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Abstract. This contribution compares several different approaches allowing one to derive macroscopic
traffic equation directly from microscopic car-following models. While it is shown that some conventional
approaches lead to theoretical problems, it is proposed to use an approach reminding of smoothed particle
hydrodynamics to avoid gradient expansions. The derivation circumvents approximations and, therefore,
demonstrates the large range of validity of macroscopic traffic equations, without the need of averaging
over many vehicles. It also gives an expression for the “traffic pressure”, which generalizes previously used
formulas. Furthermore, the method avoids theoretical inconsistencies of macroscopic traffic models, which
have been criticized in the past by Daganzo and others.

PACS. 89.40.Bb Land transportation – 45.70.Vn Granular models of complex systems; traffic flow –
47.10.ab Conservation laws and constitutive relations

1 Introduction

In order to describe the dynamics of traffic flows, a large
number of mathematical models has been developed. The
analysis of the spatio-temporal features and statistics of
traffic patterns has often been done with methods from
non-linear dynamics and statistical physics. An overview
of modeling approaches and methods is, for example,
given in references [1–4]. Among these are cellular au-
tomata, “microscopic” car-following models, “mesoscopic”
gas-kinetic, and macroscopic traffic models.

Cellular automata can often be interpreted as dis-
cretized versions of car-following models, while gas-kinetic
models have frequently been used to derive macroscopic
from microscopic models. Such derivations were driven by
the desire to improve phenomenological specifications of
macroscopic traffic models [5–7], which were criticized to
have unrealistic properties [21]. However, the derivation
of gas-kinetic models from car-following models usually
simplifies the interactions among vehicles by a collisional
approach assuming immediate braking maneuvers. More-
over, the derivation of macroscopic traffic models from
gas-kinetic ones terminates an infinite and poorly converg-
ing series expansion, which replaces dynamical equations
for higher moments of the velocity distribution by simpli-
fied equilibrium relationships [8].

Although this leads to macroscopic equations which
work well in most theoretical and practical aspects [9],
the implications of the approximations are hardly known.
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Moreover, the approach seems to require an averaging over
at least 100 vehicles for each speed class and spatial lo-
cation. While this constitutes no problem for gases with
1023 particles within a small volume, for traffic flows this
would require an averaging over spatial intervals much
greater than the scale on which traffic flow changes. Hence,
it is not well understood, whether or why macroscopic
traffic equations can be used at all.

In this paper, we will therefore focus on attempts to
derive macroscopic traffic equations directly from micro-
scopic ones. Doing so, we will compare three different ap-
proaches: first, we study the gradient expansion approach
in Section 2. Second, we turn to the linear interpolation
approach in Section 3. Third, we discuss an approach re-
minding of smoothed particle hydrodynamics in Section 4
and compare the results with macroscopic traffic models
such as the Payne model, the Aw-Rascle model, and a
non-local traffic model. In the conclusions of Section 5,
we summarize and discuss our results, in particular with
regard to the mathematical form of the traffic pressure and
the theoretical consistency of macroscopic traffic models.

2 The gradient expansion approach

Already in the 1970’s, Payne [10,11] used a gradient ex-
pansion approach to derive a macroscopic velocity equa-
tion complementing the continuity equation

∂ρ

∂t
+

∂

∂x
[ρ(x, t)V (x, t)] = 0. (1)
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It relates the vehicle density ρ(x, t) at location x and time t
with the average velocity V (x, t) or the vehicle flow

Q(x, t) = ρ(x, t)V (x, t), (2)

respectively, and describes the conservation of the number
of vehicles [12].

Payne derived his model from Newell’s car-following
model [13]

vi(t + τ) = vo(di(t)), (3)

which assumes that the speed vi(t) of vehicle i at time t
will be adjusted with a delay of τ to some optimal
speed vo, which depends on the distance di(t) = xi−1(t)−
xi(t) between the location of the leading vehicle xi−1(t)
and the location xi(t) of the following car.

Payne identified microscopic and macroscopic veloci-
ties as follows:

vi(t + τ) = V (x + V τ, t + τ)

≈ V (x, t) + V τ
∂V (x, t)

∂x
+ τ

∂V (x, t)
∂t

. (4)

Then, Taylor approximations (gradient expansions) were
used in several places. For example, Payne substituted the
inverse of the distance di to the leading vehicle by the
density ρ at the place x+di(t)/2 in the middle between the
leading and the following vehicle. In this way, he obtained

1
di(t)

= ρ

(
x +

di(t)
2

, t

)
= ρ

(
x +

1
2ρ

, t

)

≈ ρ(x, t) +
1
2ρ

∂ρ(x, t)
∂x

. (5)

When defining the so-called equilibrium velocity Ve(ρ)
through

Ve(ρ) = vo

(
1
ρ

)
or Ve

(
1
di

)
= vo(di), (6)

a first order Taylor approximation and equation (5) imply

vo(di(t)) = Ve

(
1

di(t)

)

≈ Ve(ρ(x, t)) +
1

2ρ(x, t)
dVe(ρ)

dρ

∂ρ(x, t)
∂x

. (7)

