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1 Individual contributions

As we met and exchanged ideas several times per week, both of us have contributed
to most parts of this project. We contributed equally to the model description,
development, testing and final documentation. A specific separation can be made
here:

Matthias Krebs was in charge of finding and implementing an appropriate forces
model. He invested a lot of time to get the agents moving around smoothly and
keeping always an appropriate distance to all obstacles and trains.

Daniel Graf designed the different test cases and executed them during several
days on the remote workstations of D-ITET. He also did the statistical analysis of
the collected data.

2 Introduction and Motivations

As our ways to the ETH include about two hours of travelling by train every day,
we decided to simulate a specific situation, that we come across twice a day. When
trying to board the train on a crowded platform, one can observe a special kind of
bottleneck problem.

We often discussed different techniques to find and enter a free door as quickly
as possible, so we wanted to simulate and analyze them using Mathworks MATLAB
as our term project of the course Lecture with Computer Exercises: Modelling and
Simulating Social Systems with MATLAB.

At first it was essential to take a look at the different factors influencing the
behavior of a passenger:

• A single passenger normally just wants to get in as fast as possible. But if
the next free door is too far away he might reconsider his choice. If possible,
he decides for a door that takes him a little longer to get in, but shorter to
walk to. This problem of the optimal doordecision was our main interest and is
covered in full detail in the results section. It is of special interest to separate
one’s personal optimum from the global one. For the train crew it is important
that every last passenger gets in as soon as possible, which does not have to
correlate with the personal door decisions.

• Some travellers might have used this train so often before, that they are able
to predict where the doors will arrive when the train stands still. That way
they can reduce their queuing time and have a higher probability to discover
an unassigned seat.
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• Although it is hard to guess from outside the train, it is important to know
how many seats are still empty in the preferred coach. If the platform is very
crowded, passengers might need to take another door, which forces the train to
wait a lot longer.

• In bad weather there is an additional factor to consider. The passengers want
to wait under the roof of the platform just until short before the doors of the
train open and the boarding can begin.

• There are sometimes groups, like forms or gym clubs, that prolong the boarding
process additionally, as they have reserved seats in one coach and therefore want
to enter all together through the same door.

The goals of this project are as follows:

• Simulate a big crowd of passengers in a well-proportioned scenario like in Zurich
or Sargans.

• Find a model that describes the behavior of a passenger in terms of movement
and deciding for a door.

• Study the effects of a variation of the different simulation parameters.
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3 Description of the Model

3.1 Model Overview

We intended to find a suitable model that is general enough to handle a lot of train-
specific additions but also precise enough to simulate decisions and movements of
individual passengers.

Many general models use analytical approaches like in [3] and are then able to
solve wave equations exactly. But most of them are limited to really simple scenarios,
like a semicircular crowd in [3]. As our setup with many doors and obstacles would be
much too complex to be solved exactly we decided to do a time discrete simulation.

In previous work cellular automatons have also been used quite often, like in
[1]. But as we wanted to have precise information about every agent (for distance
measuring, obstacle interaction etc.), we decided to use an agent-based approach.

In order to have enough resolution to build doors, obstacles and let the agents
move around them, a cellular automaton would have needed at least a level of detail
of about one square meter per cell. With a simulation size of 2000m2 and a neigh-
borhood diameter of 10m a cellular automaton would approximately need as much
computation power as an agent based simulation with around 450 agents (asymptotic
runtime of the agent based approach O(N2), with N the number of the agents). So
we preferred the agent based approach, because of its higher precision.

The door decision parameters are inspired from [2]. It gave us a really clean
game theoretical approach that has all needed possibilities for us to build on (door
availability, door familiarity and additional conditions). It is also claimed in this
paper that iterating the decision process has led quickly to a Nash equilibrium. The
scenario used there with two doors at opposed sides of a square was much simpler
than our boarding platforms.

But also in our simulations with up to 20 doors of 7 different types the decision
simulation stabilized quickly. As always when using iterative simplifications, there
are probably some border cases, where the simulation would not stabilize. We think
that optimal strategies for this game would probably be non-pure strategies. As all
agents decide simultaneously it is really unlikely that a optimal strategy would not
need any probabilistic decisions.

For simulating the moving behaviour of the agents we found a nice approach in
[4] that allowed us to represent all interactions between agents, trains, obstacles and
doors.

We have designed large parts of our model in a train-specific way. But many
ideas could easily be adopted to other traffic or crowd simulations.
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3.2 Trains

A train is a set of wagons. There are three types of wagons, which are different in
the way passengers can board. The three types are: First class, second class and
bistro wagon. Whereas the first class passengers only board on first class wagons,
the second class passengers enter either a second class or bistro wagon. There is also
a difference in capacity of the wagons. Second class wagons accept more passengers
than a first class or bistro wagon.

Further, we considered in our model, that a train usually arrives later than the
passengers do. So the train will move into the station while the passengers are already
waiting on the platform.

