DIRK HELBING

MICROSCOPIC FOUNDATION OF STOCHASTIC GAME
DYNAMICAL EQUATIONS

I, INTRODUCTION

Since von Neumann and Morgenstern initiated the field of game theory,! it has often
proved of great value for the quantitative description and understanding of competi-
tion and co-operation bet@een\_individuals. Game theory focusses on wo questions:
f. Which is the optimal strategy in-a_given situation? 2, What is the dynamics of
strategy choices in cases of repeatedly inferacting individuals? In this connection
game dynamical equations? find a steadily increasing interest. Although they agree
with the replicator equations of evolution theory (cf. Sec. II), they cannot be justi-
fied in the same way. Therefore, we will be looking for a foundation of the game
dynamical equations which is based on individual actions and decisions (cf. Sec.
V).

In addition, we will formulate a stochastic version of evolutionary game theory
(cf. Sec. IIT}. This allows us to investigate the effects of fluctuations on the dynamics
of social systems. In order to illustrate the essential ideas, a concrete model for the
self-organization of behavioral conventions is presented (cf. Sec. V). We will see
that the gamne dynamical equations describe the average evolution of social systems
only for restricted time periods. Therefore, a criterium for their validity will be de-
veloped (cf. Sec. VI). Finally, we will present possible extensions to more general
behavioral models and discuss the actual meaning of the game dynamical equations
(cf. Sec. VII).

Ii. THE GAME DYNAMICAL EQUATIONS
Let p,(t), such that

0<p(t) <1 and D pa(t) =1, (D

denote the proportion of individuals pursuing the behavioral strategy z € S at
time ¢. We assume the stralegies considered to be mutually exclusive, The set .S
of strategies may be discrete or continuous, finite or infinite. The only difference
will be that sums over z are to be replaced by integrals in cases of continuous sets.
By A, we will denote the possibly time-dependent payeff for an individual using
strategy & when confronted with an individual pursuing strategy y. Hence, his/her
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expected success (F,); will be given by the weighted mean value

(Badr =Y Aaypy(t), @

since p, is the probability that the interaction partner uses strategy . In addition,
the average expected success will be

By =3 palt{Bade =3 palt)duy 1, (1) (3)

Assuming that the relative temporal increase (dps /dt) ps of the proportion p,
of individuals pursuing strategy @ is proportional to the difference between the ex-
pected success (Ey), and the average expected success {E);, we obtain the game
dynamical equations

dp, (1)

dt

il

vps (1) [(E'J:)t - (E)_t]

vpa(®)[(Eae = 3 pa (X &

where the possibly time-dependent proportionality factor » is a measure for the in-
teraction rate with other individuals. According to (4), the proportions of strategies
with an above-average success {E,); > (_E_)t increase, whereas the other strategies
will be diminished. Note, that the proportion of a strategy does not necessarily in-
crease or decrease monotonically. Certain payoffs are associated with an oscillatory
or even chaotic dynamics®,

Equations (4) are identical with the replicator equations from evolutionary bi-
ology. They can be extended to the selection-mutation equations

dp.(t)

T = ypz(t)[(Eg;)t"‘Zpy(t)(Ey>f]

+ 2 ety = ) - p(Wun(z - y)). (5)

The terms which agree with (4) describe a selection of superior strategies, The new
terms correspond to the effect of mutations, i.e. to spoatancous changes from strat-
egy @ 10 other strategies y with possibly time-dependent transition rates w, {(z =9
(last term) and the inverse transitions. They allow to describe trial and error behav-
ior or behavioral fluctuations.

TII. STOCHASTIC DYNAMICS: THE MASTER EQUATION

Let us consider a social system consisting of a constant number

N = an{t) (6)
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of individuals. Herein, n,(t) denotes the number of individuals who pursue strategy
z at time t. Hence, the time-dependent vector

= (N1,N2, 0y Ry, Ry, s o) (N
reflects the strafegy distribution in the social system and is called the socioconfigu-
ration. If the individual strategy changes are subject to random fluctuations (e.g. due
to trial and error behavior or decisions under uncertainty), we will have a stochastic
dynamics, Therefore, given a certain socioconfiguration i, at time tg, for the oc-
curence of the strategy distribution  at atime ¢ > ¢ we can only calcuiate a certain
probability P(f1, t). Its temporal change d P/ dt is governed by the so-called master
equation?

dP(il, 1)

= Y PG OWE 5 @) - PAOWE- )] ®

,‘i!

