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18 A Mathematical Model for Behavioral
Changes by Pair Interactions

Dirk Helbing
II. Institut fiir Theoretische Physik, Universtidt Stuttgart
Stuttgart, Germany

18.1 Introduction

This paper treats a mathematical model for the change of the fraction P(i,t) of indi-
viduals who show a certain behavior i. Models of this kind are of great interest for
a quantitative understanding or prognosis of social developments. For the description
of the competition or cooperation of populations there already exist game theoretical
approaches (see, for example, Mueller (1990), Axelrod (1984), von Neumann and Mor-
genstern (1944), Luce and Raiffa (1957)). However, the model devoloped in this paper
shows to be more general, since it includes as special cases

e not only the game dynamical equations (Hofbauer and Sigmund (1988)), but also
e the logistic equation (Verhulst (1845), Pearl (1924), Helbing (1992)),
e the Gravity model (Ravenstein (1876), Zipf (1946)),

o the LOTKA-VOLTERRA equations (Lotka (1920, 1956), Volterra (1931), Hofbauer
(1981), Goel et. al. (1971), Hallam (1986), Goodwin (1967)), and

e the quantitative social models of Weidlich and Haag (Weidlich & Haag (1983,
1988), Weidlich (1991)).

This model assumes behavioral changes to occur with a certain probability per time
unit, called the transition rate. The transition rate is decomposed into

e a rate describing spontancous behavioral changes, and

e a rate describing behavioral changes due to pair interactions of individuals.
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Three different kinds of pair interactions can be distinguished:

e First, imitative processes, which describe the tendency to take over the behavior
of another individual.

e Second, avoidance processes, causing an individual to change the behavior if meet-
ing another individual with the same behavior.

e Third, compromising processes, which describe the readiness to change the behav-
ior to a new one when meeting an individual with another behavior.

Representative solutions of the model are illustrated by computer simulations. By
distinguishing several subpopulatzons a, dlﬁ'erent types of behavior can be taken into
account.

As one would expect, there is a connection of this model with the game dynamical
equations. In order to establish this connection, the transition rates have to be taken in
a special way which depends on the ezpected success of the behavioral strategies. The
essential effect is given by imitative processes.

A stochastic version of game theory is formulated, from which the ordinary game
dynamical equations follow as equations for the most probable behavioral distribution.
An example of two equivalent competing strategies serves as an illustration of these
equations and allows the description of the selforganization of a behavioral convention.

18.2 The master equation

Suppose, we have a social system with N individuals. These individuals can be divided
into A subpopulations a consisting of N, individuals, i.e.,

A
> N.=N.
a=1
By subpopulations different social groups (e.g. blue and white collars) or different
characteristic types of behavior are distinguished.
The N, individuals of each subpopulation a are distributed over several states

i e{L,...,5},

!

which represent the behavior or the (behavioral) strategy of an individual. If the occu-
pation number n? denotes the number of individuals of subpopulation ¢ who show the
behavior z, we have the relation
s
Y nf=N,. (18.1)

i=1
Let
_ 1 1 a A A
= (M) eeeyMgyeryBEyee sy MLy, NE)
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be the vector consisting of all occupation numbers n?. This vector is called the sociocon-
figuration, since it contains all information about the distribution of the N individuals
over the states i. P(i,t) shall denote the probability to find the socioconfiguration 7 at
time ¢. This implies

0<P(R,3)<1 and Y P(ii,t)=1.
n

If transitions from socioconfiguration 7 to 7’ occur with a probability of P(i@’, t+At|#, t)
during a short time interval At, we have a (relative) transition rate of

- ,
| w(id, 7 t) 1= Alil_{‘o P(#',t ZtAt]n,t) .