Starting from the previous equations, one finally arrives
at Payne’s macroscopic velocity equation

∂V

∂t
+ V

∂V

∂x
=

1
τ

[
Ve(ρ) − D(ρ)

ρ

∂ρ

∂x
− V (x, t)

]
, (8)

where we have introduced the density-dependent diffusion

D(ρ) = −1
2

dVe(ρ)
∂ρ

=
1
2

∣∣∣∣dVe(ρ)
dρ

∣∣∣∣ ≥ 0. (9)

The single terms of equation (8) have the following inter-
pretation: the term V ∂V/∂x is called the transport term
and describes a motion of the velocity profile with the

vehicles. The term −[D(ρ)/(ρ Δt)]∂ρ/∂x is called antici-
pation term, as it reflects the reaction of drivers to the
traffic situation in front of them. The relaxation term
[Ve(ρ) − V ]/Δt delineates the adaptation of the average
velocity V (x, t) to the density-dependent equilibrium ve-
locity Ve(ρ) with a delay τ .

Other authors have applied similar gradient expan-
sions to the optimal velocity model defined by

dvi(t)
dt

=
1
τ

[
vo(di(t)) − vi(t)

]
(10)

with ddi/dt = vi−1(t) − vi(t), see e.g. references [15,16].
Equation (10) results from the Newell model (3) by a first-
order Taylor approximation vi(t + τ) ≈ vi(t) + τ dvi/dt.
Regarding the derivation of macroscopic traffic equations
from the optimal velocity model, it is also worth reading
references [15,16].

One weakness of the gradient expansion approach is
that its validity implicitly requires small gradients. How-
ever, it is well-known that many microscopic and macro-
scopic traffic equations give rise to emergent traffic jams,
which are related with steep gradients. That calls for the
consideration of higher-order terms and leads to macro-
scopic traffic equations that are not anymore simple and
well tractable (even numerically). Let us, therefore, study
other approaches to determine macroscopic from micro-
scopic equations.

3 The linear interpolation approach

The optimal velocity model may be also written in the
form

dvi

dt
= ai(t) =

v0 − vi(t)
τ

+ f(di(t)), (11)

where ai(t) denotes the acceleration, v0 the “desired ve-
locity” or “free speed”, and

f(di) =
vo(di) − v0

τ
≤ 0 (12)

the repulsive interaction among the leading vehicle i − 1
and its follower i.

In reference [17], it has been suggested to establish
a micro-macro link between microscopic and macroscopic
traffic variables by the definitions

ρ(x, t) =

1
xi(t) − xi+1(t)

[
xi−1(t) − x

]
xi−1(t) − xi(t)

+

1
xi−1(t) − xi(t)

[x − xi(t)]

xi−1(t) − xi(t)
, (13)

V (x, t) =
vi(t)

[
xi−1(t) − x

]
+ vi−1(t)

[
x − xi(t)

]
xi−1(t) − xi(t)

, (14)

A(x, t) =
ai(t)

[
xi−1(t) − x

]
+ ai−1(t)

[
x − xi(t)

]
xi−1(t) − xi(t)

. (15)
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These definitions assume that the macroscopic variables in
the vehicle locations x = xi(t) would be given by the mi-
croscopic ones, while in locations x between two vehicles,
they would be defined by linear interpolation.

Let us consider the consequences of such an approach.
For this, we determine the partial derivative of

G(x, t) =
gi(t)[xi−1(t) − x] + gi−1(t)[x − xi(t)]

xi−1(t) − xi(t)
(16)

with respect to x, which gives

∂G(x, t)
∂x

=
−gi(t) + gi−1(t)
xi−1(t) − xi(t)

(17)

for any specification of gi(t), for example, gi(t) = vi(t).
The partial derivative with respect to time is

∂G(x, t)
∂t

=
dgi(t)

dt [xi−1(t) − x] + gi(t)
dxi−1(t)

dt

xi−1(t) − xi(t)

+
dgi−1(t)

dt [x − xi(t)] − gi−1(t)
dxi(t)

dt

xi−1(t) − xi(t)

−
(

dxi−1(t)
dt − dxi(t)

dt

)
gi(t)[xi−1(t) − x]

[xi−1(t) − xi(t)]2

−
(

dxi−1(t)
dt − dxi(t)

dt

)
gi−1(t)[x − xi(t)]

[xi−1(t) − xi(t)]2
. (18)

For gi(t) = vi(t) = dxi/dt and with dvi/dt = ai(t), this
formula simplifies to the following expression:

∂V (x, t)
∂t

=
ai(t)[xi−1(t) − x] + vi(t)vi−1(t)

xi−1(t) − xi(t)

+
ai−1(t)[x − xi(t)] − vi−1(t)vi(t)

xi−1(t) − xi(t)

− vi−1(t) − vi(t)
xi−1(t) − xi(t)

×vi(t)[xi−1(t) − x] + vi−1(t)[x − xi(t)]
xi−1(t) − xi(t)

= A(x, t) − ∂V (x, t)
∂x

V (x, t). (19)

As a consequence, we find the exact relationship

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= A(x, t). (20)

This would be fully compatible with Payne’s macroscopic
traffic equation (8), if

A(x, t) =
1
τ
[Ve(ρ) − V (x, t)] − D(ρ)

τρ(x, t)
∂ρ

∂x
. (21)

However, the expression for gi(t) = 1/[xi−1(t)−xi(t)] does
not simplify in a way that would finally lead to the con-
tinuity equation (1). Therefore, a micro-macro link based
on the linear interpolation (16) of the microscopic vari-
ables gi(t) does not exactly imply the conservation of the
number of vehicles, i.e. it is theoretically not consistent.
Nevertheless, it works surprisingly well in practise [17].