The sum over 7’ extends over all socioconfigurations fulfilling n,, € {0,1,2,...}
and (6).

According to equation (8), an increase of the probability P(#, t) of having so-
cioconfiguration 1 is caused by transitions from other socioconfigurations 7' to 7,
While a decrease of P(7i,t) is related to changes from 71 to other socioconfigura-
tions 71’. The corresponding changing rales are propottional to the configurational
transition rates W{i — ') of changes to socioconfigurations 7' given the so-
cioconfiguration 7 and to the probability P(7, t) of having socioconfiguration 77 at
time ¢.

The configurational transition rates W have the meaning of transition probabil-
ities per time unit and must be non-negative quantities. Frequently, the individuals
can be assumed to change their strategies independently of each other. Then, the
configurational transition rates have the form '

ngw(x — y; i) if i =y,
0 otherwise,

WWAﬁU:{ o)

i.e. they are proportional to the number n; of individuals who may change their
strategy from = to another strategy y with an individual transition rate w(z —
y;7) > 0. In relation (9), the abbreviation

ey = (N1ynay. iy — 1,00,y +1,.00) (1

means the socioconfiguration which results after an individual has changed his/her
strategy from x to y.
It can be shown that the master equation has the properties

P(i,t)>0 and Y P(A,) =1 (11)

for all times ¢, if they are fulfilled at some initial time #y. Therefore, the master
equation actually describes the temporal evolution of a probability distribution.
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1V. APPROXIMATE MEAN VALUE EQUATIONS

In order to connect the stochastic model to the game dynamical equations, we must
specify the individual transition rates w in a suitable way. Therefore, we derive the
mean value equations related to the master equation (8) and compare them to the
selection-mutation equations (3).

The proportion p,, is defined as the mean value

(= Fi 1P, 1) (12)
it

of the number f (7, t} = n; of individuals pursuing strategy =, divided by the total
number N of considered individuals:

T/t 1 -
p'z(t) = (?}\Th N ZTBEP(H,t). (13)

Taking the time derivative of {n,); and inserting the master equation gives

d{nz)s . . . . L
g = an [P, )W (R — @) — PR, )W (R — i7")]
= Z(n; —ng )W — i )P(R,1), (14)

where we have interchanged 7 and 7' in the first term on the right hand side, Taking
into account relation (9}, we get

d(??,q;)f e o | L -
= Znyw(y — oA P(f, ) — anw(a, =+, )P, 1)
flyx Ny
= Z nyw(y = z;7) ~ ngw(z — y; 1) PR, 1) (15
y

With (13) this finalty leads to the approximate mean value equations

dpy (t)
fdt

=3 [Py = 2 (i) =~ pe (ol = 33 ())]  (16)

Y

However, these are only exact if the individual transition rates w are independent
of the socioconfiguration fi. In any case, they are approximately valid as long as
the probability distribution P(7, t) is narrow, so that the mean value (f {71, ¢)); of a
function f(#, t) can be replaced by the function f((i), #) of the mean value, This
problem will be discussed in detail later on.

Comparing the rate equations (16) with the selection-mutation equations (5), we
find a complete correspondence for the case

wly = x;7) = w (y = ) + waly = &) ng (7
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with
174
waly -~ 3) = N max{E, — E,, () (18)
and the suceess
n
E, :;Amyﬁy, (19)

since
max({Fe) — (F,),0) — max((Ey)e — (Bz), 0} = (By)y — (Byde.  (20)

Whereas wy is again the mutation rate (i.e. the rate of spontaneous transitions), the
additional term in (17) describes imitation processes, where individuals take over
the strategy a4 of their respective interaction partner. Imitation processes correspond
to pair interactions of the form

y+trx—az+x. 20

Their frequency is proportional to the number n, of interaction pariners who may
convince an individual of strategy x. The proportionality factor wsg is the imitation
rate.

