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Understanding the Complexity of  
Traffic Dynamics on Freeways 



Complexity of Congestion Patterns 



Surprising Variety of Congestion Patterns 
MLC SGW 

PLC 

OCT 

HCT 



Computer Simulated Congestion Patterns 

 Phys. Rev. 
Lett. 82, 
4360 
(1999).  



Phase Diagram of Traffic States and Universality 
Classes 

Phase diagram for small perturbations                               for large perturbations 

After: PRL (1999) 

= free 
traffic 



Empirical Phase Diagram 

M = MLC = moving localized cluster, P = PLC = pinned localized cluster 
O = OCT = oscillating congested traffic, S = SWG = stop-and-go waves 
H = HCT = homogeneous congested traffic 



Traffic Congestion and Travel Times Are 
Predictable 
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Pedestrian, Crowd, and Evacuation 
Dynamics 



Lane Formation in Pedestrian Counterflows 



The Social Force Model 

 The social force model assumes individual goals (to reach a certain destination 
efficiently), social interactions (e.g. avoidance of collisions), and institutional 
setting (e.g. walls). 

Driving force into the 
desired direction of 

motion 

Forces from 
walls (equation of motion) 

(acceleration equation) 
Forces from other 

 pedestrians 



Avoidance of a static pedestrian Avoidance of a moving pedestrian 

Experimental Study of Individual Avoidance 
Behavior 



Validation 1: Corridor Experiment 
 

standing 

moving 

Observed and simulated pedestrian trajectories 

preferred 
avoidance 
side 



Validation 2: Collective Dynamics 
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The Jamarat Bridge (as of January 2006) 

The old 
Jamarat 
Bridge and 
surrounding 
area did not 
provide 
enough 
capacity 
anymore 

Video-recorded 
area 

Bottleneck 



Transition from Smooth to Stop-and-Go Flow 

Mechanism is 
very different 
from stop-
and-go waves 
in vehicle 
traffic! 



Transition from Stop-and-Go Flow to “Crowd 
Turbulence” 

The density times the 
variation in speeds 
constitutes the hazard! 
Pressure fluctuations 
cause turbulent motion 
and potentially the falling 
and trampling of people. 
 
Increased   driving forces 
occur in crowded areas 
when trying to gain space, 
particularly during “crowd 
panic” 
 



The Change in Organization from 2006 to 2007 

2007: Unidirectional and  
smooth flows.  

Pilgrims liked and supported the  
new organization. 

2006: Large accumulations, 
dense crowds, and long exposure 
times to intensive sun. 



Everyone Was Happy with the Result 



Crowd Disasters as Systemic Failures 



Crowd Turbulence as Final Cause of the Love 
Parade Disaster 



Social Differentiation and Diversity 
Dirk Helbing 

and Michael Mäs 

The Micro-Macro Problem 



“The whole is more than the sum of its parts” 

The “whole does not equal the sum of its parts; it is something different, whose 
properties differ from those displayed by the parts from which it is 
formed.” (Durkheim 1982:128)  

“The determining cause of a social fact must be sought among antecedent social 
facts and not among the states of the individual consciousness.” (Durkheim 
1982:134) 



Noise on the Micro-Level Can Affect Macro-Level 

C  Condition with P=1

D  Condition with P=3

mixed 
neighborhoods
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C  Condition with P=1

D  Condition with P=3

mixed 
neighborhoods
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To Understand Macro-Level Outcomes of 
Decision-Making, Noise Must Be Considered 
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D  Condition with P=3
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Social Differentiation and Diversity 
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Opinion Formation: 
Differentiation and Cultural Diversity 



Social Influence Causes Convergence of Beliefs 



Diversity despite social influence 

Research questions: 
Why doesn’t diversity disappear, 
but often increase?  



A Classical Theory Guides the Way to the 
Answer 
“…there is in the consciousness of each one of us two consciousnesses: one that we share 
in common with our group in its entirely … the other that makes us an individual. Here 
there are two opposing forces, the one centripetal, the other centrifugal” (Durkheim 2003a: 
258-259) 
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Modeling the Breakdown and Emergence 
of Coordination or Cooperation 



Self-Organization of A Behavioral Convention 

B    B 0   0 

o     0 B   B 

left     right 

left 

right 

Pedestrian 2 

P
ed

es
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an
 1

 B = benefit of evading on 
the same side = time 
saved compared to one 
pedestrian evading to the 
right and the other one to the 
left 

dp(i,t)/dt = -2rB[p(i,t)-1/2] p(i,t) [1-p(i,t)]     i=1: right, i=2: left 

Only the stationary solutions P(i,t)=0 or 1 are stable, i.e. one evading side  
will become a behavioral convention (Helbing, 1990, 1991, 1992; Young 1993) 