In the next section, we will see that the interpola-
tion approach fails because it does not reflect the non-
locality of the correct macroscopic traffic equations, see
equation (39) or (47). The dependence on gradients makes
the model too isotropic, while vehicles should only respond
to the traffic situation ahead of them, but not behind
them. This problem is usually taken care of by hyperbolic
schemes such as the Godunov scheme, as used for exam-
ple in reference [18]. This scheme naturally discretizes the
velocity in a downwind way, which avoids the isotropy
problem of Payne’s model and similar ones [21].

To avoid this problem, reference [19] suggests a hy-
brid Lagrangian approach. This is based on a transforma-
tion into Lagrangian coordinates, i.e. a moving coordinate
system. As a result, the continuity equation (1) becomes
linear. For piecewise linear ρ and V , the result can then
be transformed back into Eulerian coordinates, i.e. into
the stationary frame of reference. In the following, we
will present an alternative method that yields macroscopic
traffic equations from microscopic ones directly, without
the need of transformation into Lagrangian coordinates.

4 An approach reminding of smooth particle
hydrodynamics

4.1 Derivation of the continuity equation

In this section, we will start with the derivation of the con-
tinuity equation from the equation of motion dxi/dt = vi,
using a “trick” that I learned from Isaac Goldhirsch. For
this, we represent the location xi(t) of an element i in
space by a delta function δ(x − xi(t)), which may be
treated here like a very narrow Gaussian distribution.
Moreover, we introduce a symmetrical smoothing function

s(x′ − x) = s(|x′ − x|) = s(x − x′), (22)

for example, a Gaussian distribution with a finite variance
or a differentiable approximation of a triangular function
or a rectangular one. The smoothing function shall be nor-
malized by demanding

∞∫
−∞

dx′ s(x′ − x) = 1 (23)

for any value of x. With this, we define the local density

ρ(x, t) =

∞∫
−∞

dx′ s(x′ − x)
∑

i

δ(x′ − xi(t)) (24)

=
∑

i

s(xi(t) − x). (25)



542 The European Physical Journal B

Herein, we sum up over all particles i. Note that the re-
placement of the conventional formula

∑
i δ(xi(t)− x) for

the vehicle density by the formula
∑

i s(xi(t)−x) reminds
of a substitution of point-like particles by “fuzzy” parti-
cles, which is the idea behind smoothed particle hydro-
dynamics. Nevertheless it should be remembered that we
have formally related the smoothing function s(x′ − x) to
locations x′ in the stationary frame of reference, and not
to the moving vehicles themselves.

Now, we define the average velocity V (x, t) as usual
via a weighted average with the weight function δ(x′ −
xi(t))s(x′ − x):

V (x, t) =

∞∫
−∞

dx′ ∑
i

vi(t)δ
(
x′ − xi(t)

)
s(x′ − x)

∞∫
−∞

dx′
∑

i

δ(x − xi(t))s(x′ − x)

=

∞∫
−∞

dx′ ∑
i

vi(t)δ(x′ − xi(t))s(x′ − x)

ρ(x, t)

=

∑
i

vi(t)s(xi(t) − x)

∑
i

s(xi(t) − x)

=

∑
i

vi(t)s(xi(t) − x)

ρ(x, t)
. (26)

This implies the well-known fluid-dynamic flow relation-
ship

Q(x, t) = ρ(x, t)V (x, t). (27)

Differentiation of equation (24) with respect to time and
application of the chain rule gives

∂ρ(x, t)
∂t

=

∞∫
−∞

dx′ ∑
i

(
−dxi

dt

)
·
[

∂

∂x′ δ(x
′ − xi(t))

]
s(x′ − x)

=

∞∫
−∞

dx′ ∑
i

vi(t)δ(x′ − xi(t))
[

∂

∂x′ s(x
′ − x)

]
, (28)

where we have applied partial integration to obtain the
last results. That is, we have used the theorem

∞∫
−∞

dx′
[

∂

∂x′u(x′)
]

v(x′) = [u(x)v(x)]∞−∞

−
∞∫

−∞
u(x′)

[
∂

∂x′ v(x′)
]

, (29)

considering the vanishing of the first term after the equal-
ity sign due to the vanishing of u(x)v(x) at the bound-

aries. Taking into account the symmetry of the smooth-
ing function s(x′ − x), we may replace ∂s(x′ − x)/∂x′ by
−∂s(x′ − x)/∂x, which finally yields equation (1) as fol-
lows:

∂ρ(x, t)
∂t

= − ∂

∂x

∞∫
−∞

dx′ ∑
i

vi(t)δ(x′ − xi(t))s(x′ − x)

= − ∂

∂x
[ρ(x, t)V (x, t)]. (30)

To obtain this desired result, we have finally applied the
definition (26) of the average velocity V (x, t). As a con-
sequence of this, the validity of the continuity equation
does not require an averaging over large numbers of enti-
ties, i.e. macroscopic volumes to average over. This makes
the equation absolutely fundamental and explains its large
range of validity.