3.3 Agents

The passengers are the agents in our simulation. They are separated points, each of
it with specific properties and a behavioral pattern. The properties are their mass
and maximum velocity. Their behavior is more complex and mainly defined by their
affinity to class, their mode to choose a door, a limit and frequency of reconsidering
the chosen door, etc. (See section 3.3.2)

3.3.1 Agent States

During the simulation, an agent possibly changes between three kinds of states:
deboarding, moving, boarding. For a deboarding agent one only has to check whether
he can deboard and for a boarded agent the he does not act in any way anymore.
The situation for a moving agent is more complex. In the moving state, the agent
will consider to change for another train entrance (within the limitation that it is
the same train, same class, etc., see again section 3.3.2). The agent also has to be
moved as well as it has to be checked whether the agent can enter through a door.

3.3.2 Door Selection

The probably most interesting thing about the modeled situation is the question, on
which factors the agents base their decision for a specific door. Obviously, this is an
individual optimization problem, where the agents try to optimize their conditions.
These conditions can be described by several parameters. In the current case, the
passenger’s distance to go, the number of other passengers with the same intention
or the desire for a free seat in the wagon could be these parameters. To use these
parameters all together, it is necessary to normalize them, so that you can compare
them.
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A proper description of an Exit Selection Model can be found in [2]. In this paper
about evacuation in a fire emergency, they propose to use factors like estimated
evacuation time (sum of estimated moving time and estimated queuing time) as well
as further factors like familiarity and visibility of the exits and the conditions at
the exits. They further propose to separate the exits in some preference groups
(depending on the further factors) and so to decide only between the possibilities
with the highest preference.

In our model, we implemented these ideas as follows: Mainly, an agent has to
reach his final goal, so he has to consider only the doors that lead to the defined
destination. In other words, a person A who wants to take the train A only enters
a door of train A (we also assume that the person strictly respects the class of the
wagons) and a person B who left any train A will not board on train A again, but
it will either leave the platform through the subway or board on any other train B.
This first selection represents the recommended separation into preference groups.

For the actual door decision, we designed some different functions. We also
considered that the order, frequency and number of times an agent can make its
decision can influence the result.

The patience factor (used by [2]), that prefers the current strategy with a factor
of 0 ≤ p ≤ 1 over other strategies, is also considered.

The functions to evaluate the door’s quality are the following:

Random A possible way to choose for a door is by chance. As one will see in
the results this will neither lead to a small final boarding time nor does this mode
describe a natural behavior of passengers, so we will not discuss this mode further.

Walk A realistic assumption might be that a passenger always minimizes its way
to the door. So if ri represents the agent i’s current position and vi its velocity and
bk means the position of the door ek, the agent i’s strategy si is

si = min

(
d(ek; ri)

vi

)
= min

(
‖ri − bk‖

vi

)
(1)

Queuing As another natural behaviour, we considered that an agent chooses always
the door where the least amount of other agents are heading to. So if fk describes
the frequency agents can pass the door ek and λi(ek, s−i, ri) is the number of all other
agents heading to the door ek that are closer to it than agent i (s−i are the strategies
of all agents without agent i), then its strategy si is

si = min

(
λi(ek, s−i, ri)

fk

)
(2)
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Sum The logical conclusion is that the natural behavior is a mix of the two strate-
gies walk and queue. Whereas busy people rather walk a longer distance to reach a
door with less other people, a lazy agent rather decides for the closer door without
considering the number of people already queuing there. So if µi ∈ [0, 1] describes
the laziness of agent i, its strategy si is

si = min

(
µk
‖ri − bk‖

vi
+ (1− µk)

λi(ek, s−i, ri)

fk

)
(3)

3.3.3 Groups

While travelling on train, people are often formed in groups. A group is a set of
agents that strictly decides for the same strategy. The strategy is either defined to
be constant, chosen by the majority of the group or by a group leader. Despite of
the difference that group members will not consider the members of the same group
by doing their decision, the strategies are similar to the individual agent’s strategies.

3.4 Doors

Obviously, a door is a defined area where you change from one part to another part
of space. In our simulation the passengers on platform can enter a train or subway
respectively do it the inverse way.

Like the agents, the doors have some properties. So each door is determined to
be a first or second class wagon entrance respectively a subway entry. Further, there
are a frequency and limit of the agent that can pass the door.

3.5 Obstacles

To limit the space where an agent is allowed to move, we included some obstacles in
our model. The obstacles describe as well real obstacles on the platform (like waiting
huts, subways, poles, etc.) as also the borders of the platform. An obstacle is defined
by its position, size and period of time it is active. The last parameter is thought to
be used to hold the agents back in a defined waiting area until a specific moment.

