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The movenient of pedestrians is supposed to show certain regularities which can
be best described by an “algorithm” for individual behavior and is easily simulated
on computers. This behavior is assumed to be determined by an intended velocity, by
several attractive and repulsive effects, and by fluctuations. The movement of pedes-
trians is dependent on decisions, which have the purpose of optimizing their behav-
ior and can be explicitly modeled. Some interesting applications of the model to real
situations are given, especially to formation of groups, behavior in queues, avoidance
of collisions, and selection processes among behavioral alternatives.
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1. INTRODUCTION

Human behavior is based on indi-
vidual decisions. In building a math-
ematical model for the movement of
pedestrians, one has to assume that these
decisions are not completely random, but,
instead, show certain regularities. This
assumption may be justified, because de-
cisions and therefore the behavior of
pedestrians will usually be determined
by utility maximization: a pedestrian
wants to move in the most convenient
way, tries to minimize delays when hav-
ing to avoid obstacles and other pedestri-
ans, intends to take an optimal path, and
to walk with the minimal velocity neces-
sary to reach a destination at a certain
time, etc. The optimal behavior for a
given situation can be derived by plausi-
bility considerations and will be used as
a model for pedestrian movement. Of
course this optimal behavior is normally
not thought about by an individual, but
by trial and error he or she has automat-

*1 want to thank Prof. Dr. M. R. Schroeder for
giving me the chance to work in an interdisci-
plinary field: modeling the social behavior of
pedestrians by mathematical models. Second, I am
grateful to Prof. Dr. R. Kree, Prof. Dr. W. Scholl,

ically learned to use the most successful
behavioral strategy when confronted with
a standard situation (compare to sect.
3.2, (d)).

We cannot expect the model to be ex-
actly valid for several reasons. First, an
individual may find himself or herself in
a nonstandard situation. Second, the per-
son probably has not learned the optimal
strategy yet. Third, sometimes emotional
or other reasons may lead to a subopti-
mal behavior concerning the individual’s
movement. Fourth, every behavior shows
a certain degree of imperfection or irreg-
ularity. All these reasons lead to devia-
tions from optimal behavior and may be
handled as fluctuations.

Nevertheless, the model gives a good
impression of pedestrian movement: first,
there is a tendency of pedestrians to move
with an intended velocity (i.e., with an
intended speed in an intended direction)
(sect. 2.1). Second, individuals some-
times like to approach or avoid certain
objects or persons, which can be inter-
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R. Reiner for their stimulating discussions. Last
but not least, I am obliged to D. Weinmann,
N. Empacher, K.-G. Haas, and E. Webster for read-
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preted as attractive or repulsive effects
(sect. 2.2). Particularly, there is the ne-
cessity of avoiding a collision with obsta-
cles and other pedestrians (sect. 2.2, (b)).
The consequences of each aspect will be
discussed in section 3 and can be com-
pared directly with empirical observa-
tions. Some of them will be demonstrated
by computer simulations (sect. 4).

2. THE MODEL

2.1 Intended velocity of motion

(a) If an individual i wants to arrive at
a destination X¥? at time T;, being at time
¢ at place ¥,(2), its ideal velocity ©%(¢) of
movement will normally have the follow-
ing properties (assuming a rectilinear
way to the destination as easiest situa-
tion first):

e For convenience (in order to avoid
deceleration and acceleration pro-
cesses), the speed should be as uni-
form as possible, i.e.,

ul(t) o const.
o In walking the remaining distance
si(2)=] %2 - %,(2)|

one should just use the remaining
time T; —t (if one wants to avoid
coming too late or too soon), i.e.,

u0(t):= s"(t)t .

T, —
e The direction ¢; of moving should in
the simplest case be directly ori-
ented toward the destination %?,i.e.,

By
€; = e .
N ErE O]

All these properties are fulfilled by the
ideal velocity

z) - %, (1) s:(2)
—>9 t - 12 t - 1 —b»
uz() Tl—t Ti_tel' (1)
Intending to move with velocity ()

guarantees a uniform movement and,
when suffering deviations or delays, an
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orientation toward the destination and
an adaptation of speed. If the available
way to the destiniation is not rectilinear,
it can be approximated by a polygon with
edges X7,..., %7, where X denotes the
starting point. In that case, the formulas
above remain unaltered, but the direc-
tion €; := &/ of movement is oriented to-
ward the next edge ¥/, after having

i

passed the edges %7,..., %/*%:
0
COE =)