The result of a social interaction between two individuals is characterized by the 
“payoff” 



The Prisoner’s Dilemma 

 The prisoner's dilemma assumes that, when two individuals cooperate, 
both get the “reward” R, while both receive the “punishment” P< R, if they 
defect. If one of them cooperates (“C”) and the other one defects (“D”), 
the cooperator suffers the “sucker’s payoff” S < P, while the payoff T > R 
for the second individual reflects the “tempation” to defect. Additionally, 
one typically assumes  S+T < 2R.  

R1  R2 S1  T2 

T1  S2 P1  P2 

Cooperate   Defect 

Cooperate 

Defect 

For example: 
S1 = S2= S = -5 
P1 = P2= P = -2 
R1 = R2= R = -1  
T1 = T2= T = 0 
 

Player 2 
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Prisoner‘s Dilemmas in an Increasingly 
Connected World 



Kin Selection, Genetic Favoritism 



Direct Reciprocity 



Reputation, Indirect Reciprocity 



Flickr photo by nologo_photography. License: CC BY-SA 2.0. 

Pool Punishment 



Leo Cullum, The New Yorker, February 23, 1998. 

Peer Punishment 



Routes to Cooperation 
Routes to cooperation require to destabilize defection (PD --> SD)  
or to stabilize cooperation (PD -->SH) or both (PD -->HG) 

Route 1: Kin selection 2a: Direct reciprocity, 2b: Indirect reciprocity,  
2c: Costly peer punishment, 3: Network interactions 



How Second-Order Free-Riders Are Eliminated 
and Punishment Spreads 

D = Defectors (free-riders), M = Moralists = cooperators punishing 
defectors, C = non-punishing Cooperators (second-order free-
riders), I = Immoralists = defectors punishing other defectors 
 



The Breakdown and Outbreak of Cooperation 
with Imitation, Migration, and Noise 
 Red, yellow: defectors (cheaters) 

Blue, green: cooperators 
Yellow, green: changed in last time step 



Public Good Game with Mobility: Experimental 
Design 

Joint work with Carlos Roca,  
Charles Efferson and Sonja Vogt 



Payoff as Function of Mobility 

Mobility is key to success! 
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Why Humans Are Social: 
The Emergence of the „Homo Socialis“ 



§  Agents decide according to a best-response rule that strictly maximizes 
their utility function, given the behaviors of their interaction partners 
(their neighbors). 
 

§  The utility function considers not only the own payoff, but gives a 
certain weight to the payoff of their interaction partner(s). The weight is 
called the ``friendliness'' and set to zero for everyone at the beginning 
of the simulation. 

 

Evolutionary Model of Human Decision-Making 



§  Agents decide according to a best-response rule that strictly maximizes 
their utility function, given the behaviors of their interaction partners 
(their neighbors). 
 

§  The utility function considers not only the own payoff, but gives a 
certain weight to the payoff of their interaction partner(s). The weight is 
called the ``friendliness'' and set to zero for everyone at the beginning 
of the simulation. 

 

Evolutionary Model of Human Decision-Making 



§  Friendliness is a trait that is inherited (either genetically or by 
education) to offspring. The likelihood to have an offspring increases 
exclusively with the own payoff, not the utility function. The payoff is 
assumed to be zero, when a friendly agent is exploited by all neighbors 
(i.e. if they all defect). Therefore, such agents will never have any 
offspring. 

§  The inherited friendliness value tends to be that of the parent. There is 
also a certain mutation rate, but it does not promote friendliness. (In the 
simulation results discussed here, mutations were specified such that 
they imply an average friendliness of 0.2, which cannot explain the 
typically observed value of 0.4.) 

 

Evolutionary Model of Human Decision-Making 



§  Friendliness is a trait that is inherited (either genetically or by 
education) to offspring. The likelihood to have an offspring increases 
exclusively with the own payoff, not the utility function. The payoff is 
assumed to be zero, when a friendly agent is exploited by all neighbors 
(i.e. if they all defect). Therefore, such agents will never have any 
offspring. 

§  The inherited friendliness value tends to be that of the parent. There is 
also a certain mutation rate, but it does not promote friendliness. (In the 
simulation results discussed here, mutations were specified such that 
they imply an average friendliness of 0.2, which cannot explain the 
typically observed value of 0.4.) 