3.6 Dynamics

We based the movement of the agents on a model already used by [4], who chose it
according to a homework from the lecture Simulations using Particles by Prof. Petros
Koumoutsakos. In this model, the agents are moving like particle in a potential field,
so the acceleration of an agent is described by the acting force on it, divided by its
mass.
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In the model used for our simulation, we based the movement of an agent on the
referred model. The force acting on an agent is given by the surrounding (See section
3.6). Based on this force, we calculate the actual acceleration.

d~v(t) =
~Fres(t)

magent

(4)

But the persons will not orbit over the platform like planets, but rather find their
way as a smooth line towards their goal. This means that there has to be a limitation
of their speed or a friction force, which lets the agent move in a more natural way.
So the current velocity is limited to the maximum velocity of the agent.

~vnew(t) = ~v(t− dt) + d~v(t)dt (5)

~v(t) = min

{
vagent,max

~vnew(t)

‖~vnew(t)‖2
, ~vnew(t)

}
(6)

3.7 Forces

There are three kinds of forces acting on an agent. The sum of the influence of the
doors, obstacles and other agents yields the resulting force.

3.7.1 Doors

The main direction of the agent’s movement has to be toward its goal, which is
always a door (to be precise, this door is door k which is the best strategy si for
agent i). Therefore, there is a vector ~eai,D(si, ri, bk) that directs from the agent i’s
position ri to the position of the door bk.

~eai,D(si, ri, bk) =
~bk − ~ri∥∥∥~bk − ~ri∥∥∥ (7)

In the case of queuing in front of the door, the agents don’t need to approach
it up to the point where they have the door’s exact position. The area within the
space of the door has to be kept empty for eventual agents leaving the door or the
next agent boarding it. So we add another vector ~eri,D(si, ri, bk) directing the inverse
direction. Its amount is proportional to the inverse of the distance

∥∥∥~bk − ~ri∥∥∥ between
agent i and door k and the door range factor dD.

~eri,D(si, ri, bk) = − dD∥∥∥~bk − ~ri∥∥∥ ·
~bk − ~ri∥∥∥~bk − ~ri∥∥∥ (8)
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Figure 1: At a rectangular obstacle (bold), there are nine sectors (dashed). An agent is
always retractet by the nearest point of the obstacle (arrows).

Now, the force yielding by the door is

~Fi,D(si, ri, bk) = kD ·
(
~eai,D(si, ri, bk) + ~eri,D(si, ri, bk)

)
(9)

where kD is the factor that describes the general strength of the door forces.
There will be an equilibrium point where the force becomes zero if dD =

∥∥∥~bk − ~ri∥∥∥.

3.7.2 Obstacles

There are several ways for modelling obstacles. In the simulation from [4] it is
proposed to model a wall or any other obstacle as a set of fixed point. Then a
retraction force between each agent and each obstacle point can be calculated.

To decrease the amount of calculation we decided to introduce another model
where an obstacle is represented by a rectangle. Then, an agent is always retracted
either by the side respectively edge of the rectangle, which is closest to the agent.
This model is valid for agents inside as well as outside the obstacle. To actually
decide which side or edge of the obstacle has to be considered for the retraction, the
space around each obstacle is split in eight sectors outside and one sector inside the
obstacle. The force will be as shown in figure 1.

The vector ~li,j(
¯̄Di,j) from the agent i’s position ~ri to the point of the obstacle

which is the nearest to it, can be calculated as

~li,j(
¯̄Di,j) =

(
¯̄DPD
i,j ~oj + ¯̄Di,j

~dO,j

)
− ¯̄DPD

i,j ~ri (10)
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where ~oj is the center point of obstacle j, ~dO,j the dimension of the rectangle.
¯̄Di,j is a matrix determined for each sector around an obstacle as follows (Compare
also figure 1).

¯̄Di,j :=

[
Dx 0
0 Dy

]
(11)

with

Dx =

 −1 if rx < oj,x − dO,j,x

1 if rx > oj,x + dO,j,x

0 otherwise
(12)

and

Dy =

 −1 if ry < oj,y − dO,j,y

1 if ry > oj,y + dO,j,y

0 otherwise
(13)

where oj,y, oj,y, dO,j,y, dO,j,y are the components of oj respectively dOj
. ¯̄DPD

i,j is

the same matrix than ¯̄Di,j but with the elementwise absolute values.

Finally we find the force ~Fi,O(ri, ok, dk) acting on agent i caused by obstacle j

~Fi,O(ri, ok, dk) = −kO ·~l( ¯̄Di,j) ·
1∥∥∥~l( ¯̄Di,j)

∥∥∥ (14)

where kO represents the general strength of the obstacle forces.

3.7.3 Agents

Agents should keep a certain distance between them, so that the queuing procedure
becomes realistic. Therefore we have to implement a retraction force between them
that is proportional to the inverse distance between each pair of agents.

With some investigations, we concluded that it makes sense if the agents behave
similar to atoms in a crystal lattice (compare figure 2).