Now we assume that an individual ; of
mass m;, if moving with velocity v,(¢) =
dx,(¢)/ dt, applies a force

B 520 - 50
®

to get the acceleration dv,(¢)/dt toward
the intended velocity of motion

f;?(t):: é;
um™"  for u?(t) < umin
u?(t) for u;’”'" < u?(t) < pmex

I
ue®  for uf(t) > uper

Z(t) =m;

(3)

According to this assumption, the force
; 1s proportional to the discrepancy v -
v; between intended and actual velocity,
and it vanishes, when both are equal
;= 3? )- By (2) v,V,(¢) approaches 7ivio (%
exponentially with a relaxation time of
m; /v;. The quantity v,5? has the mean-
ing of the motivation to get ahead with
velocity ¥7. For 37 we have introduced a
cutoff at u*** and u™", because veloci-
ties above u*** are felt strenuous or un-
comfortable, and velocities less than u*"
are felt “boring”. u" depends on the
surroundings (see (d)). In the followin%

1

|,

—

we will assume the common case 77 = &
(.e. ul" < u? < u™*%), if nothing con-
trary is mentioned.

There are some other types of pedes-
trian movement which can be formally
reduced to type (a):
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(b) Suppose that individual i' plans to
pass at times ¢ through certain places
%2(#). The intended velocity would then
be
i) (t)

dt
But if the individual has, due .to de-
lays, at a certain time #; still a dlstal}ce
As(t) = || ¥2(¢) — 22D from the in-
tended place Z(t;), that individual will
try to make up for this distance during a
time interval Az, i.e. until time £+ A_ti.
In that case, the intended velocity will,
according to (1), be modified to
-0 2t + AL) - Z,(2)
wi () = (t;+ At) — ¢t

X (t; + At;) — 2)(¢t)
(i +AL) -t

£(2) - %(2)
(6;+A8) -t
dz(t) | #(f) - %(2)
T T a (t:+at) -t

() -

(c) If an individual ¢ intends to move
with constant velocity v2, we get type (1)
by the identification

max ._ .0
7 =g

u

(d) Suppose individual i moves at
leisure. Then he or she moves with a
velocity

() = up(2(1)),

making as many interesting perceptions
per time unit as intended. Therefore the
appropriate velocity will depend_on 1.:he
actual place %,(¢). The intended direction
é;(¢) of movement is given by sponta-
neous decisions (see section 2.2).

2.2 Contradictory motivations and
decisions
An object or individual j sometimes
induces a psychic reaction in a pedgs-
trian i, motivating i to approach or avoid
J (Scheflen & Ashcraft, 1976). These
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attractive or repulsive effects can be de-
scribed by quantities f7 or f7; respec-
tively, known as gradient of approach or
avoidance. f%/” are not forces yet, but
they are a measure for the dire:ctlon gnd
strength of the psychic motivation of /1 to
approach or avoid j. The strength .fi“- " of
these motivations will lesseg with in-
creasing distance r;; = || x; — %] of i and
J» whereas the direction ¢;; will be nor-
mally oriented toward or away from j,

ie.,

: 7. -
€= 47 ;= t—m= 1 ——
y rij I Xj ER
(+: attractive case, —: repulsive case).
So with
Ty =X, =X =711
we find

ol (Fy) = <£5/7 (7)) Ty (@)

In the absence of other motivations,
the total effect

f‘ij(?ij)’= ﬁ‘}(?y) + _;;(;:ij)

induced by j would play an analogous
role as the motivation v;v} to get ahead
in equation (2) (Miller, 1944; Miller,
1959). This would lead to a movement
according to

e dycii(tt) = fi(6)= Fi(7(2)) — v3:(2).

