In the following, we will focus on
the analysis of the group velocity c± with respect to the
average velocity vo(de), i.e. the velocity at which perturba-
tions are expected to propagate. Relative to the average
motion of vehicles with speed ve(de), the characteristic
speeds are

c±(de, k) =
∂ω̃±(de, κ)

∂κ
=

L

2π

∂ω̃±(de, k)

∂k

= ∓ L

2π

∂

∂k

√

1

2

(

√

ℜ2 + ℑ2 −ℜ
)

. (55)

This can be derived analogously to Eq. (29), using Eq.
(16) and κ = 2πk/L. According to Eq. (31) and due to
the series expansion cos(x) ≈ 1 − x2/2, at the instabil-
ity threshold with λ+ = 0 and dvo(de)/dd = 1/(2τ), we
obtain with Eq. (105)

c±(de, k) = ∓ L

2π

∂

∂k

√

(

1

2τ

)2

−ℜ

= ∓ L

2π

∂

∂k

√

1

τ

dvo(de)

dd

[

1 − cos(2πk/N)
]

≈ ∓ L

2π

∂

∂k

√

1

τ

dvo(de)

dd

1

2

(

2πk

N

)2

= ∓ L

N

√

1

2τ

dvo(de)

dd
= ∓de

√

1

2τ

dvo(de)

dd
(56)

= ∓de

√

(

dvo(de)

dd

)2

= ∓de
dvo(de)

dd
. (57)

It is remarkable that the group velocity of the optimal ve-
locity model can again exceed the average vehicle velocity
vo(de), namely by an amount c

−

(de) = de dvo(de)/de > 0.
Moreover, it can be shown that the instability thresholds
and the related characteristic speeds are the same as for
the Payne model (see Appendix F). This confirms that the
Payne model may be viewed as macroscopic approxima-
tion of the optimal velocity model (see [10] and references

therein). In view of these results, it is hard to argue that a
characteristic speed faster than the vehicle speeds consti-
tutes primarily a theoretical inconsistency of certain kinds
of macroscopic traffic models. Quite unexpectedly, it also
occurs for microscopic traffic models that, according to
computer simulations, behave reasonably well.

Therefore, the approximations underlying the Payne
model cannot be the problem for the existence of a char-
acteristic speed faster than the vehicle speeds. However,
it is interesting to note that the larger group velocity
vo(de) + c−(de) is related to a negative real part λ

−

of

the eigenvalue λ̃−. According to Eq. (29), the fast char-
acteristic speed Ve(ρe) + c−(ρe) of macroscopic second-
order models is related to a negative eigenvalue λ−(ρe) as
well, see Eq. (17). Therefore, the related eigenmode decays
quickly, and it will be hard to observe in reality. In par-
ticular, the faster propagating mode may not emerge by
itself. A closer analysis shows that both, for the optimal
velocity model and the Payne model, λ− is of the order
−1/τ , i.e. related to the relaxation time τ of vehicles. We
will see that this observation is highly relevant for under-
standing perturbations that move faster than the vehicles
do.

After all, does the fast characteristic speed really con-
stitute a theoretical inconsistency? Not so, if we can find
initial conditions, for which a following car accelerates or
decelerates earlier than the leading car does, although the
leader does not react to the follower. In fact, such initial
condition can be constructed: Figure 1 shows the result of
a computer simulation with N vehicles on a circular road
of length L. We assume that all vehicles have the distance
d = de = L/N initially. Moreover, all vehicles, with the
exception of 10 subsequent vehicles, are assumed to have
the initial speed vo(de). Furthermore, the speed of the last
of the 10 vehicles is set to 0 (or v0), the speed of the first
one to vo(de). The speeds of the vehicles in between are
determined by linear interpolation. For this scenario, it is
quite natural that the last of the 10 vehicles accelerates
(or decelerates) first, since it experiences the largest devi-
ation of its actual velocity vi(0) from the optimal velocity
vo(de). However, as this earlier acceleration (or decelera-
tion) is not interaction-induced, it does not violate causal-
ity. The large characteristic speed in macroscopic traffic
models can be understood in a similar way.