4.2 Derivation of the macroscopic velocity equation

In order to derive the equation for the average velocity,
we start by deriving the formula

ρ(x, t)V (x, t) =
∑

i

vi(t)s(xi(t) − x) (31)

for the vehicle flow with respect to time. This gives

∂

∂t
[ρ(x, t)V (x, t)] =

∑
i

dvi(t)
dt

s(xi(t) − x)

+
∑

i

vi(t)
∂

∂xi
[s(xi(t) − x)]

dxi(t)
dt

=
∑

i

ai(t)s(xi(t) − x)

− ∂

∂x

∑
i

[vi(t)]2s(xi(t) − x). (32)

Introducing δvi(x, t) = vi(t) − V (x, t) and defining the
velocity variance

θ(x, t)=

∞∫
−∞

dx′ ∑
i[vi(t)−V (x, t)]2δ(x′ − xi(t))s(x′ − x)

∞∫
−∞

dx′ ∑
i δ(x′ − xi(t))s(x′ − x)

=
∑

i[vi(t) − V (x, t)]2s(xi(t) − x)∑
i s(xi(t) − x)

=
∑

i[δvi(x, t)]2s(xi(t) − x)
ρ(x, t)

(33)
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similarly to the average velocity (26), we can make the
decomposition
∑

i

[vi(t)]2s(xi(t) − x) =

∑
i

[V (x, t) + δvi(x, t)]2s(xi(t) − x)

=
∑

i

{
[V (x, t)]2 + 2V (x, t)δvi(x, t)

+ [δvi(x, t)]2
}
s(xi(t) − x)

= ρ(x, t)[V (x, t)]2 + 2ρ(x, t)V (x, t)[V (x, t) − V (x, t)]

+ ρ(x, t)θ(x, t), (34)

where we have considered∑
i

δvi(x, t)s(xi(t) − x)=
∑

i

[vi(t)−V (x, t)] s(xi(t) − x)

=Q(x, t) − ρ(x, t)V (x, t)=0,(35)

see equations (26) and (25). Altogether, we get

∂

∂t
[ρ(x, t)V (x, t)] = − ∂

∂x

{
ρ(x, t)

[
V (x, t)2 + θ(x, t)

]}
+

∑
i

ai(t)s(xi(t) − x). (36)

Now, we carry out the partial differentiation applying the
product rule of Calculus. Taking into account

ρ(x, t)
∂V (x, t)

∂t
= −V (x, t)

∂ρ(x, t)
∂t

+
∂

∂t
[ρ(x, t)V (x, t)]

(37)
and

∂

∂x
{[ρ(x, t)V (x, t)] V (x, t)} = ρ(x, t)V (x, t)

∂V

∂x

+ V (x, t)
∂

∂x
[ρ(x, t)V (x, t)] , (38)

with equation (36) we obtain the following:

ρ(x, t)
∂V (x, t)

∂t
= −V (x, t)

∂ρ(x, t)
∂t

−V (x, t)
∂

∂x
[ρ(x, t)V (x, t)]

−ρ(x, t)V (x, t)
∂V (x, t)

∂x

− ∂

∂x
[ρ(x, t)θ(x, t)]

+
∑

i

ai(t)s(xi(t) − x). (39)

Inserting the continuity equation (30) for ∂ρ/∂t and divid-
ing the above equation by ρ(x, t) finally yields the velocity
equation

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= − 1

ρ(x, t)
∂

∂x
[ρ(x, t)θ(x, t)]

+
1

ρ(x, t)

∑
i

ai(t)s(xi(t) − x). (40)

Fig. 1. Illustration of rectangular (—), triangular (– –), and
Gaussian (· · · ) smoothing functions s(x′ − x). xk and xk−1

are the locations of the two closest vehicles k and k − 1 with
respect to a reference location x. Their distance 1/� = xk−1 −
xk determines the size 2/� of the smoothing range chosen in
the calculations of the main text.

Inserting equation (11) for ai(t), we find
∑

i

ai(t)s(xi(t) − x) =

∑
i

[
v0 − vi

τ
+

∑
i

f(di(t))

]
s(xi(t) − x)

=
v0 − V (x, t)

τ
+

∑
i

f(di(t))s(xi(t) − x). (41)

For further simplification, let us now specify the smooth-
ing function by the rectangular function

s(xi − x) =
�

2
·
{

1 if |xi − x| ≤ 1/�
0 otherwise, (42)

with a large enough smoothing window of length Δx =
2/� (see Fig. 1). Then, the number of vehicles i within
the smoothing interval [x − 1/�, x + 1/�] is expected to
be ρ Δx = 2ρ/�, where ρ represents the average vehicle
density in this interval. Therefore,