Relation (18) is called the proportional imitation rule and can be shown to be
the best learning rule,”

It was discovered in [992% and says that an imitation behavior only takes place
if the stralegy = of the interaction partner turns out to have a greater success F;
than one’s own strategy y. In such cases, the imitation rate is proportional to the
difference (E, — E,) between the success of the alternative 2 and the previous
strategy , L.e. strategy changes occur more often the greater the advantage of the
new stralegy z would be.

All specifications of the {ype

waly = 2) = C + % B, — (1= VE,] 22)
with an arbitrary parameter A alsc lead to our game dynamical equations. However,
individuals wouid then, with a certain rate, take over the strategy @ of the interaction
pariner, even if ils success £ is smaller than that of the previously used strategy y.
Moreover, if ' is not chosen sufficiently large, the individual transition rates w > 0
can become negative,

In sumumary, we have found a microscopic foundation of evolutionary game the-
ory which is based on four plausible assumptions: [. Individuals evaluate the suc-
cess of a strategy as its average payolf in interactions with other individuals {cf.
(19)). 2. They compare the success of their strategy with that of the respective in-
{eraction partner, hasing on observations or an exchange of experiences. 3. Indi-
viduals imitate each others’ behavior. 4. In doing so, they apply the proportional
imitation rule {(18) [or (22}].
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V. SELF-ORGANIZATION OF BEHAVIORAL CONVENTIONS

For illustrative reasons, we will now discuss an example which allows us to un-
derstand how social conventions emerge. We consider the simple case of two alter-
native strategies z € {1, 2} and assume them to be equivalent so that the payoff

matrix is symmetrical:
_{ A+B B
()=( 57 .5,

If A > 0, the additional payoff A reflects the advantage of using the same strat-
egy as the respective interaction partner. This situation holds, for example, in cases
of network externalities like in the historical rivalry between the video systems
VHS and BETA MAX.” Finally, the mutation rates are taken to be constant, i.e.
wy{e — y) = Wi,
The resulting game dynamical equations are
dps (1)

w0 [p;;(t) - %} (m+vap.p0-1}. @

Obviously, they have only one stable stationary solution if the (control) parameter
_ 4,
vA

is smaller than zero. However, for & > ( equation (24) can be rewritten in the form

dp;—t(t) = —wA [pm(t) - %J [pw(t) - 1+2\/EJ [pa.-(t) - #J - (20)

k=1

(25)

The stationary solution p, = 1/2 is unstable, then, but we have two new stable
stationary solutions p, = (172 £ 1/x/2). That is, dependent on the detailed initial
condition, one strategy will gain the majority of users although both strategies are
completely equivalent. This phenomenon is called symmetry breaking. It will be
suppressed if the mutation rate W, is larger than the advantage effect vA/4.

The above model allows us to understand how behavioral conventions come
about. Examples are the pedestrians’ preference for the right-hand side (in Europe),
the revolution direction of clock hands, the direction of writing, or the already men-
tioned triumph of the video system VHS over BETA MAX.

It is very interesting how the above-mentioned symmeltry breaking affects the
probability distribution P(#,¢) = P{ny,ng,t) = P(ny, N — ng,1) of the re-
lated stochastic model (cf. Fig. 1%). For x < 0 the probability distribution is lo-
cated around ny = N/2 = ny and stays small, so that the approximate mean value
equations are applicable. At the so-called critical point = 0, a phase transition
to a qualitatively different system behavior occurs and the probability distribution
becomes very broad. As a consequence, the game dynamical equations do not cor-
rectly describe the temporal evolution of the mean strategy distribution anymore.
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Figure 1: Probability distribution P{#,t) = P(ny, N —ny;t) of the socioconfiguration 7 for varying
values of the control parameter x according to the stochastic version of the game dynamical equations.
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For & > 0, a bimodal and symmelrical probability distribution evolves, That
is, the likelihood that one of the two equivalent strategies will win throughout is
much larger than the likelihood of finding approximately equal proportions of both
strategies. At the beginning, the initial state or maybe some random fluctuation de-
termines which strategy has better odds of winning. However, in the long run both
strategies have exactly the same odds. It is clear that in such cases the game dynam-
ical equations fail to describe the mean system behavior (cf. Fig. 2) which would
correspond to the average temporal evolution of an ensemble of identical social sys-
tems. In cases of oscillatory or chactic solutions of the game dynamical equations
the situation is even worse.