So the agents in front of the door compose a realistic crowd. Therefore, the force
~Fi,A(ri, rh) acting on agent i caused by agent h is calculated as

~Fi,A(ri, rh) =

(
1

‖~rh − ~ri‖2
− dA

‖~rh − ~ri‖3

)
· ~rh − ~ri
‖~rh − ~ri‖

(15)

where dA is the agent’s required space.
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Figure 2: Qualitative diagram of the force between agents, similar to a crystal lattice.

3.8 Simulated Situations

Finally, the introduced objects have to be placed to simulate a specific situation on a
train station. The position of the train as well as the number and class of its wagons
have to be defined. Further, the subways and any obstacles on the platform have to
be placed. In a final step, agents and all their personal properties need to be set.

In our simulation, we analyzed the situation where the train consists of SBB
EuroCity wagons. Each train has two first class, a bistro and three second class
wagons.

3.8.1 Two Trains

Our first situation represents a common situation at Zurich HB. There are two trains
parallel at the same platform. There are entrances to the subway as well as some
obstacles (piles) on the platform. There are travellers changing from one train to the
other, some are leaving through the subway and others enter one of the trains.
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Figure 3: Two Trains Situation. The dashed line defines the waiting area for the passengers.
The small green circles mark the doors. The small squares along the train represent the
available seats in the train by their color.

3.8.2 One Train

The other situation we implemented in our simulation represents any station where
a single train arrives. Some passengers leave the train and exit through the subway.
Some other passengers are waiting anywhere on the platform and are going to enter
the train as soon as the outcoming passengers finished deboarding.
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Figure 4: One Train Situation.
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F_D

F_Corr

F_D + F_O

E

Figure 5: The agent (red triangle) has to move to the door (green circle) which is hidden
behind the obstacle. If there are only the forces ~FD and ~FO, the agent will end up in the
equilibrium point E. The correction force ~FCorr leads the agent around the obstacle.

4 Implementation

This chapter first alludes on some specific add-ons that had to be made to guarantee
the model’s proper functioning. Afterwards it should give a small overview about
the created Matlab-Files and their functionality.

4.1 Model Add-ons

4.1.1 Forces Correction

As the agents sometimes ended up in a dead-end on their way to their goal, we had
to improve our force-model by a correction force. If an agent is close to an obstacle,
and the sum of the door force ~FD and obstacle force ~FO becomes very small, this
correction force leads the agents around the obstacles as shown in figures 5 and 6.
In the first of the two discussed situations, the door is ”hidden” behind the obstacle.
The resulting force ~FD+ ~FO leads to a dead-end equilibrium point on the right side of
the obstacle. Therefore the correction force has to lead the agent around the closest
edge of the obstacle.

The mathematical description of the force ~FCorr is

~FCorr = sign( ~FO � ~FD) · kC ·
~oO
‖~oO‖

(16)

where ( ~FO � ~FD) is a two dimensional vector product
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F_O
F_D

F_Corr

F_D + F_O

Figure 6: Different to figure 5 the door is not directly behind the obstacle, but the straight
way is blocked, too. As the forces ~FD and ~FO would already lead the agent the right way
around the obstacle, but are not powerful enough, the correction force ~FCorr will lead the
agent around the obstacle’s edge.

[
a
b

]
�
[
c
d

]
= ad− bc (17)

that is also used by Prof. Dr. C. Glocker in the lecture Mechanik III.
~oO is a vector orthgonal to the obstacle retraction force vector ~FO, actually it is 90
degrees turned clockwise.

~oO =

[
0 −1
1 0

]
~FO (18)

In the example of figure 5, ( ~FO � ~FD) is negative and ~oO is directed to south, so
~FCorr is a vector with direction north and its value is the correction force factor kC .

In the situation in figure 6, the door is not directly behind any object (in fact,
this door represents a train entrance, whereas the door in figure 5 is always a subway
exit). In this case the correction force has to act the other way round. Because the

vector product ( ~FO � ~FD) will have the inverse sign than in the first example, the
correction force for agents attracted by a train’s door is

~FCorr = −sign( ~FO � ~FD) · kC ·
~oO
‖~oO‖

(19)

18



4.2 Initialization

We split the initialization into several files. To simulate a specific testcase, the pa-
rameters have to be set in run testcase.m. This file calls all the specific initialization
files before the actual simulation starts.

init globals This file defines a lot of constants that define the matrices that are
used during the simulation.

init szenario As we defined two scenarios, there are two of these files (one for
the one train situation, the other for the two train situation). In these files, all
the parameters for the agents, doors and obstacles are set, referring to the given
specifications. There are some specific files to distribute the agents properly on the
platform and to define the groups. By setting the agent’s initial positions randomly,
one has to ensure that they are not set inside of any obstacle. The group initial file
sets all members of the same group close together on the platform.

init statistics To collect the data during the simulation, a lot of numbers have to
be stored into matrices. These matrices are initialized in this file.

init style This file defines what the simulation should display and which data
should be stored where. It is possible to display either a map with the agent’s
position or some specific curves. The simulation can also run without displaying
anything.

