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Abstract. Starting from the instability diagram of a traffic flow model, we derive conditions for the oc-
currence of congested traffic states, their appearance, their spreading in space and time, and the related
increase in travel times. We discuss the terminology of traffic phases and give empirical evidence for the
existence of a phase diagram of traffic states. In contrast to previously presented phase diagrams, it is
shown that “widening synchronized patterns” are possible, if the maximum flow is located inside of a
metastable density regime. Moreover, for various kinds of traffic models with different instability diagrams
it is discussed, how the related phase diagrams are expected to approximately look like. Apart from this,
it is pointed out that combinations of on- and off-ramps create different patterns than a single, isolated
on-ramp.

PACS. 89.40.Bb Land transportation – 89.75.Kd Patterns – 47.10.ab Conservation laws and constitutive
relations

1 Introduction

While traffic science makes a clear distinction between
free and congested traffic, the empirical analysis of spa-
tiotemporal congestion patterns has recently revealed an
unexpected complexity of traffic states. Early contribu-
tions in traffic physics focussed on the study of so-called
“phantom traffic jams” [1], i.e. traffic jams resulting from
minor perturbations in the traffic flow rather than from
accidents, building sites, or other bottlenecks. This sub-
ject has recently been revived due to new technologies
facilitating experimental traffic research [2]. Related the-
oretical and numerical stability analyses were – and still
are – often carried out for setups with periodic boundary
conditions. This is, of course, quite artificial, as compared
to real traffic situations. Therefore, in response to em-
pirical findings [3], physicists have pointed out that the
occurrence of congested traffic on real freeways normally
results from a combination of three ingredients [4,5]:

1. a high traffic volume (defined as the freeway flow plus
the actual on-ramp flow, see below);

2. a spatial inhomogeneity of the freeway (such as a ramp,
gradient, or change in the number of usable lanes);

3. a temporary perturbation of the traffic flow (e.g. due to
lane changes [6] or long-lasting overtaking maneuvers
of trucks [7,8]).

a e-mail: dhelbing@ethz.ch

The challenge of traffic modeling, however, goes consid-
erably beyond this. It would be favorable, if the traffic
dynamics could be understood on the basis of elementary
traffic patterns [7] such as the ones depicted in Figure 1,
and if complex traffic patterns (see, e.g., Fig. 2) could be
understood as combinations of them, considering interac-
tion effects.

It was proposed that the occurrence of elementary con-
gested traffic states could be classified and predicted by a
phase diagram [4,10]. Furthermore, it was suggested that
this phase diagram can be derived from the instability dia-
gram of traffic flow and the outflow from congested traffic.
This idea has been taken up in many other publications,
also as a means of studying, visualizing, and classifying
properties of traffic models [11–14]. However, it has been
claimed that the phase diagram approach would be insuf-
ficient [15]. While some of the criticism is due to misun-
derstandings, as will be shown in Section 7.1, the classical
phase diagrams lack, in fact, the possibility of “widening
synchronized patterns” (WSP) proposed by Kerner and
Klenov [16], see Figure 1d.

In this paper, we will start in Section 2 with a dis-
cussion of the somewhat controversial notion of “traffic
phases” and the clarification that we use it to distin-
guish congestion patterns with a qualitatively different
spatiotemporal appearance. In Section 3 we will show that
existing models can produce all the empirically observed
patterns of Figure 1, when simulated in an open system
with a bottleneck. We will then present a derivation and
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Fig. 1. (Color online) Examples of elementary patterns of congested traffic measured on the German freeway A5 close to
Frankfurt. For better illustration of the traffic patterns, speeds are displayed upside down. The driving direction is indicated by
arrows. Top row: (a) Moving clusters (MC), (b) stop-and-go waves (SGW), (c) oscillating congested traffic (OCT). Bottom row:
(d) Widening synchronized pattern (WSP), (e) pinned localized cluster (PLC), and (f) homogeneous congested traffic (HCT).
The spatiotemporal velocity fields have been reconstructed from one-minute data of double-loop detector cross sections using
the “adaptive smoothing method” [9].

explanation of the idealized, schematic phase diagram of
traffic states in Section 4. In contrast to previous publi-
cations, we will assume that the critical density ρc2, at
which traffic becomes linearly unstable, is greater than
the density ρmax, where the maximum flow is reached (see
Appendix A.1 for details). As a consequence, we will find
that “widening synchronized pattern” do exist within the
phase diagram approach, even for models with a funda-
mental diagram. While this analysis is carried out for sin-
gle, isolated bottlenecks, Section 5 will introduce how to
generalize it to the case of multi-ramp setups. In Section 6,
we will discuss other possible types of phase diagrams,
depending on the stability properties of the considered
model. Afterwards, in Section 7, we will present recent
empirical data supporting our theoretical phase diagram.
Sections 7.1 and 8 will finally try to overcome some mis-
understandings regarding the phase diagram concept and
summarize our findings.

2 On the definition of traffic phases

Before we present the phase diagram of traffic states, it
must be emphasized that some confusion arises from the
different use of the term “(traffic) phase”. In thermody-
namics, a “phase” corresponds to an equilibrium state in a
region of the parameter space of thermodynamic variables
(such as pressure and temperature), in which the appro-
priate free energy is analytic, i.e., all first and higher-order
derivatives with respect to the thermodynamic variables
exist. One speaks of a first-order phase transition, if a first

derivative, or “order parameter”, is discontinuous, and of
a “second-order” or “continuous” phase transition, if the
first derivatives are continuous but a second derivative
(the “susceptibility”) diverges. What consequences does
this have for defining “traffic phases”?

Although traffic flow is a self-driven nonequilib-
rium system, it has been shown [17] that much of
the equilibrium concepts can be transferred to driven
or self-driven non-equilibrium systems by appropriately
redefining them. Furthermore, concepts of classical ther-
modynamics have been successfully applied to nonequi-
librium physical and nonphysical systems, yielding quan-
titatively correct results. This includes, for example, the
application of the fluctuation-dissipation theorem [18]
(originally referring to equilibrium phenomena) to vehic-
ular traffic [19].

In contrast to classical thermodynamics, nonequilib-
rium phase transitions are possible in one-dimensional sys-
tems [20]. However, according to the definition of phase
transitions, one needs to make sure that details of the
boundary conditions or finite-size effects do not play a role
for the characteristic properties of the phase. Furthermore,
one must define suitable order parameters or susceptibili-
ties. While the first propositions have been already made
a decade ago [21], there is no general agreement regarding
the quantity that should be chosen for the order param-
eter. Candidates include the density, the fraction of ve-
hicles in the congested state [21], the average velocity or
flow, or the variance of density, velocity, or flow. Whenever
one observes a discontinuous or hysteretic transition in a
large enough system, there is no need to define an order
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Fig. 2. (Color online) Two examples of complex traffic states
measured on the German freeway A5 close to Frankfurt. Top:
on the A5 North, an accident occurs at x = 487.5 km at the
time t = 17:13 h, which causes a HCT pattern that turns into
an OCT pattern as the upstream traffic flow goes down. The
capacity drop related to the congestion pattern reduces the
downstream flow and leads to a dissolution of the previous
SGW pattern over there around t = 18:00 h. Bottom: on the
freeway A5 South, the stop-and-go waves induced by a bottle-
neck at x = 480 km replace the OCT at the bottleneck near
x = 470 km. At time t = 9:50 h, the waves induce an acci-
dent at x = 478.33 km, which triggers a new OCT pattern
further upstream. The related capacity drop, in turn, causes
the previous OCT state at x ≈ 480 km to dissolve.

parameter, as this already implies a first-order phase tran-
sition. For continuous, symmetry-braking phase transi-
tions, the deviation from the more symmetric state (e.g.
the amplitude of density variations as compared to the
homogeneous state) seems to be an appropriate order pa-
rameter.