The absolute transition rate of changes from 7 to 7' is the product w(i',#;t)P(%,t)
of the probability P(7,t) to have the configuration # and the relative transition rate
w(#',7; t) if having the configuration 77. Whereas the inflow into 7 is given as the sum
over all absolute transition rates of changes from an arbitrary configuration 7' to , the
outflow from 7 is given as the sum over all absolute transition rates of changes from
7 to another configuration 7’. Since the temporal change of the probability P(7,t) is
determined by the inflow into # reduced by the outflow from 7, we find the master
equation

ditp(ﬁ',t) = inflow into # — outflow from % (18.2)
En' 'U)(T_):, ﬁl; t)P(ﬁl7 t) - Enl ’ll)(’ﬁ:l, 7_7:; t)P(ﬁ, t) )

(see Haken (1983)), which is a stochastic equation.
It shall be assumed that two processes contribute to a change of the socioconfigu-
ration 7

e Individuals may change their behavior i spontaneously and independently of each
other to another behavior ¢’ with an individual transition rate @,(¢',4;¢). These
changes correspond to transitions of the socioconfiguration from 7 to

Ag = (g, 0y (nd +1),..., (08 = 1),...,n8)

i

with a configurational transition rate w(#%;,%;t) = n¢w,(4,4;t), which is propor-
tional to the number n{ of individuals who can change the behavior 3.

¢ An individual of subpopulation a may change the behavior from i to ¢’ during a
pair interaction with an individual of a subpopulation b who changes the behavior
from j to j'. Let transitions of this kind occur with a probability @wa(4, 754, 5;t)
per time unit. The corresponding change of the socioconfiguration from 7 to

ﬁ?f;;ij = (ni,...,(n?,-{-1),...,(n}’—1),...,(ng-,+1),...,(n3~—1),...,n§)

leads to a configurational transition rate w(@f;,@5t) = ngnbwa(, j';4,5;t),
which is proportional to the number n:‘ng of possible pair interactions between
individuals of subpopulations a resp. b who show the behavior i resp. j. (Exactly
speaking—in order to exclude self-interactions—ngn? W.q(?',5';4,4;¢) has to be
replaced by nf(nf — 1)Waq(7,5';1,4;t), if P(%,t) is not negligible where n¢ >> 1
does not hold, and > Waa(?',5'51,35t) < Wa(d',4; 1) is invalid.)
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The resulting configurational transition rate w(#',%;t) is given by

niwa(7', 23 t) if @' = ﬁ';.‘,g
' b~ o1 a0 s, e
w(@, @) == ¢ nindWa(d, 554, 55t) 7' = @i, (18.3)
0 otherwise.

As a consequence, the explicit form of the master equation (18.2) is

TP@0) = 3 [(nf + Dt 0P 6) — il i) P, )
L. e
+ 3 Z Z [(n:‘, + 1)(n;’-, + D) Was(%, 537, 5% t)P(n,-,l},,-j,t)
a4’ bj,g!

— nenb (i, 11,53 t) PR, )|

(see Helbing (1992a)).

18.3 Most probable behavioral distribution

Because of the great number of possible socioconfigurations 7, the master equation for
the determination of the configurational distribution P(#,t) is usually difficult to solve
(even with a computer). However, in many cases one is mainly interested in the most
probable behavioral distribution ‘

Na

P,(i,t) = .
Equations for the most probable occupation numbers 7¢(t) can be deduced from the
LANGEVIN equation

%n?(t) N1 mi(#,t) + fluctuations, (18.4)

which is an approximate reformulation of the master equation (see Helbing (1992)).

The drift coefficients

mi(i,t) = D (n't —nd)w(d,d;t) (18.5)
= Y. [ﬁ"(i,i’;t)n;’, —w(¢, i t)nd|, )

where

T 45t) = Ba(s, 38) + 3 Y > Wi, 538, 53 ) (18.6)
T

have the meaning of effective transition rates, describe the temporal drift of the config-
urational distribution P(7,t) (see Helbing (1992, 1992a)). Obviously, the contributions
Wap(?'5 5’52, 7 ;t)ng due to pair interactions are proportional to the number n;’- of possible

interaction partners.
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The LANGEVIN equation (18.4) determines the behavior of the socioconfiguration
7(t) in dependence of process immanent fluctuations. As a consequence,

d . 5

— w5 (t) "2 mi(R, ) (18.7)
dt

are the equations for the most probable occupation numbers n¢(t). A measure for the

reliability (or representativity) of 727(t) with respect to the possible temporal develop-

ments of nf(t) are the (co)variances of nf(t) (see Helbing (1992, 1992b)).