4.3 Simulation

The simulation.m file includes the time iteration for the simulation. The order of
actualizing the agents’ state follows a random permutation. Mainly, the following
procedures are done in every iteration step. They will be explained in the following
sections.

• Update the agent’s state: Check whether an agent is currently boarding or
deboarding.

• Update strategy: Check whether the agent should change his door decision.

• Calculate forces: Determine the movement for every agent.

• Move agents: Set the new position for every agent according to the calculated
force.
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• Plot the current situation.

• Save data: Actualize statistics and save data and/or pictures.

4.4 Update state

One parameter of the doors is the time, until the next agent can pass it. If a door is
available, the agent update.m file checks first whether there is an agent inside that
wants to deboard. If so, the agent’s state will change to moving. This means that
the agent is now on the platform and interacts with its surrounding.

If there are no more deboarder left, it is checked, whether there is an agent close
enough to the door to enter it. If so, the agents state changes to boarded and the
agent will be set on a seat in the coach. If the agent occupies the last available seat
of the coach, the doors’ activity will turn to inactive, so that no other agents will try
to enter this coach.

4.4.1 Look for a seat

The files agent seat search.m and coach seat search.m are used to check where the
agent takes a seat inside the train. These files will only be valid for the two introduced
situations One Train Model and Two Train Model, because the two doors of every
coach have to be named explicitly. The first file checks whether there is any space
left on the chosen coach. The second file than finds the first available compartment
for the agent.

4.5 Update strategy

In the initialization file a door decision frequency gets specified. The file doordeci-
sion frequency.m then determines how often the agent can change its mind during
the current step. The door decision frequency can be any positive number |f | ∈ R.

The strategy will only be checked for moving agents. Their limit of allowed
redecisions must not be reached. Then the place in queue as well as the remaining
distance for each door will be calculated for agent i. The decision for the best door
will be made by using the agent’s kind of door selection (See section 3.3.2). The
number of available redecisions will have decreased. If agent i is member of a group,
the whole group’s strategy will be the chosen door.

4.6 Calculate forces

The file calculate forces.m calculates the force acting on every agent as it is described
in section 3.7. As a result, the force acting on agent i will be stored so the next
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procedure will determine the agent’s movement.

4.7 Move agent

Also the moving procedure follows the rules described in the description of the model
(see section section 3.6) The steps walked by the agents are calculated using the
explicit Euler formula.

4.8 Plot

As the scene has changed during the recent time step, the current situation gets
displayed. There are two plotting modes and an off-switch:

• Plot map

• Plot graph

• no plot

Plot map shows the situation at the station with the agents as dots on the platform
(figure 7). This will be very convenient to observe the behaviour of the full crowd of
the agents.
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Figure 7: In the mapping mode, the agents are displayed as red points (violet if they are
member of a group). The doors are marked by a green circle (respectively red cross if
an agent has recently used it). Obstacles are displayed with black lines (dotted if it is
inactive). The train consists of images by Maerklin model railway coaches. The scale
is represented in decimeter, as the image of the trains can not be scaled to less than one
Matlab plot unit per pixel.
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Figure 8: In the graph mode, these nine subplots will be displayed during the simulation.

Plot graph displays six time diagrams and three agent diagrams. As an example
we take figure 8 that represents a standard situation from the One Train Model. See
section 5.1.2 for a detailed explanation and interpretation of these plots.

• Approaching shows how many agents are heading to which door. The solid
line represents the subway. The stability of the Nash equilibrium can be iten-
tified by the lines’ variation.

• Moving shows how many agents are on state moving, i.e. the number of
agents walking on the platform. It can easily be identified, that the agents
start deboarding at t0 = 10s.

• Distance indicates the mean remaining distance to the agents’ chosen door.

• (De-)boarded plots the number of agents that already (de-)borded at this
door. The capacity of the door can be recognized by the frequency the curves
rise.

• Waiting shows the number of agents queuing at a door. The plot differs
between agents boarding on a train or leaving through a subway.

• Time waited shows for every single agent the time he had to queue. The
agents are sorted from left to right (first class boarding, f.c. deboarding, s.c.
boarding, s.c. deboarding). As long as an agent is still moving, its dot will
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be plotted in blue. Boarded agents are plotted in green. The first class agents
had to queue less time. As most agents boarded within 50 seconds, there are
almost no blue dots left.

• Redecisions is the recent number of how many time each single agent preferred
a new door. Again, the value for first class agents is smaller.

• Distance walked shows for every single agent the distance it actually walked
(blue/green) as well as the linear distance from the agents start position to its
final goal. Of course the actual distance has to be at least as big as the linear
distance. The deboarding agents’ distances are almost equal to their minimal
distances.

In case of interest, every plot can easily be plotted in a single plot by calling the
specific plot saved · · · .m file.

4.9 Save Data

The save data.m file is responsible to store all statistics values of any interests. Most
of these values can also be identified on the Graph Plot.
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5 Simulation Results and Discussion

5.1 General Results

Before analyzing the effect of single parts of the simulation we noticed some inter-
esting properties of our simulation in general. The graphs in this section have been
calculated using our default setup that is described in section 5.2.