To summarize the above points, it appears that ther-
modynamic phases can, in fact, be defined for traffic flow.
In connection with transitions between different traffic
states at bottlenecks, we particularly mention the notion
of boundary-induced phase transitions [22–24]. Here, the
boundary conditions have been mainly used as a means
to control the average density in the open system under
consideration.

In publications on traffic, a “phase” is often interpreted
as “traffic pattern” or “traffic state with a typical spatio-
temporal appearance”. Such states depend on the respec-
tive boundary conditions. In this way, models with several
phases can produce a multitude of spatiotemporal pat-
terns. It should become clear from these considerations

that the various proposed “phase diagrams” do not relate
to thermodynamic phases, but classify spatio-temporal
states, as is common in systems theory. In these non-
thermodynamic phase diagrams, the “phase space” is
spanned by certain control parameters, e.g. by suitably
parameterized boundary conditions, by inhomogeneities
(bottleneck strengths), or by model parameters [25]. For
example, the phase diagrams discussed in references [4,15]
and this paper contain the axes “main inflow” (i.e., an
upstream boundary condition) and “on-ramp flow” (char-
acterizing the bottleneck strength).

In any case, empirical observations of the traffic dy-
namics relate to the spatiotemporal traffic patterns, and
not to the thermodynamic phases. Therefore, the quality
of a traffic model should be assessed by asking whether it
can produce all observed kinds of spatio-temporal traffic
patterns, including the conditions for their appearance.

3 Congested traffic states

When simulating traffic flow with the “microscopic” in-
telligent driver model (IDM) [10], the optimal veloc-
ity model (OVM) [26], the non-local, gas-kinetic-based
traffic model (GKT) [27], or the “macroscopic” Kerner-
Konhäuser model [28] (with the parameter set chosen by
Lee et al. [29]), we find free traffic flow and different kinds
of congestion patterns, when the ramp flow Qon and the
upstream arrival flow Qup on the freeway are varied. The
diversity of traffic patterns is

1. due to the possibility of having either locally constraint
or spatially extended congestion1;

2. due to the possibility of having stable, unstable or free
traffic flows.

Typical representatives of congested traffic patterns ob-
tained by computer simulations with the intelligent driver
model [10] are shown in Figure 3. Notice that all empirical
patterns displayed in Figure 1 can be reproduced.

One can distinguish the different traffic states (i.e. con-
gestion patterns) by analyzing the temporal and spatial
dependence of the average velocity V (x, t): if V (x, t) stays
above a certain threshold Vcrit, where x is varied within
a homogeneous freeway section upstream of a bottleneck,
we call the traffic state free traffic (FT), otherwise con-
gested traffic2. If these speeds fall below Vcrit only over a
short freeway subsection, and the length of this section is
approximately stable or stabilizes over time, we talk about
localized clusters (LC), otherwise of spatially extended con-
gestion states (see also footnote 1).

1 Note that traffic patterns which appear to be localized, but
continue to grow in size, belong to the spatially extended cat-
egory of traffic states. Therefore, “widening moving clusters”
(WMC) are classified as extended congested traffic, while the
similarly looking “moving localized clusters” (MLC) are not.
According to Figure 6, however, the phases of both states are
located next to each other, so one could summarize both phases
by one area representing “moving clusters” (MC).

2 A typical threshold for German freeways would be Vcrit ≈
80 km/h.
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Fig. 3. (Color online) Simulation of traffic on a freeway with an on-ramp at location x = 0 km using the intelligent driver
model (IDM) [10] with parameters corresponding to an instability diagram as illustrated in Figure 4d. The macroscopic velocity
field was extracted from the simulated trajectories by placing virtual detectors every 500 m and determining the velocity with
the same method [9] that has been used for the data. Depending on the respective traffic flows on the ramp and on the freeway,
different kinds of congested traffic states emerge: a moving cluster (MC), a pinned localized cluster (PLC), (“triggered”) stop-
and-go waves (SGW), oscillating congested traffic (OCT), or homogeneous congested traffic (HCT). During the first minutes of
the simulation, the flows on the freeway and the on-ramp were increased from low values to their final values. Since the assumed
flows fall into a metastable traffic regime, the actual breakdown was initiated by additional perturbations of the ramp flow.

According to our simulations, there are two forms of
localized clusters: pinned localized clusters (PLC) stay at
a fixed location over a longer period of time, while mov-
ing localized clusters (MLC) propagate upstream with
the characteristic speed c0. These states have to be
contrasted with extended congested traffic3: stop-and-go
waves (SGW) may be interpreted as a sequence of sev-
eral moving localized clusters. Alternatively, they may
be viewed as special case of oscillating congested traffic
(OCT), but with free traffic flows of about Qout � 1800
vehicles/h/lane between the upstream propagating jams.
Generally, however, OCT is just characterized by oscil-
lating speeds in the congested range, i.e. unstable traffic
flows. If the speeds are congested over a spatially extended
area, but not oscillating4, we call this homogeneous con-
gested traffic (HCT). It is typically related with low vehicle
velocities.

In summary, besides free traffic, the above mentioned
and some other traffic models predict five different, spatio-
temporal patterns of congested traffic states at a sim-
ple on-ramp bottleneck: PLC, MLC, SGW, OCT, and
HCT. Similar traffic states have been identified for flow-
conserving bottlenecks in car-following models [30,31], and

3 which includes “widening moving clusters” (see Fig. 1a and
footnote 1).

4 when averaging over spatial and temporal intervals that
sufficiently eliminate effects of heterogeneity and pedal control
in real vehicle traffic.

for on-ramps and other types of bottlenecks in macro-
scopic models [4,29].

In contrast to this past work, we have also simulated
an additional traffic pattern (Fig. 3d). This pattern has
a similarity to the widening synchronized pattern (WSP)
proposed by Kerner in the framework of his three-phase
traffic theory [32]. In the following section, we show how
this pattern may be understood in the framework of mod-
els with a fundamental diagram.

4 Derivation and explanation of the phase
diagram of traffics states

It turns out that the possible traffic patterns in open sys-
tems with bottlenecks are mainly determined by the in-
stability diagram (see Fig. 4), no matter if the model is
macroscopic or microscopic. This seems to apply at least
for traffic models with a fundamental diagram, which we
will focus on in the following sections. Due to the close re-
lationship with the instability diagram, the preconditions
for the possible occurrence of the different traffic states
can be illustrated by a phase diagram. Figures 5 and 6
show two examples. Each area of a phase diagram rep-
resents the combinations of upstream freeway flows Qup

and bottleneck strengths ΔQ, for which a certain kind of
traffic state can exist.

It is obvious that an on-ramp flow Qon(t), for example,
causes a bottleneck, as it consumes some of the capacity
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Fig. 4. (Color online) Illustration of stable, linearly unsta-
ble, and metastable density regimes within velocity-density di-
agrams Ve(ρ) (top) and the flow-density diagrams Qe(ρ) (bot-
tom). Traffic is stable for ρ < ρc1 and ρ > ρc4 and linearly
unstable for ρc2 < ρ < ρc3. These two regimes are separated
by a low-density and a high-density region of metastable traffic
given by the intervals ρc1 < ρ < ρc2 and ρc3 < ρ < ρc4, respec-
tively. In the metastable regimes, perturbations in the traffic
flow grow, if their size is larger than a certain critical ampli-
tude [34], otherwise they fade away. The critical amplitude is
largest towards the boundaries ρc1 and ρc4 of unconditionally
stable traffic flow, while it goes to zero towards the bound-
aries ρc2 and ρc3 of linearly unstable traffic. Note that the
metastable and unstable regimes may vanish for certain traffic
models or parameter specifications. The possible types of con-
gested traffic patterns depend on the existence of the different
stability regimes and on the relative position of their bound-
aries with respect to the density ρmax at capacity Qmax (max-
imum flow). The left figures show the situation for ρc2 < ρmax,
the right figures the situation for ρc2 > ρmax.

of the freeway. Qon(t) represents the flow actually entering
the freeway via the on-ramp, i.e. the flow leaving the on-
ramp and not the flow entering the on-ramp5, We assume
that Qon(t) is known through a suitable measurement.
Having clarified this, we define the bottleneck strength due
to an on-ramp by the entering ramp flow, divided by the
number Ifr of freeway lanes:

ΔQ(t) = ΔQon(t) =
Qon(t)

Ifr
. (1)

This is done so, because the average flow ΔQ added to
each freeway lane by the on-ramp flow corresponds to the
capacity that is not available anymore for the traffic flow
Qup coming from the upstream freeway section. As a con-
sequence, congestion may form upstream of the ramp. In
the following, we will have to determine the density inside

5 When the freeway is busy, it may happen that these two
flows are different and that a queue of vehicles forms on the
on-ramp. Of course, it is an interesting question to determine
how the entering ramp flow depends on the freeway flow, but
this is not the focus of attention here, as this formula is not
required for the following considerations.