(5)

If individual i is subject to a couple of
motivations, the total effect would be f.:he
sum of all, resulting in the following
equation of motion generalizing (2) and

5):

my Tz

dt
= Z ﬁj(t) + ‘Yﬁ?(t))

- 'Yi?;i(t) - (6)
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But often it is not optimal to behave
according to (6), namely in the case of
contradictory motivations fi5» 797, which
evoke a psychic conflict. Then it will be
better for the individual to take a deci-
sion, whereby the behavioral alternative
with the maximal utility will be pre-
ferred (Luce, 1959; Laux, 1982). In some
cases this behavioral alternative can be a
compromise. In other cases, namely when
the alternatives in question mutually ex-
clude each other, it will correspond to the
alternative which provides the strongest
motivation. We now follow Lewin’s (1951)
“field theoretical” view: Once a decision
is taken, a new motivation

() = RO Fy(e), i (0), ¢)

arises as a substitute of the original mo-
tivations f;;,v,5%. This motivation is
some kind of psychic tension, which
causes the individual to act toward its
aim in order to diminish this tension. In
the case of pedestrians, the body will be
induced to generate a Physical force

F0)= P (F(0),v32(8), 2) - visi(o),

which then causes a movement according
to

dv,(¢) .
m; dt = fi(2)

= (700, )
- ’Yiai(t) (7)

(compare to (2), (6)). Due to (7), a pedes-
trian will stop moving only, when the
motivation to move is vanishing, i.e.,
when

(7020, =5, (g)
By
Eo(f;j(t),YiE?(t)> t) = Z f-;j + 7,97
J

(6) can be interpreted ags special case of
(7), being valid as long as no decision is
taken. In that case (8) has the form of an
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equilibrium condition for the motivations
=0,
f; j» YiVg !

; Ej(t) + 'Yiv?(t) = 6 (9)

Now two examples for situations will
be given, in which conflicts between sev-
eral motivations occur:

(a) Joining behavior

Suppose individual i perceives an at-
tractive object or individual J of attrac-
tion fii(¢;;) at time ¢,.. Individual i will
then spontaneously decide to meet j, if
there is enough time to do so. We assume
this to be the case if

si(t:))
ﬁ;‘(fij) > 'Yivzp(tij) BRE ﬁ ’

le., if the motivation fi; for joining j is
greater than the motivation v,? to con-
tinue walking (see (2)). (Here, we have
made the simplification that there is only
a small detour necessary to meet j.)
Individual i will stay at the meeting
point for a time 7, ; and will leave at the
moment f;; + 7,;, when the tendency i
to join the attractive person or object
becomes less than the increasing ten-
dency v,v? to get ahead. (vY(2) is growing

according to the delay 7;; resulting from
the stay.) This condition can be written

in the form
Gty + 1) £ vivd (t; + 7))

si(t;)

=‘y.
T (ty+ 1y,

) (10)

(see (1)) because of 5;(¢;; + 75 = s;(¢;7).
By (10) the staying time 7, 7 can be calcu-

lated as

’Yisi(tij)
i

;= (T, - t;) —

A
= (T,- 1) L”:’_(“J) (1)
iy

if £ is constant with time ( i) = £2).
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H(t) = 'Yl”z(tu) or, equlvalently,
-rl = O there is not enough time to join
J, and individual i will do best to con-
tinue walking without changing direc-
tion.
Summarizing (a), the decision of indi-
vidual i leads to a new motivation

HHGREH0)
= v32£)O( £2(2) < v?(2)),

which substitutes the contradictory moti-
vations f2 and v,v;- Here, we have in-
troduced the decision function

_ 11 if xistrue
O(x):= {O if x is false.

Of course, individual i will change direc-
tion of motion temporarily from €(¢;;) to

r;;» if this is necessary to join j.

(b) Avoidance behavior

Suppose individual i, e.g., in order to
avoid a collision, dec1des at time f; to
avoid an object or individual j (i.e., to
keep a certain distance). Then, on the
one hand, individual i tries to minimize
the maximal repulsive effect against j,
namely

ax f(7,;(2)) =: f5(75(¢5)),

which normally occurs at the moment ¢, ;
of greatest approach r; ;(¢:;)- On the other
hand, he or she wants to rmmmlze the
increase of the pressure v,v? to get ahead,
i.e., to minimize the detour, which is
necessary to avoid j. The best compro-
mise will be to take a way, for which the
maximal repulsive tendency and the ten-
dency to get ahead have equal amounts,
namely for which

G(T(85) = vl (2,),  (12)

and to take a rectilinear path. This path
is given as tangent to the area

T(8)={%: i;'(zj(t) -%)> v ()},

(13)
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which describes the territory of j, that is
respected, i.e., not entered by individual
i. Due to (13) the area of the respected
territory 7, (¢) decreases with increasing
intended veloc1ty v2(t) or, equlvalently,
with increasing pressure v,v2(f) to get
ahead.