18.4 Kinds of pair interactions

The pair interactions
ilajl — i,j
of two individuals of subpopulations a resp. b who change their behavior from ¢ resp.
j to i’ resp. 7' can be completely classified according to the following scheme:
i i }(o)
5, — 4]
i — i (i77) }(1)
1] 4] (7' # .7)
Li e b (§#9)
7'”.7 — 1) (zl#]) (2)
A R G AR )
iajl R 27.7 (7‘ 7é j,jl 7é jaj, 7é 7‘)
@ — 4j (F57#5,8F)) 3)
7'”.7l — 4,7 (7’ # .777'1 76 Z7.7l 7é .7,7‘1 74 .7,.7' :/'é 7')
i — 4,5 (E#57#4L7#7) 1 (4)
5 — 43 (E#5,5 # 5,5 #1)
Obviously, the interpretation of the above kinds k € {0,1,...,4} of pair interactions is
the following:

(0) During interactions of kind (0) both individuals do not change their behavior.
These interactions can be omitted in the following, since they have no contribution
to the change of P(7,t) or nf(t).

(1) The interactions (1) describe imitative processes (processes of persuasion), i.e.,
the tendency to take over the behavior of another individual.

(2) The interactions (2) describe avoidance processes, where an individual changes the
behavior when meeting another individual showing the same behavior. Processes
of this kind are known as aversive behavior, defiant behavior or snob effect.
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(3) The interactions (3) represent some kind of compromising processes, where an
individual changes the behavior to a new one (the “compromise”) when meeting an
individual with another behavior. Such processes are found, if a certain behavior
cannot be maintained when confronted with another behavior.

(4) The interactions (4) describe imitative processes, in which an individual changes
the behavior despite of the fact, that he or she convinces the interaction partner
of his resp. her behavior. Processes of this kind are very improbable and shall be
excluded in the following discussion.

For the transition rates corresponding to these kinds of interaction processes the fol-
lowing plausible form shall be assumed (see Helbing (1992)):

pL(?']35t) ifi'=jand j'=3
oL ('l ) if ' =i and § =1

Wan(?', 532, 73t) = Van(t) - ¢ O ift!=7and j'# 3 (18.8)
0 ifj'=1diand ¢’ #1¢

phs(¢li38)pE(5'153t)  otherwise (k € {2,3}).

Here,
Vab(t) = Nb;ab(t)
is the contact rate between an individual of subpopulation ¢ with individuals of sub-

population b. p¥,(j]i;t) is the probability of an individual of subpopulation a to change
the behavior from 7 to j during a pair interaction of kind k with an individual of

subpopulation b, i.e.,
> ok(list) = 1.
J

Let us assume

Pan(3list) := fa(t)Ralld 538)
where f%(t) is a measure for the frequency of pair interactions of kind k between in-
dividuals of subpopulation @ and b, and R,(j,%;t) is a measure for the readiness of
individuals belonging to subpopulation a to change the behavior from 7 to j during a
pair interaction. Inserting the rate (18.8) of pair interactions into (18.6) and using the
conventions

Il

wa(i,45t) = W,(¢,4;¢),
wab(il7jl; i, J; t) : Nbaab(il7jl; i:j;t) y
Vfb(t) = Vab(t)f:b(t) ’

I

we arrive at the equations

%Pa(i,t) = Z [w“(i,i';t)Pa(i’,t) — wi(i, 3; t)P,,(i,t)] (18.9)

1'

for the most probable behavioral distribution (see (18.7), (18.5), (18.6)), where

w?(i,1'5t) 1= we(3,4'; ) + va(3, 35 t) Ra(3, 35 2) ' (18.10)
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with
valir'st) 1= 3 [ (v(8) = v5s(8)) Py t) + (2(8) = v2a(t)) Bu(i'8) + w3a()] (1811)

are effective transition rates (see Helbing (1992, 1991a)). The effective transition rates
include contributions of spontaneous behavioral changes, and of behavioral changes due
to pair interactions (i.e., of imitative, avoidance and compromising processes). (18.9),
(18.11) are BOLTZMANN-like equations (see Boltzmann (1964), Helbing (1992a)).