Fig. 5. (Color online) Schematic (idealized) phase diagrams
for the expected traffic patterns as a function of the upstream
freeway flow Qup and the ramp flow ΔQ, as studied in refer-
ences [4,10]. The left figure is for negligible, the right figure
for large perturbations. The situation for medium-sized per-
turbations can lie anywhere between these two extremes. For
example, in the area marked as PLC, one may find free traffic
or pinned localized clusters, or in some of the area attributed to
HCT, one may find SGW or OCT states. The assumed insta-
bility diagram underlying the above schematic phase diagrams
is depicted in Figures 4a and 4b. With ρc1 < ρc2 < ρmax <
ρc3 < ρc4 < ρjam, it assumes no degeneration of the critical
densities ρck and a stable flow at high densities. Note that, for
illustrative reasons, we have set aside the exact correspondence
of the flow values Qck.

Fig. 6. (Color online) Schematic phase diagram as in Figure 5,
but for the instability diagram represented by Figures 4c and
d. In contrast to Figure 5, traffic flow at capacity is metastable
(ρc1 < ρmax < ρc2), which leads to a greater variety of traffic
states in the upper left corner of the phase diagram. In par-
ticularly, we find “widening synchronized patterns” (WSP).
“OCT, SGW” means that one expects to find oscillating con-
gested traffic or stop-and-go waves, but not necessarily both.
Together with “widening moving clusters” (WMC, see foot-
note 1) they form the area of extended oscillatory congestion.
However, the WMC and MLC phases may also be summarized
by one area representing “moving clusters” (MC).

the forming congestion pattern and where in the insta-
bility diagram it is located. It will turn out that, given
certain values of Qup and ΔQ, the different regions of the
phase diagram can be related with the respectively ob-
served or simulated spatiotemporal patterns. We distin-
guish free traffic and different kinds of localized congested
traffic as well as different kinds of extended congested traf-
fic. When contrasting our classification of traffic states
with Kerner’s one [15], we find the following comparison
helpful:
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1. According to our understanding, what we call “ex-
tended congested traffic” may be associated with
Kerner’s “synchronized flow”. In particular, the area
where Kerner’s phase diagrams predict a “general pat-
tern” matches well with the area, where we expect
OCT and HCT states.

2. “Moving clusters”6 may be associated with “wide
moving jams” and/or “moving synchronized patterns”
(MSP).

3. “Stop-and-go waves” appear to be related with mul-
tiple “wide moving jams” generated by the “pinch ef-
fect”.

4. “Pinned localized clusters” may be compared with
Kerner’s “localized synchronized pattern” (LSP).

5. Kerner’s “widening synchronized pattern” (WSP) and
“dissolving general pattern” (DGP) did not have a cor-
respondence with results of our own computer simula-
tions so far. These states are predicted to appear for
high freeway flows and low bottleneck strengths. In the
following subsections, we report that, quite unexpect-
edly, similar results are found for certain traffic models
having a fundamental diagram.

The phase diagram can not only be determined numeri-
cally. It turns out that the borderlines between different
areas (the so-called phase boundaries) can also be theoret-
ically understood, based on the flows

Qck = Qe(ρck) (2)

at the instability thresholds ρck (k = 1, . . . , 4), the maxi-
mum flow capacity Qmax under free flow conditions, and
the dynamic flow capacity, i.e. the characteristic outflow
Qout from congested traffic [33] (see Fig. 4). Qe(ρ) rep-
resents the equilibrium flow-density relationship, which is
also called the “fundamental diagram”.

The exact shape and location of the separation lines
between different kinds of traffic states depend on the
traffic model and its parameter values7. Furthermore, the
characteristic outflow Qout typically depends on the type
and strength of the bottleneck8. For the sake of simplic-
ity of our discussion, however, we will assume constant
outflows Qout in the following.

The meaning of the different critical density thresh-
olds ρck and flow thresholds Qck = Qe(ρck), respectively,
is described in the caption of Figure 4. Note that the den-
sity ρc2 may be smaller or larger than the density ρmax at
capacity, where the maximum flow Qmax is reached. Pre-
vious computer simulations and phase diagrams mostly
assumed parameters where traffic at capacity is linearly

6 i.e. “moving localized clusters” (MLC) and “widening mov-
ing clusters” (WMC), see footnote 1 and Section 4.2.

7 Since the model parameters characterize the prevailing
driving style as well as external conditions such as weather con-
ditions and speed limits, the separation lines (“phase bound-
aries”) and even the existence of certain traffic patterns are
subject to these factors, see Section 7.

8 For example, in most models, the outflow Qout down-
stream of an on-ramp bottleneck decreases with the bottleneck
strength and increases with the length of the on-ramp [10,35].

unstable (ρc2 < ρmax < ρc3), which is depicted in Fig-
ures 4a and 4b. However, in some traffic models such as
the IDM [10], the stability thresholds can be controlled
in a flexible way by varying their model parameters (see
Appendix A.2). In the following, we will focus on the case
where traffic at capacity is metastable (ρc2 > ρmax > ρc1),
cf. Figures 4c and reffig:stabdiagd.9 As will be shown in
the next subsection, this appears to offer an alternative ex-
planation of the “widening synchronized pattern” (WSP)
introduced in reference [32], see Figure 3d. Simpler cases
will be addressed in Section 6 below.

4.1 Transition to congested traffic for small
bottlenecks

In the following, we restrict our considerations to situa-
tions with one bottleneck only, namely a single on-ramp.
Combinations of off- and on-ramps are not covered by this
section. They will be treated later on (see Sect. 5).

For matters of illustration, we assume a typical rush
hour scenario, in which the total traffic volume

Qtot(t) = Qup(t) + ΔQ(t), (3)

i.e. the sum of the flow Qup(t) sufficiently upstream of the
ramp bottleneck and the on-ramp flow ΔQ(t) per freeway
lane, is increasing with time t. As long as traffic flows
freely, the flow downstream of the bottleneck corresponds
to the total flow Qtot(t), while the upstream flow is Qup(t).

When the total flow Qtot(t) exceeds the critical density
ρc1, it enters the metastable density regime. That is, large
enough perturbations may potentially grow and cause a
breakdown of the traffic flow. However, often the pertur-
bations remain comparatively small, and the total traffic
volume rises so quickly that it eventually exceeds the max-
imum freeway capacity

Qtot = Qup +ΔQ > Qmax = max
ρ

Qe(ρ) = Qe(ρmax). (4)

This is reflected in the left phase diagram in Figure 6 by
the diagonal line separating the states “FT” and “WSP”.
(Note that ρmax represents the density, for which the max-
imum free traffic flow occurs, not the jam density ρjam.)