6 Summary, Conclusions, and Outlook

In this paper, we have started with a discussion of Da-
ganzo’s sharp criticism of second-order macroscopic traffic
flow models [11]. We have argued that most of the deficien-
cies identified by Daganzo were fully justified, but could
be overcome in the course of time by improved macro-
scopic traffic models, particularly by non-local multi-class
models. However, the issue of characteristic speeds faster
than the average vehicle speed was still an open, contro-
versial problem, as it seems to violate causality. In order
to study it, we have performed a linear instability analy-
sis of a generalized macroscopic traffic model, which took
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Fig. 1. Simulation result of the optimal velocity model with
vo(d) = v0

{

tanh[(d − l)/s0 − 1.2] + tanh(1.2)
}

/2, v0 =
115 km/h, s0 = 50 m, and l = 4 m. We have chosen a particu-
lar initial condition, where all vehicles started with a distance
de = 200 m to their respective leader, but some vehicles i had a
speed vi(0) < vo(de) in the beginning. As a consequence, these
vehicles adjusted their speeds to the optimal velocity. The rel-
evant point here is that followers reach the optimal velocity
(or certain fractions of it) earlier than their respective leaders.
That is, for the particular initial condition chosen here, the
perturbation in the speeds propagates faster than the vehicle
speeds. This effect, however, does not violate causality, as the
earlier acceleration of upstream cars is not triggered by inter-
actions with followers—it just results from the relaxation term.
Therefore, the perturbation disappears on a time scale that is
determined by the relaxation time τ = 1 s, as predicted by the
real part of the eigenvalue λ̃−, see Eq. (104). The relaxation
takes longer for larger values of τ . In the limit τ → ∞, the
perturbation does not decay anymore, but according to Eq.
(104), we then have c± → 0. Therefore, despite its fast speed,
the perturbation did not overtake the first car upstream of the
initial perturbation in our simulations, when the parameters
were chosen in a way that avoided accidents. This confirms the
validity of the causality principle.

into account speed-dependencies of the optimal velocity
and the traffic pressure terms. Such speed-dependencies
occur, for example, in Aw’s and Rascle’s model [27]. They
result when realistic vehicle interactions are considered,
and when the possibility of accidents and negative vehicle
speeds shall be avoided [41,10]. Requirements for reason-
able models seem to be

∂Vo(ρ, V )

∂ρ
≤ 0 ,

∂Vo(ρ, V )

∂V
≤ 0 ,

∂P2(ρ, V )

∂V
≤ 0 ,

(58)
and

∂P1(ρ, V )

∂ρ
+

1

4ρ2

(

∂P2(ρ, V )

∂V

)2

> 0 . (59)

These conditions are, for example, fulfilled by the gas-
kinetic-based traffic model (GKT model), see Ref. [43].

Our main attention was dedicated to the characteris-
tic speeds (or group velocities) rather than the instability

thresholds. In the following, we summarize the main re-
sults:

1. While the characteristic speeds may generally differ
from the group and the phase velocities, in the limit
τ → ∞ of a vanishing source (relaxation) term, they
are all the same. Therefore, using a different definition
of propagation speeds does not resolve the problem of
characteristic speeds faster than the (average or max-
imum) vehicle speed.

2. Velocity-dependent pressure terms tend to reduce the
characteristic speeds, see Eq. (31). This is best illus-
trated by Aw’s and Rascle’s model, where the fast
characteristic agrees with the average vehicle speed.

3. Most macroscopic traffic models have a characteristic
speed faster than the average velocity, but it may still
be within the variability of the vehicle speeds, see Eq.
(42) and Sec. 4.3.

4. In some models like the Payne model, the characteris-
tic speeds can move slower than the slowest vehicle and
faster than the fastest vehicle. The first case is related
to delayed acceleration maneuvers at jam fronts and
related to gap propagation during jam dissolution, but
the second case remained a mystery for a long time.

5. The faster characterstic speed is related with a negative
real part of the eigenvalue. This causes a quick decay
of the corresponding eigenmode, basically at the rate,
at which the vehicle speed is adjusted. Therefore, this
eigenmode will not emerge by itself (see Sec. 3.2).