ρ(x, t) =
∑

i

s(xi(t) − x) =
2ρ

�

�

2
= ρ, (43)

which shows the consistency of this approach.
If the smoothing parameter � is specified via the in-

verse vehicle distance

� = �k =
1
dk

=
1

xk−1 − xk
= ρ(x, t) for xk < x ≤ xk−1,

(44)
the smoothing window of length Δx = 2/� will usually
contain only two vehicles k− 1 and k with xk < x ≤ xk−1

(see Fig. 1). With this, the sum over i reduces to two terms
with i = k and i = k − 1 only. This finally yields

ρ(x, t)V (x, t) =
∑

i

vi(t)s(xi(t) − x)

= vk(t)s(xk(t) − x) + vk−1(t)s(xk−1(t) − x)

=
�

2
[vk−1(t) + vk(t)]

= ρ(x, t)
vk−1(t) + vk(t)

2
(45)
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and, considering equation (44),∑
i

s(xi(t) − x)f(di(t)) =
�

2
f(dk) +

�

2
f(dk−1)

=
�

2
f

(
1
�k

)
+

�

2
f

(
1

�k−1

)

=
ρ(x, t)

2
f

(
1

ρ(x, t)

)

+
ρ(x, t)

2
f

(
1

ρ(x + 1/ρ, t)

)
. (46)

In summary, the macroscopic velocity equation related to
the optimal velocity model corresponds to1

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
=

− 1
ρ(x, t)

∂

∂x
[ρ(x, t)θ(x, t)] +

v0 − V (x, t)
τ

+
1
2
f

(
1

ρ(x, t)

)
+

1
2
f

(
1

ρ(x + 1/ρ, t)

)
. (47)

Note that the last line of this equation contains more
terms, if more than 2 vehicles are located in the spatial
interval between x − 1/� and x + 1/�, as it can happen
due to density variations. Since this does not affect a nu-
merical implementation of the macroscopic equations (40)
and (41), we do not need to be concerned about this. Equa-
tion (43) anyway remains unchanged.

At the cost of less straight-forward analytical evalu-
ation, it is also possible to use other than rectangular
smoothing functions (see Fig. 1). A triangular function,
for example, puts less weight on the boundaries of the
smoothing window, so it will make little difference whether
there are 2 or 3 cars in the smoothing range. Using the
specification

s(xi − x) = max[�(1 − �|xi − x|), 0] (48)

and considering

|xk−1−x|+|x−xk| = (xk−1−x)+(x−xk) = xk−1−xk =
1
�

(49)
shows that a triangular specification leads to the same
consistent density measurement:

ρ(x, t) = s(xk−1(t) − x) + s(xk(t) − x)
= 2�− �2(xk−1 − xk) = �. (50)

4.3 Discussion of the non-locality

The crucial point of equation (47) is its non-locality. The
dependence on x + 1/ρ(x, t) reflects the anticipatory be-
havior of drivers, who react to the traffic situation ahead

1 If another smoothing function is applied, the last term of
equation (47) is replaced by a similar weighted mean value, as
equation (41) reveals, but the essence stays the same. That is,
the way of looking at the microscopic equations (i.e. the way
of defining the density and velocity moments) potentially has
some influence on the dynamics, but it is expected to be small.

of them. From the point of view of traffic simulation, the
non-locality does not constitute a problem. Non-local traf-
fic models such as the gas-kinetic based traffic model sum-
marized in Appendix A can be even more efficient numer-
ically than second-order models with diffusion terms, that
would result from a gradient expansion.

In fact, the reason for the numerical inefficiency of ex-
plicit solvers for partial differential equations is the dif-
fusion instability, which must be avoided by small time
discretizations [20]. As pointed out by Daganzo [21], a dif-
fusion term also implies theoretical inconsistencies such as
the possible occurence of negative velocities at upstream
jam fronts. Therefore, it should be underlined that nu-
merical inefficiencies and theoretical inconsistencies can
be avoided by working with the non-local velocity equa-
tion rather than with the gradient expansion of it, which
will be looked at in the next section.

4.4 Comparison with other macroscopic traffic models

4.4.1 The Payne model

Despite the before-mentioned problems, we will now carry
out a Taylor expansion of the non-local terms in equa-
tion (47), exclusively for the sake of comparison with other
traffic models. A first-order approximation gives

f

(
1

ρ(x + 1/ρ, t)

)
≈ f

⎛
⎝ 1

ρ(x, t) + ∂ρ(x,t)
∂x

1
ρ(x,t)

⎞
⎠

≈ f

(
1

ρ(x, t)

(
1 − ∂ρ(x, t)

∂x

1
ρ(x, t)2

))

≈ f

(
1

ρ(x, t)

)
+

df(d)
dd

·
(
−∂ρ(x, t)

∂x

1
ρ(x, t)3

)
, (51)

where we have applied the geometric series expansion
1/(1− z) ≈ 1+ z+ . . . Note that the relation ρ = 1/d and

Ve(ρ) = Ve

(
1
d

)
= vo(d) = v0 + τf(d) = v0 + τf

(
1
ρ

)

(52)
imply

df(d)
dd

=
(

d

dρ

Ve(ρ) − v0

τ

)
dρ

dd
=

1
τ

dVe(ρ)
dρ

·
(
− 1

d2

)

= −ρ2

τ

dVe(ρ)
dρ

. (53)

Therefore, using equation (46), we finally obtain:

∑
i

s(xi(t)−x)f(t)≈ρ(x, t)f
(

1
ρ(x, t)

)
+

1
2τ

dVe(ρ)
dρ

∂ρ(x, t)
∂x

.