When the total traffic volume Qtot exceeds the max-
imum capacity Qmax, a platoon of vehicles will form up-
stream of the bottleneck. Since, in this section, we as-
sume metastable traffic at maximum capacity Qmax (see
Fig. 7 in Ref. [8]), this will not instantaneously lead to a
traffic breakdown with an associated capacity drop. Thus,
the flow downstream of the bottleneck remains limited to
Qmax (at least temporarily). As the on-ramp flow takes
away an amount ΔQ of the maximum capacity Qmax, the
(maximum) flow upstream of the bottleneck is given by

Qbot = Qmax − ΔQ. (5)
9 The IDM parameters for plots (a) and (b) are given by

v0 = 128 km/h, T = 1 s, s0 = 2 m, s1 = 10 m, a = 0.8 m/s2,
and b = 1.3 m/s2. To generate plots (c) and (d), the accelera-
tion parameter was increased to a = 1.3 m/s2, while the other
parameters were left unchanged.
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Fig. 7. (Color online) Examples of congestion patterns on the German freeway A5 close to Frankfurt, for which data have been
provided to the authors between kilometers 465 and 492. The figures analyze the propagation of the upstream front of a region
of congested traffic (white solid line) according to equation (12), for empirical HCT (left) and OCT (right). In both plots, the
driving direction is upwards (as indicated by the arrows). The upstream flow Qup was determined from a detector cross section
whose location is indicated by a dotted white line, while the bottleneck flow was determined from detectors of a nearby cross
section (dashed white line). When determining the flows, the time delay caused by the finite propagation velocities dQe(ρ)/dρ
from the detectors to the upstream front was taken care of. The congestion patterns were chosen such that there were no ramps
at or between the two detector cross sections. Otherwise, the determination of Qup and Qcong would have been more complicated.
The free and congested densities were calculated with a simple, triangular fundamental diagram. Therefore, ρfr(Q) = Q/V0 and
ρcg(Q) = ρjam(1 − QT ), where the following parameters were chosen: V0 = 120 km/h, ρjam = 100 veh/km/lane, and T = 2 s.

When the actual upstream flow Qup exceeds this value, a
mild form of congestion will result upstream of the ramp.
The density of the forming vehicle platoon is predicted to
be

ρbot = ρcg(Qbot) = ρcg

(
Qmax − ΔQ

)
> ρmax, (6)

where ρcg(Q) is the density corresponding to a stationary
and homogeneous congested flow of value Q (i.e. it is the
inverse function of the “congested branch” of the funda-
mental diagram).

According to the equation for the propagation speed
of shockwaves (see Ref. [36]), the upstream front of the
forming vehicle platoon is expected to propagate upstream
at the speed

C1(t) =
Qup − Qbot

ρfr(Qup) − ρcg(Qbot)
, (7)

where ρfr(Q) is the density of stationary and homogeneous
traffic at a given flow Q (i.e. the inverse function of the
“free branch” of the fundamental diagram).

Note that this high-flow situation can persist for a sig-
nificant time period only, if the flow Qbot in the platoon is
stable or metastable. This is the case if one of the following
applies:

(i) The traffic flow is unconditionally stable for all densi-
ties such as in the Lighthill-Whitham model [37]. This
will be discussed in Section 6 below.

(ii) Traffic flow at capacity is metastable and the bottle-
neck is sufficiently weak. This gives rise to the widening
synchronized pattern (WSP), as will be discussed in the
rest of this subsection.

By WSP, we mean a semi-congested extending traffic
state without large-scale oscillations or significant velocity
drops below, say, 30–40 km/h [15]. Putting aside stochas-
tic accelerations or heterogeneous driver-vehicle popula-
tions, this corresponds to (meta-)stable vehicle platoons
at densities greater than, but close to the density ρmax at
capacity. This can occur when ρbot lies in the metastable
density range, i.e. ρmax < ρbot < ρc2, corresponding to
Qmax > Qbot = Qmax − ΔQ > Qc2 or

ΔQ < Qmax − Qc2. (8)

In Figure 6, this condition belongs to the area left of the
vertical line separating the WSP and OCT states. If the
bottleneck strength ΔQ becomes greater than Qmax−Qc2,
or if ρcg(Qbot) lies in the metastable regime and pertur-
bations in the traffic flow are large enough, traffic flow
becomes unstable and breaks down. After the related ca-
pacity drop by the amount

ΔQdrop = Qmax − Qout, (9)

the new, “dynamic” capacity will be given by the outflow
Qout from congested traffic [10]. Obviously, the capacity
drop causes the formation of more serious congestion10.
This is illustrated in the right phase diagram of Figure 6
by the offset between the diagonal lines separating free
traffic from WSP and the other extended congested states
(OCT, SGW, and HCT). In the following, we will focus on
the traffic states after the breakdown of freeway capacity
from Qmax to Qout has taken place.
10 and the condition Qup + ΔQ < Qout for the gradual dis-
solution of the resulting congestion pattern is harder to fulfil
than the condition Qup +ΔQ < Qmax implied by equation (4).
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4.2 Conditions for different kinds of congested traffic
after the breakdown of traffic flow

For the sake of simplicity, we will assume the case

Qc4 < Qc3 < Qc1 ≤ Qout ≤ Qc2 < Qmax, (10)

which seems to be appropriate for real traffic (particularly
in Germany). However, depending on the choice of model
parameters, other cases are possible. The conclusions may
be different, then, but the line of argumentation is the
same. In the following, we will again assume ρc2 ≥ ρmax,
so that the maximum flow Qmax is metastable. Therefore,
it can persist for some time, until the maximum flow state
is destabilized by perturbations or too high traffic vol-
umes Qtot(t), which eventually cause a breakdown of the
traffic flow. (For ρc2 < ρmax, the capacity drop happens
automatically, whenever Qtot(t) > Qmax.)

After the breakdown of traffic flow, the traffic situation
downstream is given by the outflow Qout from (seriously)
congested traffic. As the actually entering ramp flow re-
quires the capacity ΔQ per lane, the flow upstream of the
bottleneck is limited to

Qcong = Qout − ΔQ. (11)

In analogy to equation (7), the upstream front of this con-
gested flow is expected to propagate with the velocity

C2(t) =
Qup − Qcong

ρfr(Qup) − ρcg(Qcong)
, (12)

as the upstream freeway flow Qup is assumed to be free.
The downstream end of the congested flow Qcong remains
located at the bottleneck [38].

Figure 7 shows that the propagation of the upstream
front according to equation (12) agrees remarkably well
with empirical observations, not only for homogeneous
congested flow but also for the OCT pattern. Since the
location of the congestion front is given by integration of
equation (12) over time, oscillations of the input quantities
of this equation are automatically averaged out.

The resulting congestion pattern depends on the sta-
bility properties of the vehicle density

ρcong = ρcg(Qcong) = ρcg

(
Qout − ΔQ

)
. (13)

in the congested area, where the outflow Qout from se-
riously congested traffic represents the effective freeway
capacity under congested conditions and ΔQ the capac-
ity taken away by the bottleneck. In view of this stability
dependence, let us now discuss the meaning of the critical
densities ρck or associated flows Qck = Qe(ρck), respec-
tively, for the phase diagram.

If ρc2 < ρcong < ρc3, we expect unstable, oscillatory
traffic flow (OCT or SGW). For ρc3 ≤ ρcong < ρc4, the
congested flow is metastable, i.e. it depends on the per-
turbation amplitude: one may either have oscillatory pat-
terns (for large enough perturbations) or homogeneous
ones (for small perturbations). Moreover, for ρcong ≥ ρc4

(given that the critical density ρc4 is smaller than ρjam),
we expect homogeneous, i.e. non-oscillatory traffic flows.

Expressing this in terms of flows rather than den-
sities, one would expect the following: oscillatory con-
gestion patterns (OCT or SGW) should be possible for
Qc2 > Qcong = Qout − ΔQ > Qc4, i.e. in the range

Qout − Qc2 < ΔQ < Qout − Qc4, (14)

where we have considered Qc2 ≥ Qout.
The assumption that the densities between ρout with

Qe(ρout) = Qout and Qmax are metastable, as we as-
sume here, has interesting implications: a linear instability
would cause a single moving cluster to trigger further lo-
cal clusters and, thereby, so-called “triggered stop-and-go
waves” (TSG or SGW) [4]. A metastability, in contrast,
can suppress the triggering of additional moving clusters,
which allows the persistence of a single moving cluster, if
the bottleneck strength ΔQ is small. As, for Qtot > Qout,
the related flow conditions fall into the area of extended
congested traffic, the spatial extension of such a cluster
will grow. Therefore, one may use the term “widening
moving cluster” (WMC).