For the sake of completion, we assume
the following additional laws of pedes-
trian avoidance behavior:

e When avoiding a pedestrian or ob-
stacle j, individual i w1ll keep his or
her intended speed v?(z), changing
only the intended dlrectmn from
é.(¢;) to

(1) - Z(t)
122(2) = %:(¢)||
where ﬁo(t ) is the intended posi-
tion of i for the moment of greatest
approach. According to this, the mo-

tivation to get ahead will be changed
from v;3°(¢;) to

HAGREH0)

oy Ee(ty) —E(
RGN Ry

during the time it takes to avoid j
(i-e. for times ¢ with ¢, < t < ¢, )

e An individual i reacts a time At
t;; — t; before a collision would be
expected This time A¢;; is a psychic
parameter, which, of course will be
the greater the larger the dJmensmn
of the obstacle j is. The distance d;;
of reaction before the location of a
probable collision is the product of
At;; and speed v;:

d;; = v; At e

It is plausible that the necessary an-
gular change of direction when
avoiding an obstacle j will be the
greater, the lower the distance d;; of
the obstacle j is. So the (average)
change of direction will be the
greater, the lower the (average)
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speed is. This can be observed when
comparing more and less crowded
situations.

If the distance for passing j on the
left is nearly the same as for passing
J on the right, we assume individual
i will take the right hand side with
probability p, and the left hand side
with probablhty py =1—p,.

But if there is no chance of passing
J» e.g., when the way is too crowded,
individual i will decelerate > (as long
as necessary) to a velocity v, Whlch
allows a maximal component U; - €
of movement into the intended direc-
tion ¢;. This maximal component is
normally equal to the component vj
€;, which the hindering pedestrian’s
velocity v v, has in direction e; (corre-
spondlng to the situation, that indi-
vidual i walks in a gap behind a
pedestrian j with veloc1ty v;). How-
ever, if pedestrian j has an opp051te
direction with respect to i (v g <
0), it will be better for 1nd1v1dual ito
stop (v, = O) Summarizing these re-
sults we have the relation

e; : J

v, - €
0 else.

i

. {a-a ifv;-¢,>0

3. CONCLUSIONS AND COMPARISON
WITH REAL SITUATIONS

3.1 Effects of the intended velocity of
motion

(a) Velocity of motion

According to (2) a pedestnan would
normally walk with velocity u,(¢) =
V2(%,(2)). But in order to avoid colhsmns
an individual i suffers detours or delays,
and as a consequence, its smoothed ve-
locity v,(¢) of motion will probably have
the more general form

de(t) = — —of=
—— = 5i(t) = B, + k3 (x,(t))
— X ;i(t)
=w;,+k
 + by —— (14)

with k; < 1 (see (1)). k; and ), are em-
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piric parameters depending on the walk-
ing situation and describing the effect of
“interindividual interactions”. (14) can
be solved by

where t? is the time when individual i
starts walking. We can conclude the fol-
lowing:

e If the smoothed actual velocity 7, is
less than the intended velocity v°,
then 3; and v? will be growing with
time, because from (14)

dv;(¢) L v (2) = wi(2)
dt Y T, —¢

dv?(t
0
dt

can be derived. So individual i will
speed up in the course of time unless
the maximal velocity vmax; = i; +
k;ul***¢, is reached. (Apart from (14)
we have now taken into account eq.
(3).)
Individual i will arrive at des-
tination % too late if the smoothed
actual velocity v,(¢) would have to
exceed the maximal velocity
v;"%* before time T, i.e., if

}in% 5;(¢) > ve=.

i
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e Individual i will keep less distance
from other pedestrians j as v;(t) in-
creases (see sect. 2.2, (b)), because

—

gi(t) - w;
%,

i

'Yil.’?(t) =7

and equation (12). Individual i then
shows less respect for the “territory”
of individual j: he or she walks more
aggressively and perhaps even
pushes.

e In crowded situations individual i
can prevent having to hurry by in-
tending to walk with velocity

—

1 %2~ %,(2)
k, Ti—t

This strategy will lead to a smoothed
actual velocity of 7; = v?.

(b) Effect of an unexpected detour

In some situations individual : has to
take an unexpected detour As;, e.g., if he
or she has forgotten something and has
suddenly remembered this at time ¢}. So
the intended velocity changes according
to (1) from

0f -\ _ s:(t7)
vi(tl)—Ti—ti_

at the preceding moment ¢; to

s, (t7)
() = 77
1 13
si(#7) + As;
= __TL—T > v2(t7).