6. If the faster characteristic speed were a result of inter-
actions with following vehicles in a circular road ge-
ometry (where following vehicles act as vehicles in the
downstream flow as well), the fast eigenmode should
decay with the length L of the circular road, not with
the relaxation time τ . Therefore, periodic boundary
conditions cannot be responsible for a characteristic
speed faster than the vehicle speeds. This has also been
verified with simulations.3

7. A characteristic speed faster than the vehicle speeds
cannot be explained as a result of the approxima-
tions underlying macroscopic second-order models, as
it is also found for microscopic car-following models,
in which vehicle interactions are forwardly directed
and velocities are restricted to a range between zero
and some maximum speed. For the macroscopic Payne
model and the optimal velocity model, we have shown
a correspondence not only of the instability thresholds,
but also of formulas for the group velocities (see Ap-
pendix F).

8. Assuming particular initial conditions, characteristic
speeds faster than the average vehicle speed could be
demonstrated to exist in computer simulations, where
followers accelerate (or decelerate) before their leaders
do (see Fig. 1). As these acceleration (or deceleration)
processes are induced by artificial initial perturbations
rather than by vehicle interactions, this does not imply
a violation of causality.

3 Simulations for open boundary conditions give basically the
same results as for periodic boundary conditions.
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Given these findings, we conclude that characteristic
speeds faster than the average speed of vehicles do not con-
stitute a theoretical inconsistency of traffic models and do
not need to be “healed” by particularly constructed traffic
models.4 From our point of view, the problem is that char-
acteristic speeds are hard to imagine. In fact, there is no
direct correspondence to particle or vehicle velocities (see
Sec. 4.3 and Appendix D). The group velocity is nothing
more than a matter of phase relations between oscillations
of successive vehicles in an eigenmode, and the interpre-
tation as speed of information transmission is sometimes
misleading.
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A Hyperbolic Sets of Partial Differential
Equations and Characteristic Speeds

Let us rewrite Eqs. (8) and (9) in the form of a system of
linear partial differential equations. With

S(δρ, δV ) =
1

τ

[

∂Vo(ρe, Ve)

∂ρ
δρ(x, t)

+
∂Vo(ρe, Ve)

∂V
δV (x, t) − δV (x, t)

]

(60)

we obtain

∂

∂t

(

δρ(x, t)

δV (x, t)

)

+

(

A11 A12

A21 A22

)

∂

∂x

(

δρ(x, t)

δV (x, t)

)

=

(

0

S

)

(61)
with

A =

(

A11 A12

A21 A22

)

=





Ve(ρe) ρe

1
ρe

∂P1(ρe,Ve)
∂ρ Ve(ρe) + 1

ρe

∂P2(ρe,Ve)
∂V



.

(62)
As will be shown below, the solution of this system of par-
tial differential equations is given by the initial condition
δρ(x, 0) and δV (x, 0). The solution procedure consists ba-
sically of two steps: On the one hand, we must determine
the so-called characteristics, and on the other hand, we
must solve a set of ordinary differential equations to find
the solutions along them (see Ref. [42] and footnote 3):

With u(x, t) =
(

δρ(x, t), δV (x, t)
)′

and S = (0, S)′ (where

4 Of course, this does not speak against models of the Aw-
Rascle type.

the prime indicates a transposed, i.e. a column vector), we
can rewrite Eq. (61) as

∂u(x, t)

∂t
+ A

∂u(x, t)

∂x
= S = B u(x, t) . (63)

The source term can be rewritten as S = B u(x, t) with

B =

(

B11 B12

B21 B22

)

=





0 0

1
τ

∂Vo(ρe,Ve)
∂ρ

1
τ

(

∂Vo(ρe,Ve)
∂V − 1

)



.

(64)
Now, let Cj denote the eigenvalues of the matrix A. The
values of Cj = Ve(ρe)+ cj satisfying det(A−Cj1) = 0 are
given by the characteristic polynomial

cj
2 − cj

ρe

∂P2

∂V
− ∂P1

∂ρ
= 0 , (65)

which results in

cj =
1

2ρe

∂P2

∂V
±

√

1

4ρe
2

(

∂P2

∂V

)2

+
∂P1

∂ρ
. (66)

Furthermore, let zj be the eigenvectors related with the
eigenvalues Cj = Ve + cj, i.e.