Furthermore, according to our computer simulations,
the capacity downstream of a widening moving cluster
may eventually revert from Qout to Qmax. This happens in
the area, where “widening synchronized patterns” (WSP)
can appear11. Therefore, rather than by equation (14), the
bottleneck strengths characterizing OCT or SGW states
are actually given by

Qmax − Qc2 < ΔQ < Qout − Qc4, (15)

where the lower boundary corresponds to the boundary
of the WSP state, see equation (8). We point out that a
capacity reversion despite congestion is a special feature
of traffic models with ρc2 > ρmax.

Homogeneous congested traffic (the definition of which
does not cover the homogeneous WSP state) is expected
to be possible for Qcong = Qout − ΔQ < Qc3, i.e. (meta-)
stable flows at high densities. This corresponds to

ΔQ > Qout − Qc3. (16)

The occurrence of extended congested traffic like HCT and
OCT requires an additional condition: the total flow must
exceed the freeway capacity Qout during serious conges-
tion12, i.e. we must have

Qtot = Qup + ΔQ > Qout. (17)

Localized congestion patterns, in contrast, require Qtot ≤
Qout and can be triggered for Qtot > Qc1, which implies

Qc1 < Qtot = Qup + ΔQ ≤ Qout. (18)

11 In this connection, it is interesting to remember Kerner’s
“dissolving general pattern” (DGP), which is predicted under
similar flow conditions.
12 One may also analyze the situation with the shock wave
equation: spatially expanding congested traffic results, if the
speed of the downstream shock front of the congested area
(which is usually zero) minus the speed of the upstream shock
front (which is usually negative) gives a positive value.
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We can distinguish at least two cases: on the one hand, if

Qc1 < Qup < Qmax, (19)

the flow upstream of the congested area is metastable,
which allows jams (and large enough perturbations) to
propagate upstream. In this case, we speak of moving
localized clusters (MLC). Their propagation speed c0 =
−15 ± 5 km/h is given by the slope of the jam line [39].

On the other hand, if

Qup ≤ Qc1 (20)

or ρfr(Qup) < ρc1, traffic flow upstream of the bottle-
neck is stable. Under such conditions, perturbations and,
in particular, localized congestion patterns cannot propa-
gate upstream, and they stay at the location of the bottle-
neck. In this case, one speaks of pinned localized clusters
(PLC)13.

We underline that the actual outflow Q̃out from lo-
calized clusters corresponds, of course, to their inflow
Qup+ΔQ (otherwise they would grow or shrink in space).
Therefore, the actual outflow Q̃out of localized congestion
patterns can be smaller than Qout, i.e. smaller than the
outflow of serious congestion.

5 Combinations of on- and off-ramps

We see that the instability diagram implies a large variety
of congestion patterns already in the simple simulation
scenario of a homogeneous freeway with a single ramp.
The possible congestion patterns are even richer in cases
of complex freeway setups. All combinations of the pre-
viously discussed, “elementary” traffic patterns are pos-
sible. Furthermore, we expect particular patterns due to
interactions among patterns through spillover effects. For
illustration, let us focus here on the combination of an
on-ramp with an off-ramp further upstream. This free-
way design is illustrated in Figure 8 and often built to
reduce the magnitude of traffic breakdowns, since it is fa-
vorable when vehicles leave the freeway before new ones
enter. Nevertheless, the on-ramp and the off-ramp bottle-
neck can get coupled, namely when congestion upstream
of the on-ramp reaches the location of the off-ramp.

13 Since pinned localized clusters rarely constitute a maxi-
mum perturbation, they can also occur at higher densities
and flows, as long as Qup < Qc2. Therefore, MLC and PLC
states can coexist in the range Qc1 < Qup < Qc2. For most
traffic models and bottleneck types, congestion patterns with
Qtot ≈ Qc1 do not exist, since localized congestion patterns do
not correspond to maximum perturbations. The actual lower
boundary Q̃c1 for the overall traffic volume Qtot that generates
congestion is somewhat higher than Qc1, but usually lower than
Qc2. Considering the metastability of traffic flow in this range
and the decay of the critical perturbation amplitude from ρc1

to ρc2 [34], this behavior is expected. However, for some models
and parameters, one may even have Q̃c1 > Qout. In such cases,
PLC states would not be possible under any circumstances.

Fig. 8. (Color online) Combination of an on-ramp bottle-
neck with an upstream off-ramp. (a) When the flow Qup =
Q′

up −ΔQoff upstream of the on-ramp exceeds Qcong, which is
defined as the outflow Qout from congested traffic minus the on-
ramp flow ΔQon = Qon/Ifr, congested traffic upstream of the
on-ramp (dark grey area) is expected to grow. (b) As soon as
the congested area extends up to the location of the off-ramp,
the off-ramp bottleneck is activated. Its effective outflow Q′

out

is given by the congested flow Qcong upstream of the on-ramp,
while congested flow Q′

cong upstream of the off-ramp is higher
by the amount ΔQoff = Qoff/Ifr of the off-ramp flow. (c) Spa-
tiotemporal velocity field resulting from a computer simulation
with the gas-kinetic-based traffic model (GKT) [27], which al-
lows to treat ramps easily. The arrow indicates the driving
direction. One can clearly see pronounced stop-and-go waves
emanating from an area of oscillating congested traffic.

What would a bottleneck analysis analogous to the one
in Section 4 predict for this setup? In order to discuss this,
let us again denote the outflow capacity downstream of the
on-ramp by Qout, its bottleneck strength equivalent to the
on-ramp flow Qrmp = Qon by ΔQon = Qrmp/Ifr ≥ 0, the
upstream flow by Qup, and the average congested flow re-
sulting immediately upstream of the on-ramp by Qcong. In
contrast, we will denote the same quantities relating to the
area of the off-ramp by primes (′), but we will introduce
the abbreviation −ΔQoff = Q′

rmp/Ifr ≤ 0 for the effect of
the off-ramp flow Q′

rmp ≤ 0.
According to Figure 8, we observe the following dy-

namics: first, traffic breaks down at the strongest bottle-
neck, which is the on-ramp. If Qup > Qout − ΔQon, con-
gested flow of size Qcong = Qout − ΔQon expands, and
eventually reaches the location of the off-ramp, see Fig-
ure 8a. Afterwards, the freeway capacity downstream of
the off-ramp suddenly drops from Q′

out = Qout to the
congested flow

Q′
out = Qcong = Qout − ΔQon. (21)
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due to a spillover effect. This abrupt change in the bottle-
neck capacity restricts the capacity for the flow upstream
of the off-ramp to

Q′
cong = Qcong + ΔQoff ≥ Qcong. (22)

This higher flow capacity implies either free flow or milder
congestion upstream of the off-ramp. If Q′

cong is smaller
than the previous outflow capacity Qout, we have a bot-
tleneck along the off-ramp, and its effective strength ΔQ
is given by the difference of these values:

ΔQ = Qout − (Qcong + ΔQoff) = ΔQon − ΔQoff . (23)

That is, the bottleneck strength is defined as the amount
of outflow from congested traffic which cannot be served
by the off-ramp and the downstream freeway flow. For
Qcong + ΔQoff ≥ Qout, no bottleneck occurs, which cor-
responds to a bottleneck strength ΔQ = 0. This finally
results in the expression [38].