Due to (18.1), (18.3), and 0 < nf < N, we have the relations

S P(,t)=1 and 0< Pa(it) <1

Therefore, P,(i,t) can be interpreted as the (most probable) fraction of individuals
within subpopulation @ who show the behavior ¢. With respect to the total population,
the fraction P(%,t) of individuals with behavior ¢ is given by

2 N

Hmp%¢= ZNN N””)

18.4.1 Computer simulations

For an illustration of the BOLTZMANN-like equations (18.9), (18.11) we shall assume to
have two subpopulations (A = 2), and three different behaviors (S = 3). With

Uali' £)-Va(irt)
D@, 50)

(see Weidlich and Haag (1988), Helbing (1992)) the readiness R,(¢',;t) for an indi-

vidual of subpopulation @ to change the attitude from i to i’ will be the greater, the

greater the difference of the utilities Us(.,t) of behaviors ¢’ and ¢ is, and the smaller the
incompatibility (“distance”)

R.(¢,i5t) := (18.12)

D,(i',i;£) = Da(i,i'5t) > 0

between the behaviors 7 and i’ is.

In the following computer simulations D,(#,7;t) = 1 has been taken. For both sub-
populations the prefered behavior, i.e., the behavior with the greatest utility Ua(i,1) is
represented by a solid line, whereas the behavior with the lowest utility is represented by
a dotted line, and the behavior with medium utility by a broken line. Figures 18.1-18.6
show the effects of imitative processes (v} (t) = 1, v%4(t) = 0 = v3,(¢)), of avoidance pro-
cesses (v4(t) = 1, v2,(t) = 0 = 13,(t)), resp. of compromising and imitative processes
0&@%‘1—Vdﬂ,w0%—®

a) for equal behavioral preferenes (Uy(1) = ¢ = Uz(1), U1(2) = 0 = U2(2), Uh(3) =
—c = Uy(3)), and

b) for different behavioral preferences (Ui(1) = ¢ = Uz(2), Us(2) = 0 = Ux(1),
U1(3) =—Cc= U2(3))
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PGt

Figure 18.1. Effect of imitative processes for two subpopulations prefering the same behavior (¢ =
0.5): Only the fraction of the prefered behavior (—) is increasing. The other behaviors vanish in the
course of time.
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Figure 18.2. Effect of imitative processes for two subpopulations prefering different behaviors (¢ =
0.5): The prefered behavior (—) becomes the predominating one in each subpopulation, but the
behavior which is prefered in the other subpopulation (— —) can also convince a certain fraction of
individuals. A behavior which is not prefered by any subpopulation (- ) vanishes.
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Figure 18.3. Effect of avoidance processes for two subpopulations prefering the same behavior (¢ = 1);
The fraction of the prefered behavior (—) is limited, since the subpopulations avoid to show the same
behavior. As a consequence, the other behaviors are also used by a certain fraction of individuals.

Figure 18.5. Effect of compromising and imitative processes for two subpopulations prefering the
same behavior (¢ = 0.5): Only the prefered behavior (—) survives, since a readiness for compromises
is not necessary.

0.S0 A

P(it)
PG

Figure 18.8. Effect of compromising and imitative processes for two subpopulations prefering different
behaviors (¢ = 0.5): Most of the individuals show the prefered behavior (—), but a certain fraction of
individuals also decides for a compromise (- - ).