5.1.1 Observations on the map

Beginning The simulation starts 10 seconds before the train reaches its final po-
sition and opens its doors. At that time the waiting passengers are randomly dis-
tributed over the platform. Figure 9 shows this situation as a 2d-plot.
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Figure 9: Situation at the beginning of the simulation. The yellow squares mark com-
partments that are already used by two passengers. The red ones are already full, which
represents, that there are fewer seats in the first class and bistro coaches. All passengers
are distributed randomly over the waiting area but outside of all the obstacles.

Door opening During the first 10 seconds the passengers start approaching a door,
although all doors are still moving. Then the doors open and first all leaving and
changing passenger get off the train. As no agent is able to board yet, they start
forming semi-circular crowds around the doors, which is visible in figure 10.
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Figure 10: Train station after 10 seconds of simulation time. Around the most popular
and most central doors semi-circular crowds start to get formed.

Boarding After 30 seconds, most of the agents have reached their favorite door
and some of them already boarded. Around all popular doors the passengers build
semi-circular waiting crowds and are in balance between moving closer to the door
and not getting to close to any other agent or getting pressed to the train. Figure
11 also shows how the compartments inside the train are getting occupied.

200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

400

30

Figure 11: Train station after 30 seconds of simulation time. People are waiting in front
of their favorite door and the amount of free seats has decreased on all coaches (red com-
partments symbolize no more free seats)

Final state 65 seconds after the train arrived the last agent enters the train. When
the simulation ends after 90 seconds, all agents have found a seat. It is important
to remark that both bistro coaches and one second class coach have been filled up
to the last seat. That means that some agents had to redecide for another door at
another coach, which caused the train to wait longer. In the end the compartment
allocation looks like in figure 12 .
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Figure 12: End of simulation after 90 seconds. All passengers boarded and some coaches
are full.

5.1.2 Insights out of the graphs

The graph view explained in figure 8 provides a comprehensive overview of all the
recorded data. The following paragraphs show some of these observations.

Approaching agents Figure 13 contains a lot of information about how the agents
decide for a door. During the first few seconds the curves are quite unstable which
means that the door decision has not stabilized yet and the Nash equilibrium has
not been found yet. But after the doors opened the curves get quite steady and the
number of approaching agents decreases almost linearly.

The highest peak belongs to the leftmost exit which is located more central than
the other two exit and therefore is approached by most of the second-class passen-
gers. About 10 seconds after the door opening this curve starts to decrease again,
which means that already more passengers are entering the exit than there are new
agents approaching, who just got off the train. About 45 seconds after start of the
simulation, there are already no more leaving agents on the platform.

Something interesting happens after 46 seconds or 47 seconds respectively. There
are only four doors, where there are still agents approaching. The two light green
lines belong to the rightmost second class door of each train, whereas the dark green
lines correspond to the left doors of the two bistro coaches. The bistro coach is filled
up, so all the waiting agents there have to redecide. Of course all of them decide for
the door, that is just 5 meters away and still has some empty seats. In the figure it
is visible how the agents swap from the dark to the light green lines. A few seconds
later one of the two second class coaches is full too. The one on the opposite train
had enough free seats to accommodate all waiting agents.

Figure 14 contains a detailed view of the agent distributions between these four
most popular doors: the one on the left of the bistro-coach and right-most door of the
second-class coaches. Here it is clearly visible, that the Nash equilibrium is not very
stable at all. There are up the three agents, who redecide from one door to another,
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when meanwhile three other agents decide to do the opposite. And after just a few
time steps they decide back. This confirms our assumption from the model overview
(see section 3.1), that an optimal door-decision-strategy would need to be a mixed
strategy and therefore could not be found using the iterative algorithm proposed in
[2].
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Figure 13: Course of the agents’ door approaching behaviour
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Figure 14: Detail view of the approaching agents to the two left-most doors of the bistro
coaches (dark green) and the two right-most doors of the second class coaches (light green)
in the time interval [10s, 15s].

Moving and waiting agents Figure 15 displays how many agents are on the plat-
form. This amount is constant until the doors open. Then it increases until more
agents board than get off the train and finally it decreases in a hyperbolic way until
the last agent boards after about 70 seconds. After 45 seconds about 90% of the
agents have already boarded. So a large part of the time that the train has to stay
at the station is caused by only a few agents that either have to walk too long or
redecide too late.

The number of waiting agents as shown in figure 16 consists mainly of the boarding
agents. The peak is at about 20 seconds, when most boarding agents arrived at
their preferred door, but are still unable to enter the train, because deboarding
has not finished yet. Afterward it decreases almost linearly, as agents can board
homogeneously. For the exiting agents there are some short queues in front of the
subway entrances from about 20 to 40 seconds.