By (2) this gives rise to a sudden increase
of velocity v;, which can often be ob-
served, especially for individuals who
walk according to a plan ¥2(¢) (see sect.
2.1, (b)). These individuals try to speed
up to maximal velocity v?(t]) = ul®*
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until they have, after a time interval

As;

Atz ———— ,
)

reached their plan %ot + At;) again (in

the sense of %;(¢; + At;) = xo(t + At)).

(c) Behavior in a queue

If the front of a queue has come to rest,
the following phenomenon can often be
observed: after a while, one of the wait-
ing individuals begins to move forward a
little, causing the successors to do the
same. This process propagates in wave-
like manner to the end of the queue, and
the distance to move forward increases.

Why do individuals behave in such a
paradoxical way? They don’t move up
any faster but only cause the queue to
become more crowded! Our model gives
the following interpretation:

At time ¢; an individual keeps a dis-
tance r; 1(t) to the individual i — 1 in
front, whlch is (according to (9) and (12))
given by

fir.i—l(ri,i—l(ti)) = "Yi“?(ti)-

fl i1 is the repulsive effect describing
the territory of individual i — 1 re-
spected by i. As we know from (1), v?(#)
grows as time ¢ passes, because individ-
ual I is at rest (x;(2) = X,(¢))). So at time
t; + At; individual i would prefer to have
a distance

riialt +At) =0 4(8)

— Ar(t; + AL),

which has reduced by an amount Ar; and
is given by

flioi(rs i (8 + AL)) = vl (8 + AL).

(15)

But individual i moves up a distance Ar;
only if

Ar; = Arln, (16)
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i.e., if the increment Ar; exceeds a mini-
mal stride Ar/*® So the first individual
moving up is the individual i, for which
condition

Ar(t; + At) = ArPi

is fulfilled first. This is the case at a time
t=1; + At;, i.e., a time interval A¢; af-
ter its last step at time £;. Now the suc-
cessors i + n (n = 1) will move forward a
distance

i+n i+n

= g Ary(t) = Z_j Ary(t; + At)

according to (15) and (16), because
Sien = Ar{" will normally be fulfilled.

3.2 Attractive and repulsive effects

(a) Constant density

Suppose a number of N individuals
having only a neghglble intention to
move (v¢ = 0) stay in an area of a (di-
ning) hall, a waiting room, a beach, an
underground station, etc. with size A.
One can then observe a quite uniform
distribution of individuals (with constant
density N/A) if there are no special at-
tractions in area A and ne acquain-
tances among the individuals (see (®)).
This is due to the repulsive effects fi’
between each pair of individuals i and J,
which are in equilibrium (see (9)), when
all individuals occupy a personal terri-
tory of nearly equal size.

(b) Formation of groups

If there are acquaintances between the
individuals of example (a), a truncated
Poisson distribution

)\k
P =N+

= k=L2... (17

can be found for the proportion p, of
groups consistmg of k members. This
distribution is well confirmed by empiri-
cal data (Coleman, 1964) and can be ex-
plained by the following mathematical
model of Coleman (Coleman & James,
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1961; Coleman, 1964):

dny
dt
= [transitions from I (# &) to &

—transitions from % to
(# E)] /time unit

= > p-r(l—-k)
L(#k)

Z D
L(#k)

- (pk+1 " (k + 1)
':3+Pk—1'°"P1)
~(py-k-B+p,-a-py) (18)

for k=2,3,..., and

r(k—1)

> po=1. (19)
k=1
In (18) we have used

k-8B ifl=k-1
r(k—»l)z a-p, ifli=k+1
0 else

with [ = 2. This means that a group with
k' individuals loses individuals inde-
pendently with rate § and gains single
individuals with rate «-p, (which is
proportional to the number of single indi-
viduals). Other transitions are assumed
to be relatively unimportant.