Figure 18.4. Effect of avoidance processes for two subpopulations prefering different behaviors (¢ =
1): The fraction of the prefered behavior (—) wins a greater majority in comparison with figure 18.3,
since the situations of avoidance are reduced.
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18.5 Game dynamical equations

In game theory, ¢ denotes a (behavioral) strategy. Let E,(i,t) be the ezpected success
of a strategy ¢ for an individual of subpopulation a, and

(B,) := ZEa(z’,t)Pa(i,t)

the mean ezpected success. If the relative increase

dP,(i,t)/ dt
Pa(i’t)

of the fraction P,(4,t) is assumed to be proportional to the difference [Eq(2,t) — (E,)]
between the expected and the mean expected success, one obtains the game dynamical
equations

%P,,(i,t) = v (t)Pait) [Ea(i,t) - (Ea)] . (18.13)

That means, the fractions of strategies with an expected success that exceeds the aver-
age (E,) are growing, whereas the fractions of the remaining strategies are falling. For
the expected success E,(t,t), one often takes the form

Boiyt):= )Y Awlis 55t)P(3,t) s (18.14)
b

where Ag(%,7;t) have the meaning of payoffs. We shall assume
l/ab(t)

S vaelt)

where 745(2) is the relative contact rate of an individual of subpopulation ¢ with individ-
uals of subpopulation b, and E,(3,j;t) is the success of strategy i for an individual of
subpopulation @ during an interaction with an individual of subpopulation b who uses
strategy j. Since rq(t)Ps(7,t) is the relative contact rate of an individual of subpop-
ulation @ with individuals of subpopulation b who use strategy j, E,(Z,t) is the mean
(or ezpected) success of strategy ¢ for an individual of subpopulation @ in interactions
with other individuals.
By inserting (18.14) and

(Ea) =Y Pui'st)Aa(i', 53 ) Bo(4, t)

P bJ

Au(iy73t) = rap(t)Eas(3,5;t) with  rg(t) =

into (18.13), one obtains the explicit form

%Pa(ia t) = Va(t)Pa(i) t) Z Aab(i,j; t)Pb(.77 t) - Z Z Pa(ily t)Aab(i,?j; t)Pb(]) t)]
b,j i bj
(18.15)
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of the game dynamical equations. (18.15) is a continuous formulation of game theory
(see Hofbauer and Sigmund (1988)). Equations of this kind are very useful for the
investigation and understanding of the competition or cooperation of individuals (see,
e.g., Mueller (1990), Hofbauer and Sigmund (1988), Schuster et. al. (1981)).

A slightly generalized form of (18.13),

%Pa(i,t) =) [wa(i,i"; 8)P,(i'8) wa(i’,z’;t)Pa(i,t)] (18.16)

Y

+ valt)Puliyt) [ By ) — ()], (18.17)

is also known as selection mutation equation (Hofbauer and Sigmund (1988)): (18.17)
can be understood as effect of a selection (if E4(3,t) is interpreted as fitness of strategy 1),
and (18.16) can be understood as effect of mutations. Equation (18.16), (18.17) is
a powerful tool in evolutionary biology (see Eigen (1971), Fisher (1930), Eigen and
Schuster (1979), Hofbauer and Sigmund (1988), Feistel and Ebeling (1989)). In game
theory, the mutation term could be used for the description of trial and error behavior
or of accidental variations of the strategy.

18.5.1 Connection between BoLTZMANN-like and game dy-
namical equations

One expects that there must be a connection between the BOLTZMANN-like equa-
tions (18.9), (18.11) and the game dynamical equations (18.16), (18.17), since they
are both quantitative models for behavioral changes. A comparison of (18.9), (18.11)
with (18.16), (18.17) shows, that both models can become identical only under the
conditions

Vib(t) = Va(t)bab » vap(t) =0, vas(t) = 0. (18.18)

That means, the game dynamical equations include spontaneous and imitative behav-
ioral changes, but they exlude avoidance and compromising processes.