Figure 17 shows the waiting time of each agent separately. The agents are grouped
by class and mode. One can see that the leaving agents almost never have to queue.
As the density of first class passengers per door is much lower, they also have to wait
less than second class travellers. The passengers that change the train also have to
wait less for a couple of different reasons:

One reason is, that they spend the first ten seconds or even longer inside the
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train, which we do not count as waiting because we are only interested in how long
the agents queue before they can board the train. When they get off and walk to the
opposite train, the queue there will already have shortened a bit. Another reason
is, that the leaving doors are equally distributed, which means that some agents get
off somewhere near the end of the train, where almost no passengers queue on the
opposite side.
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Figure 15: Agents situated on the platform
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Figure 16: Agents that have to wait just in front of their preferred door
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Figure 17: Waiting time per agent. The vertical lines separate the 12 types of agents: [1
- 6] first class; [7 - 12] second class; [odd] train one; [even] train two; [1,2,7,8] boarding
agents; [3,4,9,10] deboarding agents; [5,6,11,12] changing agents

Boarding and deboarding agents These two graphs (figure 18 and figure 19) just
show what we expected. The doors let people in and out at almost regular time
steps.
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Figure 18: Agents that are waiting behind a door in order to get off the train
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Figure 19: One graph per door, describing the number of agents inside this door, not
considering the agents that stay inside permanently

Door redecisions Similar to the distribution of the waiting time, figure 19 shows
that almost all redecisions are done by boarding agents. It is no surprise that this
value correlates with the waiting time, as it is much harder to decide, if there are a
lot of other passengers queueing in front of an agent, who thinks about redeciding
for a door that is further away.
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Figure 20: Number of redecisions per agent
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Average distance The plot of the average distance between an agent and his chosen
door (figure 21) reflects the different stages of the simulation. At first the distance
falls linearly, which means that all agents move at full speed toward their chosen
door. Then, as the first agents start to queue and new agents deboard, the distance
decreases less and less. The two small peaks at about 46s and 47s reflect the two
bistro coaches getting filled up. But as the next free door is just 5 meters away the
peaks are quite small. It gets worse, when the second class coach has reached its
maximum capacity and all of the still moving agents have to walk another twenty
meters.

In the agent distribution in figure 22 one can see, that again the boarding agent
have the biggest walking overhead. Deboarding agents are able to walk almost
straight to their exit. Most changing first class agents can walk directly to their
preferred door too. This is caused by the topology of the train station, where the
left subway obstacle blocks primarily second class travellers.
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Figure 21: Average distance between all agents and their chosen door
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Figure 22: Comparison between linear line distance and the walked distance

Simulation Errors In some cases, where we varied our default parameter values,
sometimes imprecisions in our simulation have occured. It could happen, that a few
agents get stuck somewhere in a dead spot where the resulting force is almost equal
to zero. At first this could happen when the agent approached an obstacle that was
in line with him and his chosen door. Than the retraction of the obstacle erased
all the attraction of the door at a certain point. Because of that we introduced a
correcting force that eliminated almost all of this situations (see section 4.1.1).

Another source of errors are inappropriately high time steps or velocities. Our
implementation does not include an explicit obstacle collision detection. Therefore
the obstacle retraction is calibrated high enough, such that an agent with default
velocity can not move so far in a default time step, that he would cross any obstacle
or train border.

5.2 Simulation Variables and Result Indicators

In order to study the influence of many simulation parameters on the boarding
process, we specified a base case and a series of other test cases to compare it to
Table 1 lists all parameters that can easily be varied in the initialization file. The
values written in italics marks the default value. The abbreviations in square brackets
for each parameter are often used in the code and in the appendix .

The default values are our assumptions about a regular, crowded train station. In
the following sections we varied each group of parameters separately and compared
the results to the base case presented above.
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Szenario

Number of Trains one train [OT]
two trains [TT]

Amount of agents

People on Platform [PoP] few (50 passengers per train)
many (100 passengers per train)
too many (200 passengers per train)

People deboarding [Pd] few (25 passengers per train)
many (50 passengers per train)
too many (100 passengers per train)

People already seated [Pas] few (50 passengers per train)
many (200 passengers per train)
too many (300 passengers per train)

People attributes and behaviour

Class ratio (first class share) [FCR] 0.2

Maximum velocity Distribution 1m
s

(mean and variance) 1.5m
s

1 .5 ± 0 .5 m
s (default)

2.5± 1.5m
s

Group ratio no groups
20% grouped
50% grouped

Door decision parameters

Door decision mode [DDM] walk
sum
queue
wait
random

Lazyness coefficient [LC] {0, 0.1, ...0 .5 , ...0.9, 1.0}
Door decision frequency [DSF] 1 decisions per second

20 decisions per second
100 decisions per second

Limitation of the amount of door decisions [DL] {1, 10,∞(default)}
Patience factor for door redecision {0.5, 0 .9 , 1.0}
Time

Time until waiting area opens [TW] 1s/1s (instant)
and time until doors open [TD] 5s/10s (default)

10s/20s (late)

Simulation Duration 90s

Table 1: different simulation parameters
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Statistical measurements To compare the results of the different test setups, we
defined a number of statistical values, which we calculated in every run of the sim-
ulation. Of course this is only a small subset of all the data, which was recorded
during each simulation. We have chosen the values, which we think are most relevant
in terms of how a train company could measure the quality and efficiency of their
train stations.