(54)
Considering Ve(ρ) = v0 + τf(ρ) and defining the “traffic
pressure” as

P (x, t) = ρ(x, t)θ(x, t) +
v0 − Ve(ρ)

2τ
, (55)
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the corresponding macroscopic velocity equation becomes

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= − 1

ρ(x, t)
∂P (x, t)

∂x

+
Ve(ρ) − V (x, t)

τ
. (56)

If the velocity variance θ is zero, this model corresponds
exactly to Payne’s macroscopic traffic model with the
pressure term [10,11]

P (ρ) =
V 0 − Ve(ρ)

2τ
. (57)

As a check of consistency between the Payne model and
the optimal velocity model, one may perform an instability
analysis of both models. Such an analysis is carried out in
reference [22] and demonstrates indeed that the instability
conditions and the characteristic velocities are compatible,
as expected.

4.4.2 The macroscopic traffic model by Aw and Rascle

Note that Daganzo has seriously criticized macroscopic
traffic equations of the type (56) [23]. For example, he
studied the case of a vehicle queue of maximum den-
sity ρ = ρjam and speed V = Ve(ρjam) = 0, the end
of which was assumed to be at some location x = x0.
In this situation, equation (56) predicts V = 0 and
dV/dt = ∂V/∂t + V ∂V/∂x < 0 for the last vehicle in the
queue, i.e. the occurence of negative velocities, if pressure
relations such as P = ρθ0 − η0∂V/∂x with non-negative
parameters θ0 and η0 are assumed [7].

In order to overcome Daganzo’s criticism, Aw and
Rascle have proposed the macroscopic velocity equation

∂

∂t
[V + p(ρ)] + V

∂

∂x
[V + p(ρ)] = 0 (58)

with p(ρ) = ργ [23]. Let us study, how this model relates
to the previous macroscopic models. For this purpose, let
us apply the chain rule of Calculus to obtain

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
=

− dp(ρ)
dρ

∂ρ(x, t)
∂t

− V (x, t)
dp(ρ)
dρ

∂ρ(x, t)
∂x

. (59)

Inserting the continuity equation (30) for ∂ρ/∂t on the
right-hand side, we get

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
=

dp(ρ)
dρ

∂

∂x
[ρ(x, t)V (x, t)]

−V (x, t)
dp(ρ)
dρ

∂ρ(x, t)
∂x

= ρ(x, t)
dp(ρ)
dρ

∂V (x, t)
∂x

.(60)

This model can be rigorously derived from particular car-
following models [18]. By comparison with the macro-
scopic velocity equation (56) we see that the model by

Aw and Rascle does not have a relaxation term [Ve(ρ) −
V (x, t)]/τ , which would correspond to the limit τ → ∞.
Moreover, we find

− 1
ρ(x, t)

∂P (x, t)
∂x

= ρ(x, t)
dp(ρ)
dρ

∂V (x, t)
∂x

. (61)

Therefore, the traffic pressure according to the model of
Aw and Rascle is a function of the velocity gradient rather
than the density gradient, in contrast to Payne’s pressure
term (57). Consequently, Aw’s and Rascle’s pressure term
must result in a different way than Payne’s one, i.e. from
a different kind of car-following model [18]. In order to
illustrate this, let us now discuss a generalization of the
optimal velocity model and its macroscopic counterpart.

4.4.3 Non-local macroscopic traffic models

It is well-known [24] that the optimal velocity model may
produce accidents, if the initial condition, the optimal ve-
locity function vo(d), and the parameter τ are not carefully
chosen. In order to have both, the emergence of traffic jams
and the avoidance of accidents, we need to assume that the
repulsive interaction force among vehicles does not only
depend on the vehicle distance di(t) = xi−1(t)−xi(t), but
also on the vehicle velocity vi(t) (to reflect the dependence
of the safe distance on the vehicle speed) or on the relative
velocity

Δvi(t) = vi(t) − vi−1(t) = −ddi

dt
. (62)

The corresponding generalization of the acceleration equa-
tion (11) reads

dvi

dt
= ai(t) =

v0 − vi(t)
τ

+ f(di(t), vi(t), Δvi(t)). (63)

This also changes the associated macroscopic traffic equa-
tion. Namely, equation (47) has to be replaced by

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
=

− 1
ρ(x, t)

∂

∂x
[ρ(x, t)θ(x, t)] +

v0 − V (x, t)
τ

+
1
2
f

(
1

ρ(x, t)
, V (x, t), ΔV (x, t)

)

+
1
2
f

(
1

ρ(x + 1/ρ, t)
, V (x + 1/ρ, t), ΔV (x + 1/ρ, t)

)
.