ΔQ = max(ΔQon − ΔQoff , 0) ≤ ΔQon. (24)

Whenever ΔQoff > ΔQon, there is no effective bottleneck
upstream of the off-ramp, i.e. the off-ramp bottleneck is
de-activated. For ΔQ = ΔQon − ΔQoff > 0, however, the
resulting congested flow upstream of the off-ramp becomes

Q′
cong = Q′

out+ΔQoff = Qout−ΔQon+ΔQoff = Qout−ΔQ.
(25)

In conclusion, if congested traffic upstream of an on-ramp
reaches an upstream off-ramp, the off-ramp becomes a
bottleneck of strength ΔQ, which is given by the differ-
ence between the on-ramp and the off-ramp flows (or zero,
if this difference would be negative).

Since ΔQ ≤ ΔQon according to equation (24) and
Q′

cong ≥ Qcong according to equation (22), the congestion
upstream of the off-ramp tends to be “milder” than the
congestion upstream of the on-ramp. The resulting traffic
pattern is often characterized by homeogeneous or oscil-
lating congested traffic between the off-ramp and the on-
ramp, and by stop-and-go waves upstream of the off-ramp,
i.e. it has typically the appearance of a “pinch effect” [40]
(see Fig. 8c). For this reason, Kerner also calls the “pinch
effect” a “general pattern” [15]14.

6 Other phase diagrams and universality
classes of models

The phase diagram approach can also be used for a clas-
sification of traffic models. By today, there are hundreds
of traffic models, and many models have a similar good-
ness of fit, when parameters are calibrated to empirical
data [41–46]. It is, therefore, difficult, if not impossible,

14 Oscillatory congestion patterns upstream of off-ramps are
further promoted by a behavioral feedback, since drivers may
decide to leave the freeway in response to downstream traffic
congestion.

Fig. 9. (Color online) Schematic phase diagram for traf-
fic flow without an extended linearly unstable density regime
(ρc2 = ρc3), when the traffic flow at capacity (at the density
ρmax corresponding to the maximum flow) is assumed to be
metastable (ρc1 < ρmax < ρc4).

to determine “the best” traffic model. However, one can
classify models according to topologically equivalent phase
diagrams. Usually, there would be several models in the
same universality class, producing qualitatively the same
set of traffic patterns under roughly similar conditions.
Among the models belonging to the same universality
class, one could basically select any model. According to
the above, the differences in the goodness of fit are usu-
ally not dramatic. Models with many model parameters
may even suffer from insignificant parameters or parame-
ters, which are hard to calibrate, at the cost of predictive
power. Therefore, it is most reasonable to choose the sim-
plest representative of a universality class which, however,
should fulfil minimum requirements regarding theoretical
consistency.

Before we enter the comparison with empirical data,
let us discuss a number of phase diagrams expected for cer-
tain kinds of traffic models. Particular specifications of the
optimal velocity model, for example, are linearly unstable
for one density ρc2 = ρc3 only, but show unstable be-
havior in an extended density regime for sufficiently large
perturbations (i.e. extended metastable regimes) [34]. The
schematic phase diagram expected in this case is shown in
Figure 9. Some other traffic models have linearly unstable
and metastable regimes, but do not show a restabilisa-
tion at very high densities, i.e. ρc4 = ρjam (see Fig. 10),
and sometimes one even has ρc3 = ρjam [47,48] (see Fig.
11). In the latter case, homogeneous congested traffic does
not exist. In models such as the IDM, the restabilisation
depends on the chosen parameter values [35], see also Ap-
pendix A.2.

In most of the currently studied traffic models, one
has either both, linearly unstable and metastable density
ranges, or unconditionally stable traffic. In principle, how-
ever, models with linearly unstable but no metastable
regimes are conceivable. For example, they may be es-
tablished by taking a conventional model and introducing
a dependence on the square of the velocity gradient (in
macroscopic models) or the velocity difference (in micro-
scopic models).

A linearly unstable model without metastable ranges
would correspond to ρc2 = ρc1 and ρc4 = ρc3. For such
models, we do not expect any multi-stability (see Fig. 12),
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Fig. 10. (Color online) Schematic phase diagram for the case
of an incomplete restabilisation at high densities, ρc3 < ρc4 =
ρjam, when traffic at capacity is assumed to be linearly unstable
(ρc1 < ρc2 < ρmax).

Fig. 11. (Color online) Schematic phase diagram for traffic
flow exhibiting both, metastable and linearly unstable density
regimes, with unstable flow at capacity (ρc1 < ρc2 < ρmax), but
no restabilisation for very high densities (ρc3 = ρc4 = ρjam).
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Fig. 12. (Color online) Schematic phase diagram, if there are
only stable and linearly unstable, but no metastable density
regimes (ρc1 = ρc2, ρc3 = ρc4). Furthermore, traffic at capacity
is assumed to be unstable (ρc1 < ρmax < ρc4)

and localized congested traffic would only be possible
under special conditions [7,12] (e.g. on freeway sections
between off- and on-ramps). If, in addition, there is no
restabilisation (i.e. ρc3 = ρjam), only free traffic and os-
cillating congested traffic should exist. This seems to re-
flect the situation for the classical Nagel-Schreckenberg
model [49], although the situation is somewhat unclear,
since this model is stochastic and an exact distinction be-
tween free and congested states is difficult in this model.

Finally, we would like to discuss the fluid-dynamic
model by Lighthill and Whitham [37], which does not dis-
play any instabilities [30] and, consequently, has only ho-

Fig. 13. (Color online) Schematic phase diagram, if traf-
fic is unconditionally stable (ρc1 = ρc2 = ρc3 = ρc4). The
most prominent example is the Lighthill-Whitham model [37],
but many other models (including the gas-kinetic-based traf-
fic model (GKT) [27] and the IDM) can be parameterized to
reproduce this case.

mogeneous patterns, namely free traffic for Qtot ≤ Qmax

and (homogeneous) extended congested traffic for Qtot >
Qmax (which corresponds to a vehicle platoon behind the
bottleneck). This is illustrated in Figure 13. The two
phases can also be distinguished locally, if temporal corre-
lations are considered: While perturbations in free traffic
travel in forward direction, in the congested regime they
travel backward.

We underline again that, by changing model parame-
ters (corresponding to different driving styles), the result-
ing instability and phase diagrams of many traffic models
change as well. For example, the IDM can be parameter-
ized to generate most of the stability diagrams discussed
in this contribution. Since different parameter values cor-
respond to different driving styles or prevailing velocities,
this may explain differences between empirical observa-
tions in different countries. For example, oscillating con-
gested traffic seems to occur less frequent in the United
States [50,51].

Finally, note that somewhat different phase diagrams
result for models that are characterized by a complex ve-
hicle dynamics and no existence of a fundamental dia-
gram [48,52]. Nevertheless, similarities can be discovered
(see Sect. 4).

7 Empirical phase diagram

The remaining challenge in this paper is to find the univer-
sality class that fits the stylized facts of traffic dynamics
well. Here, we will primarily demand that it fits the em-
pirical phase diagram, i.e. reproduces all elementary con-
gestion patterns observed, and not more. We have eval-
uated empirical data from the German freeway A5 close
to Frankfurt. Due to the weather-dependence of the out-
flows Qout (see Fig. 14), it is important to scale all flows
by the respective measurements of Qout. This naturally
collapses the area of localized congested traffic states to
a line. As Figure 15 shows, the phase diagram after scal-
ing the flows is very well compatible with the theoretical
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Fig. 14. (Color online) The outflows Qout of congestion pat-
terns correlate significantly with the weather-dependent range
of visibility (meteorological optical range 3/σ). This was de-
termined by measuring the extinction coefficient σ, using mul-
tiple laser reflections. “W” denotes traffic breakdowns when
the road surface was wet, while “D” stands for a dry road sur-
face. Note that there are three cases of congestion marked with
a lower-case “w”, which were related with a short and light
shower only, so that the outflow values stayed comparatively
high. For details see reference [53].

phase diagrams of Figures 5 and 6. Since the determina-
tion of the empirical phase diagram did not focus on the
detection of “widening synchronized patterns”, it does not
allow us to clearly distinguish between the two phase di-
agrams, i.e. to decide whether ρc2 > ρmax or ρc2 < ρmax.
However, the empirical WSP displayed in Figure 1 sug-
gests that Figure 6 corresponding to ρc2 > ρmax would be
the right choice. Another piece of evidence for this is the
metastability of vehicle platoons forming behind overtak-
ing trucks (see Ref. [8])15.