 

Evolutionary Model of Human Decision-Making 



Phase Diagram: Parameter-Dependent Outcome 

“Homo 
economicus” 
results 

“Homo 
socialis” 
results 



Emergence of the „Homo Socialis“ 
 

The “homo socialis” is conditionally cooperative, takes self-determined but 
other-regarding decisions (considering the impact on others). 
 
This implies interdependent decisions, “networked minds”. 
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Empirical Measurement of Prosocial 
Preferences 

Experimental work of Ryan Murphy et al. 



Dirk Helbing 
with Michael Mäs, Anders Johansson,  

Heiko Rauhut, Fabian Winter, 
and others 

Modeling the Emergence of Social Norms 
when Preferences are Incompatible 



Conflict between Individuals with Equity and 
Equality Preferences 

Joint work with Fabian Winter and Heiko Rauhut 

Results of an Ultimatum Game Experiment 



Possible Outcomes in the Two-Population 
Norms Game 

Reward of showing preferred behavior / Reward of conforming 

Computer simulations: 
 
Red = individuals 
preferring behavior 1 
 
Yellow = individuals 
adjusting to behavior 1 
 
Blue = individuals 
preferring behavior 2 
 
Green = individuals  
adjusting to behavior 2  

Population 1  
sets the norm 

Population 2  
sets the norm 

Everyone tends 
 to show the own 

preferred behavior 
(“anomie”) 
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Occurrence of Anomie: Experimental Results 
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and others 

 

Studying Intercultural and International 
Conflict 



Interrelation of Spatial Interaction, Conflict, and 
Migration 

Ethnic areas and bomb attacks before 2006 Ethnic areas and bomb attacks after 2006 

Conflict occurs primarily at boundaries between areas with different ethnic 
fractions. Mixed areas shrink. 

Source: BBC 



Agent-Based Model of Conflict in Jerusalem 
 



Conflict in the Jerusalem: Possible Future 
Scenarios 
 

‘Business as Usual’ Clinton Parameters 



Spreading of International Tensions 



Dirk Helbing 
with Dirk Brockmann, Maximilian Schich,  

Laszlo Barabasi, Bogdan State,  
and others 

 

Understanding Social Dynamics by 
Analyzing Human Activity Data  



Global 
Participatory 

 Platform 

Living  
Earth  

Simulator create new technology 
provide data       

Innovation 
Accelerator 

Planetary  
Nervous   
System 

Create systems 
 to sense  & 
understand 

Turn data into information 

What is? 

Develop models  
to simulate & 

predict 

Turn information into  
knowledge 

What if? 

Build platforms 
 to explore & interact 

Turn knowledge into wisdom What for? 



Dirk Brockmann and DH (2013) in print. 

Complexity of Epidemic Spreading 



Predictability of Epidemic Spreading 

Dirk Brockmann and DH (2013) in print. 



M. Schich, C. Song, Y.-Y. Ahn, A. Mirsky, M. Martino, A.L. Barabasi, DH, submitted (2013) 

Digital Humanities – What Birth Death Data 
Reveal 



M. Schich, C. Song, Y.-Y. Ahn, A. Mirsky, M. Martino, A.L. Barabasi, DH, submitted (2013) 

Regularities vs. Specifics 



„Braindrain of Artists“ in the US 

M. Schich, C. Song, Y.-Y. Ahn, A. Mirsky, M. Martino, A.L. Barabasi, DH, submitted (2013) 



Global Migration Reflects the Development of a 
Multi-Polar World 

B. State, M. Rodriguez, DH, E. Zagheni, submitted (2013) 
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Techno-Social Systems: Creating an 
Innovation Accelerator 



Scientific Productiveness, Impact, and Flow of 
Ideas 
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Search engine for open scientific datasets 
http://livingarchive.inn.ac 

Living Archive 



Open database for publication data 
http://livingscience.inn.ac 

Living Science 



Create your own search filters and recommender system 
http://vijo.inn.ac 

Virtual Journal (ViJo) 



The Chair of Sociology, in particular of Modeling and Simulation has: 
 
§  developed and published various models of social behavior 

(pedestrian crowds, opinion formation, social coordination, 
cooperation, norms, and conflicts), 

§  performed lab and web experiments to test our models, 

§  developed models to better understand contagious spreading 
processes and human activity patterns on a global scale, and 

§  created platforms to support researchers in their daily work.  

The multi-disciplinary work enjoys high scientific impact and public 
visibility. Some of it helps to save lives of people. 

Take Home Messages 