VI. EXACT, APPROXIMATE, AND CORRECTED MEAN VALUES AND
VARIANCES

In the last section we have seen thal the approximate mean value equations

d{n, .
id% = My ({)s), 27)
with the so-called first jump moments
M (/) = > (nl, — o)W (7 — ') (28)
ﬁ' I

(ct. (14)), are not sufficient. This calls for corrected mean value equations and a
criterion of validity for the time period. If the individual transition rates w(z —
y;7) depend on the socioconfiguration, the exact mean value can only be evalu-
ated via formula (13). This requires the calculation of the probability distribution
P (1, t) and, therefore, the numerical sofution of the respective master equation (8).
Since the number of possible socioconfigurations is normally very large, an extreme
amount of computer time would be necessary for this,
Luckily, it is possible 1o derive from (14) the corrected mean value equations

g 1) 9% M (
(;)t> = M, (1)) QZZ (B o B ;?J)fa((nig (29)

by means of a suitable Taylor approximation, This equation depends on the covari-
ances

Oay{t) = <(nE — (ne)e) {ny — (ny)f)>t = Z (e = {ne)e) (ny — (nyhe) P(7,1)

(30
which can be determined by means of the covariance equations
aga;:c'(t) o 8 Mg ((T )t)
T Moar({71) ZZUW ®) d{n )ta(n By
c'?ﬂd’wr((n)t) M (1))
oy () aty(t)— 3]
+ Z [Uﬂ-.’l(f} a(ny)t + 0y J(r) 8(71y>f ( )

y
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The functions

Moy (i) = (0l — n)(n)y — ny )W @ — 1) (32)

ﬂn‘

are called the second jump moments.

Equations (29) and (31) build a closed system of equations, but still no exact
one, since this would depend on higher moments of the form (ngn,n, - );. Nev-
ertheless, according to Figure 2 the corrected mean value equations yield signifi-
cantly better results than the approximate ones. As a consequence, they are valid
for a much longer time peried. Suitable validity criteria are the relative variances

orz(t)

({ns)e)*

since these are a measure for the relative width of the prebability distribution P(, £).
It can be shown that the covariances and al] higher moments are small, if only V..(2)

is much smaller than 1 for every x. Numerical investigations indicate that the ap-

proximale mean value equatioas begin (o separate from the exact ones as soon as

one of the relative variances V,, (¢) becomes greater than ¢.04. The corrected mean

value equalions and covariances remain reliable as long as ¥, {#) is smaller than

0.12 for all x (cf. Fig. 2).

A more delailled discussion of the above matter is presented elsewhere.”

V, (1) 1= (33)

VII. DIVERSE (GENERALIZATIONS

The behavioral model discussed above can be generalized in different respects.

Modified transition rates: The strange cusp at n; = N/2 in Figure 1, which
comes from the discontinuous derivative of wy(z = y) at I, = E,, can be avoided
by using modified imitation rates:

waly 7)) = - oD =By i Dey=Dy=2.  (34)