(64)

For the sake of comparison with other macroscopic traf-
fic models and linear stability analyses, let us perform a
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Taylor approximation of this. First, we may write

f

(
1

ρ(x + 1/ρ, t)
, ΔV (x + 1/ρ, t), V (x + 1/ρ, t)

)
≈

f

(
1

ρ(x, t)
, ΔV (x, t), V (x, t)

)

+
∂f

∂d

dd

dρ
[ρ(x + 1/ρ, t)− ρ(x, t)]

+
∂f

∂v
[V (x + 1/ρ, t)− V (x, t)]

+
∂f

∂Δv

[
ΔV (x + 1/ρ, t)− ΔV (x, t)

]
. (65)

Then, we may insert dd/dρ = −1/ρ2,

ρ(x + 1/ρ, t)− ρ(x, t) ≈ ∂ρ

∂x

1
ρ
, (66)

V (x + 1/ρ, t)− V (x, t) ≈ ∂V

∂x

1
ρ
. (67)

Furthermore, considering Δvi(t) = −ddi/dt, ρ(x, t) =
1/di(t), and the continuity equation dρ/dt = ∂ρ/∂t +
V ∂ρ/∂x = −ρ ∂V/∂x, we get

ΔV (x, t) = − d

dt

(
1

ρ(x, t)

)
=

1
ρ(x, t)2

dρ(x, t)
dt

= − 1
ρ(x, t)

∂V (x, t)
∂x

≈ V (x, t) − V (x + 1/ρ, t) (68)

and

ΔV (x + 1/ρ, t)− ΔV (x, t) ≈ ∂ΔV

∂x

1
ρ

≈ −1
ρ

∂

∂x

(
∂V

∂x

1
ρ

)

=
1
ρ3

∂ρ

∂x

∂V

∂x
− 1

ρ2

∂2V

∂x2

≈ − 1
ρ2

∂2V

∂x2
, (69)

since a linearization drops products of gradient terms such
as (∂ρ/∂x)(∂V/∂x) (which are assumed to be smaller than
the linear terms). Altogether, with dd/dρ = −1/ρ2 we can
write

f

(
1

ρ(x + 1/ρ, t)
, V (x + 1/ρ, t), ΔV (x + 1/ρ, t)

)
≈

f

(
1

ρ(x, t)
, ΔV (x, t), V (x, t)

)
− 1

ρ3

∂f

∂d

∂ρ

∂x

+
1
ρ

∂f

∂v

∂V

∂x
− 1

ρ2

∂f

∂Δv

∂2V

∂x2
. (70)

With the definition

Vo(ρ, V, ΔV ) = v0 + τf

(
1
ρ
, V, ΔV

)
, (71)

we may finally write

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= −1

ρ

∂

∂x
[ρ(x, t)θ(x, t)]

+
Vo(ρ, V, ΔV ) − V (x, t)

τ
− 1

2ρ3

∂f

∂d

∂ρ

∂x

+
1
2ρ

∂f

∂v

∂V

∂x
− 1

2ρ2

∂f

∂Δv

∂2V

∂x2
. (72)

Furthermore, let us assume that the variance can be ap-
proximated as a function of the density and the average
velocity:

θ(x, t) = θe(ρ(x, t), V (x, t)). (73)

With the definitions

∂P1

∂ρ
= θe(ρ, V ) + ρ

∂θe(ρ, V )
∂ρ

+
1

2ρ2

∂f(1/ρ, V, ΔV )
∂d

, (74)

∂P2

∂V
= ρ

∂θe(ρ, V )
∂V

− 1
2

∂f(1/ρ, V, ΔV )
∂v

, (75)

η = − 1
2ρ2

∂f(1/ρ, V, ΔV )
∂Δv

(76)

(where η should be greater than zero), we may also write
the linearized macroscopic traffic equations as

∂V (x, t)
∂t

+ V (x, t)
∂V (x, t)

∂x
= −1

ρ

∂P1

∂ρ

∂ρ

∂x

− 1
ρ

∂P2

∂V

∂V

∂x
+ η

∂2V

∂x2

+
Vo(ρ, ΔV, V ) − V (x, t)

τ
. (77)

The term η∂2V/∂x2 can be interpreted as viscosity term
and has a smoothing effect. Further viscosity (and diffu-
sion) terms may be derived by second-order Taylor ex-
pansions. It is interesting to note that the pressure term
containing P2 looks similar to equation (61). Therefore,
it is possible to derive Aw’s and Rascle’s model from a
suitably specified microscopic traffic model [18].

5 Summary, discussion, and conclusions

In this paper, we have discussed several approaches to de-
rive macroscopic traffic equations from microscopic car-
following models. It has been pointed out that a Taylor
approximation may be used only for linear stability analy-
ses, as the gradients would otherwise often be too large for
the approximation to work. Further undesireable conse-
quences of a gradient expansion are the possible occurence
of negative velocities, diffusion instabilities, and inefficient
numerical solution methods.