A zj = Cjzj . (67)

Finally, let R = (Rij) be the matrix containing the eigen-

vectors zj as their jth column, and y(x, t) = R−1u(x, t)
or u(x, t) = Ry(x, t). Then, inserting this into Eq. (63)
and multiplying the result with the inverse matrix R−1 of
R yields

∂yj(x, t)

∂t
+Cj

∂yj(x, t)

∂x
= (R−1S)j = (R−1B R y)j . (68)

For S = 0 (corresponding to the limiting case τ → ∞), we
have

yj(x, t) = yj(x − Cjt, 0) , (69)

which means that the solution does not change in time
along the characteristics xj(t) = Cjt. The quantities Cj

are called the characteristic speeds.5 If u(x, 0) is the ini-
tial condition, the solution of the set of partial differential
equations is

ui(x, t) =
∑

j

Rijyj(x − Cjt, 0) (70)

5 The idea behind the characteristics is to introduce a param-
eterization t(s1, s2), x(s1, s2), which is defined by ∂t/∂sj = 1
and ∂x/∂sj = Cj . Then, one can rewrite Eq. (68) as

∂yj

∂sj

=
∂yj(x, t)

∂t

∂t

∂sj

+
∂yj(x, t)

∂x

∂x

∂sj

= (R−1B Ry)j .

In the generalized coordinates s1 and s2, the partial differential
equations in x and t we were starting with, turn into ordinary

differential equations. These are much easier to solve.
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with y(x, 0) = R−1u(x, 0).6 Therefore, the spatio-
temporal solution u(x, t) is fully determined by the initial
condition. In other words, the future state of the system is
given by its previous state, and the principle of causality
should be valid.

B Stability Analysis for Macroscopic Traffic
Models

In order to understand the dynamics of traffic flows, it is
important to find out whether and under what conditions
variations in the traffic flow can grow and eventually cause
traffic congestion. For this, it is useful to make the solution
ansatz

δρ(x, t) = δρ0 exp
(

iκx + (λ − iω)t
)

= δρ0 eλt ei(κx−ωt) ,

δV (x, t) = δV0 exp
(

iκx + (λ − iω)t
)

= δV0 eλt ei(κx−ωt) .

(71)

Because of exp(iκx) = cos(κx) + i sin(κx) (see Appendix
C), ansatz (71) assumes that the perturbation of the sta-
tionary and homogeneous traffic situation can be repre-
sented as a periodic function with the wave number κ and
wavelength 2π/κ. The wave frequency of Eq. (71) is ω,
while δρ0 exp(λt) and δV0 exp(λt) are the amplitudes at
time t. That is, if the “growth rate” λ is greater than zero,
even small perturbations will eventually grow, which can
give rise to “phantom traffic jams”. For λ < 0, however,
the initial perturbation will be damped out and the sta-
tionary and homogeneous solutions will be re-established,
i.e. it is stable with respect to small perturbations.

Below we will see that, for each specification of κ and
the average density ρe, there exist two solutions l ∈ {+,−}
with the frequencies ωl(κ) and the growth rates λl(κ). All
the corresponding specifications of ansatz (71) are solu-
tions of the linearized partial differential equations. The
same applies to their superpositions. The general solution
for an arbitrary initial perturbation is of the form

δρ(x, t) =
∑

l∈{+,−}

∫

dκ δρl
0(κ) exp

(

iκx +
[

λl(κ) − iωl(κ)
]

t
)

,

δV (x, t) =
∑

l∈{+,−}

∫

dκ δV l
0 (κ) exp

(

iκx +
[

λl(κ) − iωl(κ)
]

t
)

.

(72)

In order to find the possible κ-dependent wave numbers
ω and growth rates λ, we insert ansatz (71) into the lin-
earized macroscopic traffic equations (8) and (9) and use
the relationship i2 = −1. The result can represented as an
eigenvalue problem:

(

M11 M12

M21 M22

)(

δρ0

δV0

)

!
=

(

0
0

)

, (73)

6 Note that formulas (69) and (70) only apply to the limiting
case τ → ∞, where the relaxation term of the macroscopic
traffic model vanishes.

where

M11 = −λ̃ , (74)

M12 = −iκρe , (75)

M21 = − iκ

ρe

∂P1

∂ρ
+

1

τ

∂Vo

dρ
, (76)

M22 = −λ̃ − iκ

ρe

∂P2

∂V
+

1

τ

∂Vo

∂V
− 1

τ
(77)

and

λ̃ = λ − iω̃ with ω̃ = ω − κVe(ρe) . (78)

Equation (73) is fulfilled only for certain values of λ̃(κ),
the so-called “eigenvalues”. These depend on the average
density ρe and solve the characteristic polynomial of sec-
ond order in λ̃, which is obtained by determining the de-
terminant

det(M) = M11M22 − M21M12 (79)

of the matrix M and requiring that it becomes zero. The
corresponding characteristic polynomial is given by Eq.
(10).