(18), (19) have the stationary solution

1 Ne
by = -1’
given by dp, /dt = 0, where
A = ln(% + 1). (20)

We now connect these results with our
model: For 8 we could simply take the
mean value of the reciprocal 1/7,; of the
time 7,; which an individual i stays in
a group Jj, because this is the rate of
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leaving a group (see (11)):

8 = za(-f-). (21)

Ty
On the other hand, o can be assumed of
the form

a =p,d, (22)

where J is the rate of recognized groups
per time unit and p, is the probability
of joining a recognized group j. Accord-
ing to sect. 2.2, (a), p, is the probability
P(r;; > 0), that the staying time 7;; is
positive:

Py = P(7;>0) = P(f5>yn0). (23)

& 1s, of course, the attractive effect be-
tween individual i and group j. Due to
(20) to (23) the following conclusions can
now be made:

e Parameter A\, which is a measure for
the average number of members of a
group, increases with the mean value
of the staying time 7 1.€., it de-
creases with growing intended veloc-
ity v? and increases with growing
remaining time T, — t;; (see (11)).
This is consistent with the data
(Coleman, 1964).

e If the motivation £} to join a group j
is less than the motivation y;1° to
get ahead for all individuals i and
groups j, we have p,= 0 and o« = 0.
In that case no groups are forming at
all and (a) can be applied again (if
52 = 0).

(c) Superposition of attractive and re-
pulsive effects

Often a person or object j has an at-
tractive effect f; and a repulsive effect
[l as well. As a consequence of equation
(5’), individual i will then show one of
several characteristic dynamic behaviors
known from approach-avoidance con-
flicts, depending on the_special form of
the motivation gradient f; j(?,- ;) (Herkner,
1975). Especially, for negligible inten-
tion to move (v? = 0), individual i will
prefer a certain distance (Miller, 1944;
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Dewdney, 1987), for which the equilib-
rium condition

fi'(?ij) = f{}(%) - fiﬁ(?}j) =0

is fulfilled (see (9) and (4)), i.e., for which
the attractive and the repulsive effects
have equal strengths.

(d) Break of symmetry for avoidance
behavior

Suppose two individuals walk in oppo-
site directions and try to avoid each other
in order not to collide. Then each tries to
pass the other with probability p, on the
right and probability p, = 1 — p; on the
left (see sect. 2.2, (b)). The probability for
avoiding each other successfully is then

Py Pi+pypp=:1-w.
Otherwise, with probability

W=p, Py+PyPL=2p Py <3},
(24)

they have to try again, etec., until they
pass on different sides. This phenomenon
is well known.

The mean value E(n) for the necessary
number n of attempts to avoid each other
is given by

E(n) = éln-w”‘l- (1-w)
=1fw. (25)

Taking (24) into account, this expression
is maximal for w =1/2, i.e., for sym-
metric probabilities

P1=P2=3

of avoidance for both sides. (25) is mini-
mal for p, =0 or p, = 1 (deterministic
behavior!). Therefore asymmetric prob-
abilities p; # p, of avoidance are
favorable. In fact, in most countries indi-
viduals more frequently pass other indi-
viduals on the right (p; > 1/2). As a
consequence, crowded ways often show
two different lanes of opposite direction,
which stick to the right side respectively
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(Navin & Wheeler, 1969; Oeding, 1963;
Older, 1968). This behavior reduces the
frequency of situations of avoidance and
corresponding delays.

Selection of one behavioral
alternative

For an explanation of the break of
symmetry (p, # p,), we consider the fol-
lowing general model which describes the
temporal change of the proportion p, of
individuals showing a certain behavioral
alternative %k (compare to Eigen &
Schuster, 1979):

dp,
& Zz: [ My, — si8,] o, + - (26)

M,, are mutation rates from behavior [
to behavior % per time unit and person.
s, will be chosen as

S = Z Mmmpm + Z Mmk (27)
m m(#k)

to guarantee Y, dp,/dt =0, which is
necessary for normalization (¥, p, = 1).
— 8,0, p; has the effect of a selection
between the behavioral alternatives k.
£, are random fluctuations of the propor-
tion p, of behavioral alternative k. For
the problem of avoidance we have only
two alternatives: one to pass a hindering
pedestrian on the right (k := 1), and the
other to pass on the left (k == 2). As
mutation matrix we take

M=A4+B (28)
with
Py 1-p,
A =\ 29
- 1-p, by ) (29)
and
_Ll1/2 172
B “6(1/2 1/2)‘ (30)

According to A, a behavioral alterna-
tive k& becomes more probable (by learn-
ing), the greater the proportion p, of
individuals with behavior % is (because
in our case behavior % is the more suec-
cessful the more often it occurs (Skinner
1938, 1953). On the other hand, B de-
scribes a random choice of some behavior
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k with probability 1/2 due to trial (and
error). (The individual behavior depends
on the respective situation.) Substitution
of (27) to (30) in (26) now gives

dp
T: = [2)‘Pk' (1-p,) —5]