7.1 Reply to criticisms of phase diagrams for traffic
models with a fundamental diagram

In the following, we will face the criticism of the phase
diagram approach by Kerner [15,54]:
1. Models containing a fundamental diagram could not

explain the wide scattering of flow-density data ob-
served for “synchronized” congested traffic flow. This
is definitely wrong, as a wide scattering is excellently
reproduced by considering the wide distribution of ve-
hicle gaps, partially due to different vehicle classes such
as cars and trucks [55,56]. Note that, for a good repro-
duction of empirical measurements, it is important to
apply the same measurement procedure to empirical
and simulated data, in particular the data aggregation
over a finite time period.

2. As the ramp flow or the overall traffic volume Qtot

is increasing, the phase diagram approach would pre-
dict the transitions free traffic → moving or pinned

15 The existence of “widening moving clusters”, see Sec-
tion 4.2 and Figure 1a, supports this view as well.

Fig. 15. (Color online) Empirical phase diagram, where the
flows have been scaled by the respective outflows Qout (af-
ter [7]). The data represent the congested traffic states ob-
served on the German freeway A5 at Junction Friedberg in
direction South (M = moving localized cluster, S = stop-and-
go waves, O = oscillating congested traffic, P = pinned lo-
calized cluster). It can be clearly seen that the non-extended
traffic states are scattered around the line Qtot/Qout = (Qup +
ΔQ)/Qout = 1, as expected, while the extended traffic states
are above this line. Moreover, pinned localized clusters, moving
localized clusters, and stop-and-go waves/oscillating congested
traffic are well separated from each other. Homogeneous con-
gested traffic, but not other traffic states were observed for
ΔQ/Qout � 0.5 (see Ref. [7]).

localized cluster → stop-and-go traffic/oscillating con-
gested traffic → homogeneous congested traffic. How-
ever, this would be wrong because (i) homogeneous
congested traffic would not exist [57,58], and (ii) ac-
cording to the “pinch effect”, wide moving jams (i.e.
moving localized clusters) should occur after the occur-
rence of “synchronized flow” (i.e. extended congested
traffic) [39].
We reply to (i) that it would be easy to build a car-
following model with a fundamental diagram that pro-
duces no HCT states16, but according to empirical
data, homogeneous congested traffic does exist (see
Fig. 1f), but it occurs very rarely and only for ex-
tremely large bottleneck strengths exceeding ΔQ ≈
0.5 Qout [7]. As freeways are dimensioned such that
bottlenecks of this size are avoided, HCT occurs pri-
marily when freeway lanes are closed after a seri-
ous accident. In other words, when excluding cases of
accidents from the data set, HCT states will normally
not be found.
Moreover, addressing point (ii), Kerner is wrong in
claiming that our theoretical phase diagram would nec-
essarily require moving localized clusters to occur be-
fore the transition to stop-and-go waves or oscillating
congested traffic. This misunderstanding might have
occurred by ignoring the dependence of the resulting
traffic state on the perturbation size. The OCT pattern

16 An example would be the IDM with the parameter choice
s1 = 0.
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of Figure 3c clearly shows that a direct transition from
free traffic flow to oscillating congested traffic is possi-
ble in cases of small perturbations. The same applies
to a fast increase in the traffic volume Qtot(t), which
is typical during rush hours.

3. The variability of the empirical outflow Qout would not
be realistically accounted for by traffic models with a
fundamental diagram. This variability, however, does
not require an explanation based on complex vehicle
dynamics. To a large extent, it can be understood by
variations in the weather conditions (see Fig. 14) and
in the flow conditions on the freeway lanes in the neigh-
borhood of ramps [7], which is particularly affected by
a largely varying truck fraction [55].

In summary, the phase diagram approach for traffic mod-
els with a fundamental diagram has been criticized with
invalid arguments.

7.2 On the validity of traffic models

In the past decades, researchers have proposed a large
number of traffic models and it seems that there often
exist several different explanations for the same observa-
tion(s) [35]. As a consequence, it is conceivable that there
are models which are macroscopically correct (in terms of
reproducing the observed congestion patterns discussed
above), but microscopically wrong. In order to judge the
validity of competing traffic models, we consider it neces-
sary to compare models in a quantitative way, based on
empirical data. This should include

– a definition of suitable performance measures (such as
the deviation between simulated and measured travel
times or velocity profiles);

– the implementation and parameter calibration of the
competing models with typical empirical data sets; and

– the comparison of the performance of the competing
models for different test data sets of representative
traffic situations.

Based on data sets of car-following experiments, such anal-
yses have, for example, been performed with a number of
follow-the-leader models [41–46], with good results in par-
ticular for the intelligent driver model (IDM) [42,43,46]. If
there is no statistically significant difference in the perfor-
mance of two models (based on an analysis of variance),
preference should be given to the simpler one, according
to Einstein’s principle that a model should be always as
simple as possible, but not simpler.

We would like to point out that over-fitting of a model
must be avoided. This may easily happen for models with
many parameters. Fitting such models to data will, of
course, tend to yield smaller errors than fitting models
with a few parameters only. Therefore, one needs to make
a significance analysis of parameters that adjusts for the
number of parameters, as it is commonly done in statis-
tical analyses. Reproducing a certain calibration data set
well does not necessarily mean that an independent test
data set will be well reproduced. While the descriptive ca-
pability of models with many parameters is often high,

models with fewer parameters may have a higher predic-
tive capability, as their parameters are often easier to cal-
ibrate.

This point is particularly important, since it is known
that traffic flows fluctuate considerably, especially in the
congested regime. So, one may pose the question whether
these fluctuations are meaningful dynamical features of
traffic flows or just noise. To some extent, this depends on
the question to be addressed by the model, i.e. how fine-
grained predictions the model shall be able to make. There
are certainly systematic sources of fluctuations, such as
lane-changes, in particular by vehicles entering or leav-
ing the freeway via ramps, different types of vehicles, and
different driver behaviors [45,46]. Such issues would most
naturally be addressed by multi-lane models considering
lane changes and heterogeneous driver-vehicle units [6].
Details like this may, in particular, influence the outflow
Qout of congested traffic flow (see Fig. 17 in Ref. [7]).
When trying to understand the empirically observed vari-
ability of the outflow, however, one also needs to take the
variability of the weather conditions and the visibility into
account (see Fig. 14). In order to show that car-following
models with a fundamental diagram are inferior to other
traffic models in terms of reproducing microscopic features
of traffic flows (even when multi-lane multi-class features
are considered), one would have to show with standard
statistical procedures that these other models can explain
a larger share of the empirically observed variance, and
that the difference in the explanation power is significant,
even when the number of model parameters is considered.
To the knowledge of the authors, however, such a statis-
tical analysis has not been presented so far.

8 Summary, conclusions, and outlook

After a careful discussion of the term “traffic phase”, we
have extended the phase diagram concept to traffic mod-
els with a fundamental diagram that are not only capable
of reproducing congestion patterns such as localized clus-
ters, stop-and-go waves, oscillatory congested traffic, or
homogeneous congested traffic, but also “widening syn-
chronized patterns” (WSP) and “widening moving clus-
ters” (WMC). The discovery of these states for the case,
where the maximum traffic flow lies in the metastable den-
sity regime, was quite unexpected. It offers an alternative
and – from our point of view – simpler interpretation of
some of Kerner’s empirical findings. A particular advan-
tage of starting from models with a fundamental diagram
is the possibility of analytically deriving the schematic
phase diagram of traffic states from the instability dia-
gram, which makes the approach predictive.