C Derivation of Formula (19)

Remember that a complex number

z = ℜ + iℑ = reiϕ = r cos(ϕ) + ir sin(ϕ) (80)

can be represented in two-dimensional space with coordi-
nates ℜ = Re(z) = r cos(ϕ) and ℑ = Im(z) = r sin(ϕ),
respectively, called the real part and the imaginary part.
The absolute value is given as

r =
√

ℜ2 + ℑ2 =
√

(ℜ + iℑ)(ℜ − iℑ) =
√

z z = |z| ,
(81)

where z = ℜ− iℑ = re−iϕ is the conjugate complex num-
ber. The angle ϕ is determined by

tan(ϕ) =
sin(ϕ)

cos(ϕ)
=

ℑ
ℜ =

Im(z)

Re(z)
, (82)

and the exponential functions is defined as for real num-
bers by the infinite series expansion

exp(z) = ez =

∞
∑

l=0

zl

l!
, (83)

where l! = l · (l − 1) . . . 2 · 1. Therefore, the relationships
for exponential functions apply also to the case of complex
numbers, i.e. the product of two complex numbers z1 =
ℜ1 + iℑ1 = r1e

iϕ1 and z2 = ℜ2 + iℑ2 = r2e
iϕ2 is given by

z1z2 =
(

ℜ1ℜ2 −ℑ1ℑ2

)

+ i
(

ℜ1ℑ2 + ℑ1ℜ2

)

= r1e
iϕ1r2e

iϕ2 = r1r2e
i(ϕ1+ϕ2)

= r1r2 cos(ϕ1 + ϕ2) + ir1r2 sin(ϕ1 + ϕ2) . (84)
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As the real and imaginary part are linearly independent of
each other, this implies ℜ1ℜ2 −ℑ1ℑ2 = r1r2 cos(ϕ1 + ϕ2)
and ℜ1ℑ2 + ℑ1ℜ2 = r1r2 sin(ϕ1 + ϕ2). The inverse of a
complex number is given by

1

z
=

1

reiϕ
=

e−iϕ

r
. (85)

The imaginary unit i has the property i2 = −1 and may,
therefore, be written as i =

√
−1 = eiπ/2.

The square of complex numbers

z = re±iϕ = r
[

cos(ϕ) ± i sin(ϕ)
]

, (86)

can, on the one hand, be written as

z2 = r2
[

cos2(ϕ) ± 2i cos(ϕ) sin(ϕ) − sin2(ϕ)
]

. (87)

On the other hand, using the well-known law ex1 · ex2 =
ex1+x2 for the exponential function, we find the alternative
representation

z2 = r2
(

e±iϕ
)2

= r2e±i2ϕ = r2
[

cos(2ϕ)±i sin(2ϕ)] . (88)

Comparing the real parts and using the trigonometric re-
lationship sin2(x) + cos2(x) = 1, we find

cos(2ϕ) = 1−2 sin2(ϕ) = 1−2
[

1−cos2(ϕ)
]

= 2 cos2(ϕ)−1 ,
(89)

from which we can derive the trigonmetric formulas

sin2(ϕ/2) =
1

2

[

1 − cos(ϕ)
]

(90)

and

cos2(ϕ/2) =
1

2

[

1 + cos(ϕ)
]

. (91)

Therefore, the square root of a complex number is given
by

√
z =

√
re±iϕ/2 =

√
r
[

cos(ϕ/2) ± i sin(ϕ/2)
]

=

√

1

2

[

r + r cos(ϕ)
]

± i

√

1

2

[

r − r cos(ϕ)
]

. (92)

Considering ℜ = r cos(ϕ), ℑ = r sin(ϕ), and ℜ2+ℑ2 = r2,
we end up with the desired equation

√

ℜ± i|ℑ| =

√

1

2

(

√

ℜ2 + ℑ2 + ℜ
)

±i

√

1

2

(

√

ℜ2 + ℑ2 −ℜ
)

.