'(pk—é) + £, (31)

which, for 8 = \/2, has the only station-
ary solution p, = 1/2. However, for a
low tendency B to choose the behavior
randomly (0 < 8 < \/2), (31) has three
stationary solutions: p, = 1/2, being un-
stable against fluctuations £,, and p, =
1/2-(1 £ V1 —28/X), being stable! As
a consequence of the instability of p, =
1/2, fluctuations will cause the propor-
tion p, to tend either toward p, = 1/2 +
1/2/1 - 28/N (preferring the right
side) or toward p, = 1/2 — 1/2
V1 — 2B /N (preferring the left side). By
spatial diffusion of this learning process
the preferred behavior is spread over wide
areas (e.g., countries) and stabilized
against crossing p, = 1/2, which could
in principal be induced by fluctuations.

We now assume that individual i over-
takes pedestrian j walking in the same
direction. Here, we normally do not have
to expect any complications from the be-
havior of j. So the avoidance behavior
will be successful with probability w = 1,
regardless of the side of passing. Our
mutation matrix M then will not depend
on the proportions p,, p, of pedestrians
passing on the left or on the right (A = 0).
This time we have the equation

dp 1
= “ﬁ(Pk - 5‘) + &,

(see (31)), which has only one stationary
solution: the symmetric probability p, =
1/2 of avoidance, which is stable.

4. COMPUTER SIMULATIONS

In order to test the somewhat algor-
ithmical model of section 2 (especially
section 2.2, (b)), some simple computer
simulations have been carried out. The
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corresponding computer program works
as follows:

o First, the geometrical configuration
is determined (e.g., a- normal pedes-
trian way or a pedestrian way with
several obstacles). i

o In the examples presented, two types
(i.e., main directions) of motion are
necessary: pedestrians intending to
walk from the left to the right are
represented by black lines, those in-
tending to walk in the opposite direc-
tion are represented by gray lines.
Every line has the meaning of an
individual’s actual stride, and its
length is proportional to its velocity.

e As initial configuration, a statisti-
cally uniform spatial distribution of
N pedestrians is taken (N = 350 or
500), one-half belonging to the black
type of motion, the other half belong-
ing to the gray type (see Fig. 1). The
intended speeds of each direction are
distributed by chance (Gaussian),
whereby the same mean speeds and
the same velocity variances were
chosen for both directions of motion.

o At the beginning of the simulation, a
certain order of the N pedestrians is
chosen at random. The pedestrians
take each step according to that or-
der. After even the Nth pedestrian
has taken his or her Sth step, the
first pedestrian is taking his or her
(S + 1)st one.. For each individual
leaving on one side of a figure, an

equivalent one enters on the other
side, i.e., the right side of each figure

Fic. 1. (N = 500, S = 0): Initial configuration:
N pedestrians with varying speeds are distributed
randomly over a pedestrian way, the black ones
walking from left to right, the grey ones walking in
opposite direction.
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can be assumed to be connected to
the left side (periodic boundary con-
ditions).

o Now the considerations from section
2.2, (b) are taken into account: a
pedestrian taking the next step will
move by his or her intended stride
into the intended direction, if this is
possible. If not, i.e., if the individual
would have to cross another pedes-
trian’s step, he or she will change
direction by an angle, which will be
the greater, the nearer the hindering
pedestrian is. However, if even this
does not prevent one pedestrian from
crossing another pedestrian’s step,
the intended stride will be made as
short as necessary, possibly leading
to a stop. In the case of a change of
direction, the right side is chosen
with probability

1/2  if both pedestrians
belong to the same
direction of motion

p if the pedestrians
belong to different
directions of motion.

The left side is chosen with probabil-
ity p,p =1 —p;.

o If a pedestrian comes into the prox-
imity of an obstacle, he or she
temporarily changes the intended di-
rection, preferring to pass the obsta-
cle at the nearest side in order to
suffer the least possible detour. If
both sides have approximately the
same distance, each side is chosen
with probability 1/2.