Furthermore, we have discussed how the phase di-
agram approach can be used to classify models into
universality classes. Models within one universality class
are essentially equivalent, and one may choose any,
preferably the simplest representative satisfying minimum
requirements regarding theoretical consistency. The uni-
versality class should be chosen in agreement with empir-
ical data. These were well represented by the schematic
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phase diagram in Figure 6. Furthermore, we have demon-
strated that one needs to implement the full details of a
freeway design, in particularly all on- and off-ramps, as
these details matter for the resulting congestion patterns.
Multi-ramp designs lead to congestion patterns composed
of several elementary congestion patterns, but spillover
effects must be considered. In this way, a simple explana-
tion of the “pinch effect” [39] and the so-called “general
pattern” [15] results. We have also replied to misunder-
standings of the phase diagram concept.

In conclusion, the phase diagram approach is a simple
and natural approach, which can explain empirical find-
ings well, in particular the dependence of traffic patterns
on the flow conditions. Note that the phase diagram ap-
proach is a metatheory rather than a model. It can be
theoretically derived from the instability diagram of traf-
fic flows and the self-organized outflow from seriously con-
gested traffic. This is not a triviality and, apart from this,
the phase diagram approach is more powerful than the in-
stability diagram itself: it does not only allow predictions
regarding the possible appearance of traffic patterns and
possible transitions between them. it also allows to pre-
dict whether it is an extended or localized traffic pattern,
or whether a localized cluster moves or not. Furthermore,
it facilitates the prediction of the spreading dynamics of
congestion in space, as reflected by equations (7) and (12).
This additionally requires formula (11), which determines
how the bottleneck strength ΔQ determines the effective
flow capacity Qcong of the upstream freeway section.
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Appendix A

A.1: Modeling of source and sink terms
(in- and outflows)

In this appendix, we will focus on the case of a freeway
section with a single bottleneck such as an isolated on-
ramp. Scenarios with several bottlenecks are discussed in
Section 5.

In order to derive the appropriate form of source and
sink terms due to on- or off-ramps, we start from the conti-
nuity equation, which reflects the conservation of the num-
ber of vehicles. If ρ∗(x, t) represents the one-dimensional
density of vehicles at time t and a location x along the free-
way, and if Q∗(x, t) represents the vehicle flow measured
at a cross section of the freeway, the continuity equation
can be written as follows:

∂ρ∗(x, t)
∂t

+
∂Q∗(x, t)

∂x
= 0 . (26)

Now, assume that I(x) is the number of freeway lanes
at location x. We are interested in the density ρ(x, t) =
ρ∗(x, t)/I(x) and traffic flow Q(x, t) = Q∗(x, t)/I(x) per
freeway lane. Inserting this into the continuity equation
(26) and carrying out partial differentiation, applying the
product rule of Calculus, we get

∂

∂t

[
I(x)ρ(x, t)

]
= I(x)

∂ρ(x, t)
∂t

= − ∂

∂x

[
I(x)Q(x, t)

]

= −Q(x, t)
dI(x)
dx

− I(x)
∂Q(x, t)

∂x
. (27)

Rearranging the different terms, we find

∂ρ(x, t)
∂t

+
∂Q(x, t)

∂x
= −Q(x, t)

I(x)
dI(x)
dx

. (28)

The first term of this equation looks exactly like the con-
tinuity equation for the density ρ∗(x, t) over the whole
cross section at x. The term on the right-hand side of the
equality sign describes an increase of the density ρ(x, t)
per lane, whenever the number of freeway lanes is re-
duced (∂I(x)/∂x < 0) and all vehicles have to squeeze
into the remaining lanes. In contrast, the density per
lane ρ(x, t) goes down, if the width of the road increases
(∂I(x)/∂x > 0).

It is natural to treat on- and off-ramps in a similar way
by the continuity equation

∂ρ(x, t)
∂t

+
∂Q(x, t)

∂x
= ν+(x, t) − ν−(x, t) (29)

with source terms ν+(x, t) and sink terms −ν−(x, t). For
example, if a one-lane on-ramp flow Qon(t) is entering the
freeway uniformly over an effectively used ramp length of
Leff , we have dI(x)/dx = 1/Leff, which together with (27)
and (29) implies

ν+(x, t) =

⎧
⎨

⎩

Qon(t)
IfrLeff

for xrmp − Leff
2 < x < xrmp + Leff

2 ,

0 otherwise.
(30)

Ifr = I(xrmp±Leff/2) denotes the number of freeway lanes
upstream and downstream of the ramp, which is assumed
to be the same, here. The sink term due to off-ramp flows
Qoff(t) ≥ 0 has the form

ν−(x, t) =

⎧
⎨

⎩

Qoff(t)
IfrLeff

for xrmp − Leff
2 < x < xrmp + Leff

2 ,

0 otherwise.
(31)

A.2: Parameter dependence of the instability thresholds
in the intelligent driver model

The acceleration function aIDM(s, v, Δv) of the intelligent
driver model (IDM) [10] depends on the gap s to the lead-
ing vehicle, the velocity v, and the velocity difference Δv
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(positive, when approaching). It is given by

aIDM(s, v, Δv) = a

[

1 −
(

v

v0

)4

−
(

s∗(v, Δv)
s

)2
]

, (32)

where

s∗(v, Δv) = s0 + s1

√
v

v0
+ Tv +

v Δv

2
√

ab
. (33)

For identical driver-vehicle units, there exists a one-
parameter class of homogeneous and stationary solutions
defining the “microscopic” fundamental diagram ve(s) via
aIDM(s, ve(s), 0) = 0. From a standard linear analysis
around this solutions it follows that the IDM is linearly
stable if the condition

∂aIDM

∂s
≤ ∂aIDM

∂v

(
∂aIDM

∂Δv
+

1
2

∂aIDM

∂v

)
(34)

is fulfilled. With the micro-macro relation

s =
1
ρ
− lveh, where lveh = 6 m, (35)

this defines the stability boundaries ρc2 and ρc3 as a func-
tion of the model parameters v0 (desired velocity), T (de-
sired time headway), a (desired acceleration), b (desired
deceleration), s0 (minimum gap), and s1 (gap parame-
ter; if nonzero, the fundamental diagram has an inflection
point). The overall stability can be controlled most effec-
tively by the acceleration a. Setting the other parameters
to the values used in Figure 4 [v0 = 128 km/h, T = 1 s,
s0 = 2 m, s1 = 10 m, and b = 1.3 m/s2], we obtain
– unconditional linear stability for a ≥ 1.68 m/s2;
– linear instability in the density range ρc2 ≤ ρ ≤ ρc3

for 0.95 m/s2 ≤ a ≤ 1.68 m/s2, where ρc2 > ρmax

and ρc3 < ρjam. In this situation, corresponding to
Figures 4c and 4d, the instability range lies completely
on the “congested” side of the fundamental diagram.

– Finally, for a ≤ 0.95 m/s2, the linear instability also
extends to the “free branch” of the fundamental dia-
gram (ρc2 < ρmax), corresponding to Figures 4a and
4b.

The upper instability threshold ρc3 can be controlled
nearly independently from the lower instability thresh-
old ρc2 by the gap parameters s0 and s1. Generally, ρc3

increases with decreasing values of s1. In particular, if
s1 = 0, one obtains the analytical result ρc3 = (lveh+s0)−1

for any a < s0/T 2, and unconditional linear stability for
a > s0/T 2. As can be seen from the last expression, the in-
stability generally becomes more pronounced for decreas-
ing values of the time headway parameter T , which is plau-
sible.

The additional influence of the parameter b according
to computer simulations is plausible as well: with decreas-
ing values of b, the sensitivity with respect to velocity dif-
ferences increases, and the instability tends to decrease.
Further simulations suggest that the IDM has metastable
density areas only when linearly unstable densities ex-
ist. Metastability at densities above the linear instability
range additionally requires s1 > 0.
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