N D,y
This approach agrees with relation (22) in linear approximation for €' = »/(2N)
and A = 1/2, but it always yields non-negative imitation rates. As in (18) it guar-
antees two essential things: 1. The imnitation rate grows with an increasing gain
{E,; — E,) of success. 2. If the alternative strategy « is inferior, the imitation rate is
very small (b, due to uncertainty, not negligible). The results of the cotresponding
stochastic behavioral model are presented in Figure 3. They show the vsual flatness
of the probabitity distribution P(n, N — n:, ) at the critical point £ = 0, where
again a phase ransition oceurs.
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Figure 2! The numerical solutions of the approximate mean value equations (- - -) agree with those of the
exact mean value equations (—) only for a short time intezval. ‘Fhe corrected mean value equations (— )
yield much better results, although they also deviate from the exact curves when the relative variances
(- - -} become too [arge. Nevertheless, they describe the average long-term behavior properly,
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Figure 3. Probability distribution P{#, ) = P(n1, N — n1; t} of the secioconfiguration 7 according

{0 the modified stechastic game dynamical equations.
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Dynamics with expectations: The decisions of individuals are often infAluenced
by their expectations (E; )7, about the success of a strategy  at future times # > t.
These will base on some kind of extrapolation of past experiences with the success
of z. If expected payolfs al future times ¢’ were to be weighted exponentially by
their distance (¢ — ¢) {from the present time ¢, one would set!?

17 4o
By = 3 [t (B (Tt) . (35)

i

Other kinds of pair interactions:  Apart from imitative behavior, individuals also
sometimes show an aveidance behavior

r+r-yta, (36}

especially if they dislike their interaction partner (so-called ‘snob effect’). This can
be taken into account by an additonal contribution to the individoal interaction rates:

wly = ;7)) =wi(y = 2) +woly = x)ng +waly = 2)n,, BN

where wy denotes the avoidance rate.

Several subpopulations: Sometimes one has to distinguish different subpopulu-
tions a, i.e, different kinds of individuals. This is necessary if not all individuals
have the same set S of strategies.!! A similar thing holds if the social system con-
stdered consists of competing groups, where only individuals of the same group
behave cooperatively. The generalized behavioral equations are!?

dpy () _

SR =S A Ow (y = @ i) - PO e o g (1)) (38)

with individual interaction rates of the form
Wy > ;) = wily = 0) + 3 [0y - a)nd +w(y - 2y}, (39)

b

Inclusion of memory effects: If the strategy distribution at past times ¢' < ¢
influences present decisions in a non-Markovian way, the approximate mean value
equations have the form

dps (t)
dt

t
=3 [ Bl = 55 ) — P (- s (0]

¥ —oo

{40}
For example, in cases of an exponentially decaying memory, one would have

1 it
whole = 0} =t wslie) e (5] @
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VHI. SUMMARY AND CONCLUSIONS

We have found a microscopic foundation for the game dynamical equations which
are based on a certain kind of imitative behavior. Morcover, a stochastic version of
evolutionary game theory has been formulated, Tt allowed us to understand the self-
organization ol sccial conventions as a phase transition which is related with sym-
melry breaking. Moreover, we have seen that the game dynamical equations corre-
spond to approximate mear value equations. Normally, they agree with the mean-
value equations of stochastic game theory for a certain time peried only, which can
be determined by calculating the relative variances. For an improved description
of the average system behavior we have derived corrected mean value equations
~ which require the solution of additional covariance equations.

The interpretation of the game dynamical equations proceeds by reformulating
these in terms of a social force model,'* assuming a continuous strategy set:

dag (1) .
= Silze) + Z fa(ea, zp) 4+ Nuctuations . (42)
Bi#a)
The force term i
filea) = / de (2 — 2zo) w1z, 2 2) (43)

delineates spontaneous strategy changes by individual o, whereas
P(@a,zg) = (2 —2a)wa(ta — ap)

+ fdm (@ — o) wy(za —+ 2) 8(va — ) (44)

is the interaction force which originates from individual # and influences individ-
ual o. Here, §(w ~ y) denotes Dirac’s delta function (which yields a contribution
for z = y only). According to (42), the game dynamical equations describe the
mast probable strategy changes rather than the average (representative) evelution
of a social system, Therefore, they neglect the effects of fluctuations on the system
behavior.

A more detailled discussion of the results presented in this paper is available
elsewhere!213,
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