In order to make the analogy between the game dynamical and the BOLTZMANN-like
equations complete the following assumptions have to be made:

o In interactions with other individuals the expected success

(i) = 10 S Bl )R G) (18.19)

of a strategy is evaluated. This is possible, since an individual is able to deter-
mine the quantities v (), Py(j,t) and E,(3,7;t): An individual of subpopulation
a meets individuals of subpopulation b with a contact rate of vg(t). With a
probability of P,(j,t), the individuals of subpopulation b use the strategy j. Dur-
ing interactions with individuals of subpopulation b who use the strategy 7, an
individual of subpopulation @ has a success of E(3, j;t) if using the strategy <.
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e In interactions with individuals of the same subpopulation an individual tends
to take over the strategy of another individual, if the expected success would
increase: If an individual who uses a strategy ¢ meets another individual of the
same subpopulation who uses a strategy j, they will compare their expected
success’ E,(i,t) resp. E,(j,t) (by observation or exchange of their experiences).
The individual with strategy ¢ will imitate the other’s strategy j with a probability
pL(7]%;t) that is growing with the expected increase

Aj,'Ea, = Ea(j,t) — Ea(i,t)

of success. If a change of strategy would imply a decrease of success (A;E, < 0),
the individual will not change the strategy 7. Therefore, the readiness for replacing
the strategy ¢ by j during an interaction within the same subpopulation can be
assumed to be

R,(j,4;t) := max (Ea(j,t) - Ea(i,\t), 0) : (18.20)

where max(z,y) is the maximum of the two numbers = and y. However, due to
different criteria for the grade of success, the expected success of a strategy ¢ will
usually be varying with the subpopulation a (i.e., E,(¢,t) # Ey(s,t) for a # b).
As a consequence, an imitative behavior of individuals belonging to different sub-
populations is not plausible, and we shall assume

L(t) 1= 6as, ie,  v(t) = Vaa(t)as .

Inserting (18.18), (18.19) and (18.20) into the BOLTZMANN-like equations (18.9),
(18.11), the game dynamical equations (18.16), (18.17) result as a special case, since

max (Ea(z',t) - Ea(j,t),0> — max (E,,(j,t) - E.,(i,t),O) = E,(i,t) — E.(j,1).

18.5.2 Stochastic version of the game dynamical equations

Applying the formalism of section 18.2, a stochastic version of the game dynamical
equations can easily be formulated. This is given by the master equation (18.2) with
the configurational transition rates (18.3) and

wab(il,jl;i,j; t) = Nbﬁib(il,jl;iij; t)
Va(t)ﬁabRa(i,j; t)&iil&ijl(]. - 5,'3‘)
+ Va(t)6abRa(j,i;t)5jj:5j;:(1 — 6{_,') ,

]

where R R R
Ra(j,i5t) := max (B(5,t) - Bu(i1),0)

and

b

-~ . . n'

Et) =) :Aab(w;t)—*N’b
5 7

(compare to Feistel and Ebeling (1989), Ebeling and Feistel (1982), Ebeling et. al.
(1990)). A comparison with (18.7), (18.9), (18.11) shows, that the ordinary game
dynamical equations (18.16), (18.17) are equations for the most probable behavioral
distribution.

.
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PN )X P(D)
\ \
\ \
P(1) ® “P(2)
Figure 18.7, For pedestrians with an 'opposite}direction of motion it is advantageous, if both prefer
either the right hand side or the left hand side when trying to pass each other. Otherwise, they would

have to stop in order to avoid a collision. The probability P(1) for choosing the right hand side is
usually greater than the probability P(2) =1 — P(1) for choosing the left hand side.

18.5.3 Selforganization of behavioral conventions by compe-
tition between equivalent strategies

This section gives an illustration of the methods and results derived in sec-
tions 18.5 and 18.5.2. As an example, we shall consider a case with one subpopulation
only (A = 1), and, therefore, omit the index a in the following. Let us suppose the
individuals to choose between two equivalent strategies : € {1,2}, i.e., the payoff matrix
A(t) shall be symmetrical:

A4+8 B ) (18.21)

At) = (AG,51)) = ( B A+E

According to the relation
ny+ng = N

(see (18.1)), the fraction P(2,t) = 1 — P(1,t) is already determined by P(1,t). By
scaling the time,

v(t)=1
can be presupposed. For the spontaneous change of strategies due to trial and error we
shall assume the transition rates

w(j,ist) = W. (18.22)