(93)

D Meaning of the Group Velocity

Let us start with the representation (72) of the general
solution of the linearized system of equations, focussing
(for simplicity) on the case λl(κ) = 0 and assuming a
“Gaussian wave packet” with

δρl
0(κ) =

e−(κ−κ0)
2/(2θ)

√
2πθ

. (94)

Via the linear Taylor approximation ωl(κ) = ωl(κ0) +
Cl ∆κ with Cl = dωl(κ0)/dκ and ∆κ = (κ − κ0), from
Eq. (72) we get

δρ(x, t)

=
∑

l∈{+,−}

∞
∫

−∞

dκ
e−(κ−κ0)

2/(2θ)

√
2πθ

ei[κx−ωl(κ)t]

=
∑

l∈{+,−}

ei[κ0x−ωl(κ0)t]

∞
∫

−∞

d∆κ
e−(∆κ)2/(2θ)

√
2πθ

ei[∆κx−Clt]

=
∑

l∈{+,−}

ei[κ0x−ωl(κ0)t]

∞
∫

−∞

d∆κ
e−[∆κ−iθ(x−Clt)]

2/(2θ)

√
2πθ

× e−θ(x−Clt)
2/2

=
∑

l∈{+,−}

ei[κ0x−ωl(κ0)t]e−θ(x−Clt)
2/2 . (95)

While the single waves of frequency ωl(κ) move with the
“phase velocity” x/t = ωl(κ)/κ, it turns out that their
superposition behaves like a wave with frequency ωl(κ0)
and speed x/t = ωl(κ0)/κ0. However, the wave packet

or, more exactly speaking, its amplitude e−θ(x−Clt)
2/2 is

moving with the group velocity x/t = Cl = dωl(κ)/dκ.
Note that the case Cl > ωl(κ0)/κ0, in which the group
velocity is greater than the phase velocity (wave velocity),
is possible. It is called “anomalous dispersion”.

E Linear Stability Analysis of the Optimal
Velocity Model

For a linear stability analysis of the optimal velocity
model, we imagine the situation of N vehicles i distributed
over a circular road of length L. This allows us to assume
periodic boundary conditions. The stationary solution for
this case is given by dvi/dt = 0 and ddi/dt = 0, which
implies

di(t) = de = L/N = const.

vi−1(t) = vi(t) = vo(de) = const. (96)

We are now interested how the deviations from this solu-
tion, i.e. the variables

δdi(t) = di(t) − de ,

δvi(t) = vi(t) − vo(de) , (97)

develop in time, assuming that the initial deviations are
small, i.e. δdi(0) ≪ de and δvi(0) ≪ ve(de). For this, we
linearize the model equations (53) and (54) around the
stationary and homogeneous solution. This results in

dδvi(t)

dt
=

1

τ

(

dvo(de)

dd
δdi(t) − δvi(t)

)

,

dδdi(t)

dt
= δvi−1(t) − δvi(t) . (98)
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For the analysis of stability, we use the solution ansatz

δvj(t) = δv0 ei2πjk/N+λ̃t = δv0 eijκL/N+λ̃t ,

δdj(t) = δd0 ei2πjk/N+λ̃t = δd0 eijκL/N+λ̃t , (99)

where κ = 2πk/L is the so-called wave number, which is
inversely proportional to the wave length 2π/κ = L/k.
Note that, due to the assumed periodic boundary condi-
tions, possible wavelength are fractions L/k of the length
L or the circular road. The shortest wave length is given
by the average vehicle distance de = L/N , i.e. k ∈
{1, 2, . . . , N}. Summing up the functions (99) over these
values of k results in the Fourier representation of δvj(t)
and δdj(t):

δvj(t) =
N
∑

k=1

δvkei2πjk/N+λ̃t ,

δdj(t) =

N
∑

k=1

δdkei2πjk/N+λ̃t . (100)

The parameters δvk and δdk are determined by the initial
conditions of all vehicles j. λ̃ = λ − iω̃ are the so-called
eigenvalues, whose real part λ describes an exponential
growth (if λ > 0) or decay (if λ < 0), and whose imag-
inary part ω̃ reflects oscillation frequencies. δd0 and δv0

denote oscillation amplitudes. Inserting this into (98) and

dividing by ei2πjk/N+λ̃t, we finally obtain

λ̃δv0 =
1

τ

(

dvo(de)

dd
δd0 − δv0

)