The computer simulations show the

following results:

e For symmetric avoidance behavior
(p = 1/2), changes of direction
appear very often, because encoun-
ters of pedestrians from opposite di-
rections are likely to occur every-
where (see Fig. 2). In the case of
asymmetric avoidance behavior (p =
0.7), two walking lanes of opposite
direction develop in the course of
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F_’IG. 2. (N =500, S = 500, p = 1/2): In order to
avoid collisions with other pedestrians the direction
of walking has to be changed often.

time (see Fig. 3). Obviously, there
are less changes of direction neces-
sary, occurring mainly at the border-
line between the opposite lanes.

o In the presence of an obstacle, a
pedestrian free area develops in front
of and behind the obstacle (see Fig-
ures 4 and 5). But, whereas an ob-
stacle in the middle of a pedestrian
way causes only a small area not to
be used (see Fig. 4), obstacles at the
margin do reduce the effective width
over a long distance (see Fig. 5).

5. CONCLUSIONS

We have set up a model for the move-
ment of pedestrians starting from the
idea that individual decisions are guided
by maximization of utility. Once a deci-
sion is taken, a special kind of psychic
motivation or tension to realize this deci-
sion arises, which causes the individual
to act in order to neutralize the psychic
tension. For example, when individual i
wants to reach a certain destination at
time T}, it would be best to walk with a

Fic. 3. (N =500, S = 500, p = 0.7): If the prob-
ability p for passing a hindering pedestrian on the
right is different from the probability 1 — p for
passing it on the left, two lanes of opposite direc-
tion develop.
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Fic. 4. (N =350, § = 540, p = 0.7): In front of
and behind an obstacle a pedestrian free area de-
velops.

suitable velocity v?. So the pedestrian
will decide to walk with the “intended
velocity” 7, applying a physical force £,
which vanishes when the pedestrian’s ac-
tual velocity ¥; is equal to the intended
one. In the case of delays, the intended
velocity has to be corrected upward in
the course of time, causing the pedes-
trian to speed up and perhaps to walk
more aggressively. Waiting in a queue
that has come to rest, an individual will
instead move forward after some time,
which motivates the successors to move
forward, too. Therefore, this behavior
propagates in a wave-like manner to the
end of the queue and leads to a more
crowded queue.

In addition, a pedestrian is subject to
attractive or repulsive influences, ap-
proaching or avoiding certain individuals
or things j. If, for example, the motiva-
tion £ to approach some person (say a
friend) or some object (e.g., a shop win-
dow) is greater than the motivation to
get ahead, the pedestrian i will decide to
join this individual or object for a while,
but will leave the moment at which the
motivation to join the attractive person

Fic. 5. (N = 350, S = 540, p = 0.7): Obstacles
at the margin of a pedestrian way reduce its effec-
tive width.
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or object j becomes less than the increas-
ing motivation to get ahead with the
intended velocity (which is growing ac-
cording to the delay resulting from the
stay). If, right from the beginning, the
motivation of a pedestrian to get ahead is
greater than the motivation to join a cer-
tain person or object j, the pedestrian’s
best decision will be not to change path
at all. This model leads to a detailed
description of group formation.

However, there are also repulsive ef-
fects f;;. They describe, for example, the
personal territories of individuals j. As a
consequence, individuals who don’t know
each other normally spread uniformly in
an area of a hall, a waiting room, a cafe,
a beach, etc. (if there are no special at-
tractions). In situations where pedes-
trian ¢ has to avoid another one j in
order to prevent a collision, the pedes-
trian prefers to suffer only a minimal
detour. So individual i will pass individ-
ual j along a tangent to the territory of j
respected by i. This respected territory is
given as the area around j, for which the
repulsive effect f; of j is greater than
the motivation v,v; of i to get ahead
with speed v).

Mathematically, it appears to be favor-
able when most pedestrians prefer either
the right side or the left side when pass-
ing each other. This results in the devel-
opment of walking lanes in pedestrian
crowds. With both sides being equiva-
lent, one side will be used by a growing
majority, once it has been chosen at ran-
dom. This is one example being represen-
tative for many others, where the most
successful or most efficient behavior is
adopted by trial and error, causing a se-
lection between behavioral alternatives.

After having set up a “microscopic”
model, i.e., one for the movement of indi-
viduals, one may be interested in a model
for a great number of interacting ped-
estrians. Such a model is developed in
Helbing (1991). It shows some similari-

ties to gaskinetic and fluid dynamic -

equations, but contains some additional

terms that are characteristic for pedes-
trian movement

Behavioral Science, Volume 36, 1991
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