The linear interpolation approach often works well in
practise [17], but it is theoretically inconsistent as it vio-
lates the continuity equation which is required for the con-
servation of the vehicle number. In contrast, the approach
reminding of smoothed particle hydrodynamics was suited
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in all respects. It led to a non-local macroscopic traffic
model, which partially reminds of the non-local gas-kinetic
based traffic model [9] (see Appendix A). In order to reach
a realistic traffic dynamics (in particular accident avoid-
ance if a vehicle with speed v0 approaches a standing car),
one needs to take into account that the repulsive vehicle
interactions not only depend on the vehicle distance, but
also on the relative velocity and the vehicle velocity. This
leads to a specification of the traffic pressure which con-
tains variance-dependent terms, additional terms propor-
tional to ∂ρ/∂x as in Payne’s model, and further terms
proportional to ∂V/∂x as in Aw’s and Rascle’s model.
While the variance-dependent term describes dispersion
effects, Payne’s, Aw’s and Rascle’s terms reflect effects
of vehicle interactions. Furthermore note that, in case of
multi-lane traffic, the additional inter-lane variance

Θ(x, t) =
1
L

L∑
l=1

ρl(x, t)
ρ(x, t)

[Vl(x, t) − V (x, t)]2, (78)

must be added to the inner-lane variance θ(x, t), where
ρl(x, t) is the density and Vl(x, t) the average velocity in
lane l at location x and time t [2,25].

Let us finally discuss whether the above “smoothed
particle hydrodynamics approach” may lead to incons-
tencies such as extremely high densities. An unrealistic
car-following model may, in fact, imply a theoretically in-
consistent macroscopic traffic model, but a plausible mi-
croscopic model should generate a plausible macroscopic
one: specifically, the preservation of the order of vehicles
requires a car-following model that does not produce ac-
cidents. Examples for this are the intelligent driver model
(IDM) [26] or the Gipps model [27]. Furthermore, if the
car-following model implies that vehicles keep a minimum
distance of dmin, as the IDM does, this will translate into a
maximum density ρjam = 1/dmin in the equivalent macro-
scopic traffic model. This can be seen from equation (43)
with ρ = 1/dmin. Therefore, in order to obtain a realistic
macroscopic traffic model, one needs to make a suitable
specification of the repulsive interaction force f . Generally,
it is advised to work with speed-dependent interaction
forces. An example for a microcopically derived macro-
scopic traffic model that takes into account the finite space
requirements of vehicles is the non-local gas-kinetic-based
traffic model (see Appendix A).

The author would like to thank for the inspiring discussions
with the participants of the Workshop on “Multiscale Problems
and Models in Traffic Flow” organized by Michel Rascle and
Christian Schmeiser at the Wolfgang Pauli Institute in Vienna
from May 5–9, 2008, with partial support by the CNRS.

Appendix A: The non-local, gas-kinetic based
traffic model

For comparison, let us shortly recall the form of the non-
local gas-kinetic based traffic model (GKT model). This
has been derived via a collision approximation [9] and can
be written in the form of equation (56) with P (x, t) =

ρ(x, t)θ(x, t), but Ve(ρ) must be replaced by a non-local
expression

Vg(ρ, V, θ, ρ+ , V+ , θ+) = v0 −τ [1 − p(ρ+)]χ(ρ+)ρ+B(Δ)︸ ︷︷ ︸
repulsive interaction term

.

(79)
Here, the index “+” indicates evaluation at the advanced
“interaction point” x + s0 + TV , where s0 represents the
minimum vehicle distance and TV the velocity-dependent
safety distance. The related non-locality has some effects
that other macroscopic models generate by their pressure
and viscosity terms. The dependence of the non-local re-
pulsive interaction on the effective dimensionless velocity
difference

Δ =
V − V+√

θ − 2r
√

θθ+ + θ+

(80)

takes into account effects of the velocity variances θ, θ+ ,
and velocity correlations r among successive cars [25]. Fur-
thermore, the “Boltzmann factor”

B(Δ) =
(
θ − 2r

√
θθ+ + θ+

)[
ΔN(Δ) +

(
1 + Δ2

)
E(Δ)

]
(81)

in the braking term is monotonically increasing with ΔV .
It contains the normal distribution

N(Δ) =
e−Δ2/2

√
2π

(82)

and the Gaussian error function

E(Δ) =

Δ∫
−∞

dz N(z). (83)

To close the system of equations, the velocity correlation r
is specified as a function of the density in accordance with
empirical observations. Moreover, for a description of the
presently known properties of traffic flows it seems suffi-
cient to set

θ = A(ρ)V 2. (84)

This guarantees that the velocity variance will vanish
whenever the average velocity goes to zero, but it will be
positive otherwise. It should be noted that the variance
prefactor A is higher in congested traffic than in free traf-
fic [9]. The “effective cross section” is, finally, specified via

[1 − p(ρ)]χ(ρ) =
v0ρT 2

τA(ρjam)(1 − ρ/ρjam)2
, (85)

where T is the safe time headway and ρjam the maximum
vehicle density. This formula makes also sense in the low-
density limit ρ → 0, where χ → 1 and p → 1.

A linear stability analysis of the non-local traffic model
can be done via a gradient expansion. It results in equa-
tions of the kind (77) and further viscosity and diffusion
terms [28].
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