, (101)

λ̃δd0 = δv0e
−i2πk/N − δv0 = δv0

(

e−i2πk/N − 1
)

. (102)

Multiplying Eq. (101) with λ̃ and inserting Eq. (102) for

λ̃ δd0 in the square brackets gives, after division by δv0,
the characteristic polynomial in the eigenvalues λ̃, namely

λ̃2 +
1

τ
λ̃ − 1

τ

dvo(de)

dd

(

e−i2πk/N − 1
)

= 0 . (103)

The solutions λ̃(de, k) of this polynomial are the eigenval-
ues. They read

λ̃±(de, k) = − 1

2τ
±
√

1

4τ2
+

1

τ

dvo(de)

dd

(

e−i2πk/N − 1
)

.

(104)
Again, the square root contains a complex number, which
makes it difficult to see the sign of the real value λ± of λ̃±.
However, considering e±iϕ = cos(ϕ)± i sin(ϕ) and defining
the real part

ℜ =
1

4τ2
− 1

τ

dvo(de)

dd

[

1 − cos(2πk/N)
]

(105)

of the expression under the root and its imaginary part

ℑ = − sin(2πk/N)

τ

dvo(de)

dd
, (106)

we can again apply the useful formula (16). From this we

can conclude that λ = Re(λ̃) = 0 if

1

16τ4
=

ℜ
4τ2

+
ℑ2

4
, (107)

see Eq. (21). Inserting Eqs. (105) and (106), we find

sin2(2πk/N)

4τ2

(

dvo(d)

dd

)2

=
1

4τ3

dvo(d)

dd

[

1 − cos(2πk/N)
]

,

(108)
which finally results in the condition

dvo(de)

dd
=

1 − cos(2πk/N)

τ sin2(2πk/N)

k→0
=

1

2τ
. (109)

The limit 2πk/N → 0 follows from cos(ϕ) ≈ 1−ϕ2/2 and
sin(ϕ) ≈ ϕ in the limit of small wave numbers κ = 2πk/L,
i.e. large wave lengths 2π/κ = L/k.

It can be demonstrated by numerical analyses that

dvo(de)

dd
>

1

2τ
(110)

constitutes the instability condition of the optimal veloc-
ity model (53) [9]. In other words, if the velocity changes
too strongly with the distance, small variations of the vehi-
cle distance or speed will grow and finally cause emergent
waves, i.e. the formation of one or several traffic jams.
Since the origin of such a breakdown can be infinitesi-
mally small, these traffic jams seem to have no origin.
In such situations, one speaks of “phantom traffic jams”.
A closer analysis for realistic speed-distance relationships
vo(d) shows that traffic tends to be unstable at medium
densities ρ = 1/d, while it tends to be stable at small and
large densities (where the speed does not change much
with a variation in the distance). Only a sufficient reduc-
tion in the adaptation time τ can avoid an instability of
traffic flow, while large delays in the velocity adjustment
lead to growing perturbations of traffic flow.

F Correspondence of the Optimal Velocity
Model with the Macroscopic Payne Model

As the Payne model has been claimed to be a macro-
scopic approximation of the optimal velocity model (see
Ref. [10] and citations therein), it is interesting to com-
pare the instability conditions and characteristic speeds of
both models. Therefore, let us make the identifications

ρ =
1

d
, Ve(ρ) = vo

(

1

ρ

)

. (111)

Then, with the chain rule and the quotient rule of Calculus
we can derive

∣

∣

∣

∣

dVe(ρ)

dρ

∣

∣

∣

∣

= −dVe(ρ)

dρ
= −dvo(1/ρ)

dρ
= −dvo(d)

dd

dd

dρ

=
dvo(d)

dd
· 1

ρ2
. (112)
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Inserting this into Eq. (40) gives

ρe

∣

∣

∣

∣

dVe

dρ

∣

∣

∣

∣

=
1

ρe

dvo(d)

dd
>

1

2ρeτ
(113)

or

dvo(de)

dd
>

1

2τ
and ρe

∣

∣

∣

∣

dVe(ρe)

dρ

∣

∣

∣

∣

= de
dvo(de)

dd
,

(114)
where de = 1/ρe. This shows the agreement of the insta-
bility conditions (40) and (110) and of the characteristic
speeds (41) and (57) at the instability threshold.
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