A situation of the above kind is the avoidance behavior of pedestrians (see Helbing
(1991)): In pedestrian crowds with two opposite directions of movement, the pedestrians
have sometimes to avoid each other in order to exclude a collision. For an avoidance
maneuver to be successful, both pedestrians concerned have to pass the respective
other pedestrian either on the right hand side or on the left hand side. Otherwise,
both pedestrians have to stop (see figure 18.7). Therefore, both strategies (to pass
pedestrians on the right hand side or to pass them on the left hand side) are equivalent,
but the success of a strategy grows with the number n; of individuals who use the same
strategy. In the payoff matrix (18.21) we have A > 0, then.

The game dynamical equations (18.16), (18.17) corresponding to (18.21), (18.22)
have the explicit form

C%P(i,t) =2 (P(z’,t) - %) [W + AP(z‘,t)(P(i,t) - 1)] . (18.23)
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P(n1,N—n1;t)
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Figure 18.8. Probability distribution P(7,t) = P(n1, N —n1;1) of the socioconfiguration @ = (ny, N—
n, ) for two equivalent competing strategies. Mutation dominated region (x < 0): Since P(ny, N —n1;1)
has, after a certain time interval, one maximimum at n; = N/2, each strategy will most probably be
used by about one half of the individuals. '

According to (18.23), P(:) = 1/2 is a stationary solution. This solution is stable only
for

Ki=1-— T <0,
i.e., if spontaneous strategy changes due to trial and error (the “mutations”) are dom-
inating. For & > 0 the stationary solution P{i) = 1/2 is unstable, and the game
dynamical equations (18.23) can be rewritten in the form

%P(i,t) — 2 (P(i,t) _ %) (P(i,t) - 12—‘@) (P(z’,t) - %’;) .

That means, for £ > 0 we have two additional stationary solutions P(z) = (1 + /k)/2
and P(i) = (1 — /k)/2, which are stable. Depending on the random initial condition
P(i,to), one strategy will win a majority of 100 - v/« percent. This majority is the
greater, the smaller the rate W of spontaneous strategy changes is.

At the critical point k = k¢ := 0 there appears a phase transition. This can be seen
best in figures 18.8-18.9, where the distribution P(7,t) = P(nq,n2;t) = P(n1, N —nq;t)
loses its unimodal form for £ > 0. As a consequence of the phase transition, one strategy
is prefered, i.e. a behavioral convention develops.

The crease of P(nl,N: ny;t) at ny = N/2 = ny is a result of the crease of the
function R,(7,7;t) = max(E,(j,t) — Ea(¢,t),0). It can be avoided by using the modified
ansatz . .
ePa(dit)~Ea(it)

Da(jy4;¢)
(compare to (18.12)), which also shows a phase transition for x = 0 (see figure 18.11).

Ra(j,5;t) =
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Figure 18.8. As figure 18.8, but after the phase transition (x > 0): The configurational distribution
P(n1, N —n4;t) becomes multimodal with maxima that are symmetrical with respect to N/2, because
of the equivalence of the strategies. Due to the maxima at n; > N/2 and n3 = N —ny > N/2, one
of the strategies will very probably win a majority of users. This implies the selforganization of a
behavioral convention.
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Figure 18.10. As figure 18.8, but for the critical point & = 0: The broadness of the probability
distribution P(ny, N — ny;t) indicates critical fluctuations, i.e. a phase transition.
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P(n, N—nt)

Figure 18.11. As figure 18.10, but with a modified ansatz for the readiness Rqo(j,%;t) to change the
behavior from 4 to j, which does not produce a crease of P(ny, N —ny;t) at N/2.

18.6 Summary and Conclusions

A quite general model for behavioral changes has been developed, which takes into
account spontaneous changes and changes due to pair interactions. Three kinds of pair
interactions have been distinguished: imitative, avoidance and compromising processes.
The game dynamical equations result for a special case of imitative processes. They
can be interpreted as equations for the most probable behavioral distribution and allow
the description of social selforganization.
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