All the values have been calculated considering only the agents that boarded
a train during the simulation time, including the ones changing from one train to
another. This is important because we are only interested in how long it takes until
the train is able to depart and do not care, if some agents still are on the way
out. Additionally, as exit doors have a much higher capacity than train doors, it is
important that these doors are not considered when studying the distribution of the
agents over the doors or the average waiting times.

So these are the evaluated values:

• maximal boarding time (latest time that any agent entered a train) [maximum]

• boarding time [average / standard deviation]

• covered distance (the distance an agent walked from its initial position or his
leaving door) [average / standard deviation]

• waiting time (the amount of time the agent spent waiting close to his chosen
door) [average / standard deviation]

• number of redecisions [average / standard deviation]

• distribution of boarding agents per door [standard deviation]

5.3 Test Series

Each following subsection presents a detailed analysis of one of the specified parame-
ters. The statistical measurements of all test cases used for this section can be found
in the appendix. The full test results, including the matlab workspace at the end of
each simulation, are available on the homepage (see section 8.1).

5.3.1 Number of Agents

At first we varied the number of agents per train. The diagrams in figure 23 show,
that all measurements increase the more agents are added. It is not surprising, that
more people result in longer ways, more redecisions, longer waiting queues and so
on. When comparing the train scenarios, it is at first not clear, why the agents need
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to walk, redecide and wait less, if they are in the two train situation. But it gets
reasonable, if we consider, that there are only in this scenario additional changing
agents. They have to wait less and can just walk across the platform, without trying
to decide for a door while the train is still moving.

5.3.2 Door Decision Modes

It was our main goal to study different door decision algorithms. So we started first
with just the five different methods described in section 3.3.2 with default param-
eters. At first it is important to remark, that the values for the random-mode are
not quite comparable (see figure 24). There the agents board so slowly, that after 90
seconds most agents are still on the platform and therefore not considered in these
diagrams.

In most categories the queue-mode seems to be the most promising one, especially
if we look at the maximal boarding time. Although the difference to the walk and
the sum approach are not that big regarding the average boarding time, the train
would be able to leave about 13 seconds earlier if all passengers would chose their
door only based on the length of the queues. This method also distributes the agents
much more uniformly over the doors than the other modes. The only downside of
this mode is the big number of door decisions. This probably makes it really hard
to apply this mode, if we would try it in reality.

The sum-mode is the algorithm, that we think describes best, what human pas-
sengers do. They normally look around and decide for the nearest door. Only if it
is to crowded there, they will take the longer way to the next door. At first sight,
it would make sense, if this was the optimal method. So why is it not optimal to
minimize the sum of the walking and the queueing time?

• This would only be optimal from the point of view of a single agent and not in
the global scale. For many agents this method seems in fact to be faster than
the queue-mode, as the mean boarding time is just one second higher with a
higher deviation.

• If a door A is much closer at the beginning than a door B, this does not imply,
that an agent can board earlier there, even if both doors have no queues at all.
Then during the entrance of the train and the initial deboarding, so from about
15 to 20 seconds, no boarding is possible anyways. This gives agents that move
to doors further away the chance to catch up, while the others just queue before
the door.

• Last and probably most important is the fact, that with this method some
central coaches get filled up completely and the agents queuing there have to
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Figure 23: Variation of the number of agents that are moving through the train station.
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walk to another door. Unfortunately the agents do not see this event coming
and all of them stay queuing there until the last seat is taken. The queue-mode
adapts better to this issue, as the agents choose the doors more equally and
therefore no coach gets filled up completely.

For the walk-method the same arguments as for the sum-methods apply, just in
a intensified way. Here it strikes the eyes, how minimal the number of redecisions is.
The walk-mode is the only algorithm, which can choose based on the initial position
of the agent and does not have to take the other agents into consideration. The only
two situations, in which such an agent has to decide again, is when either his chosen
coach is full or when he has to make a large detour around an obstacle or a crowd
and he comes across a new nearest door.

The wait-method seems to do a very good job in his main concern: minimizing
the waiting time. The downside of this approach is the much longer distance and
the huge number of redecisions. As said before the waiting time for the random-
algorithm is not really comparable here, as most of the agents don’t even get near
the door before the simulation stops.

5.3.3 Laziness Coefficient Optimisation

As we have seen some remarkable differences between the queue-, sum- and walk-
modes, we wanted a more precise separation and simulated with different agent
laziness coefficient in 0.1-steps. So laziness 0 corresponds to the queue-mode, 0.5 is
exactly the same as the sum-mode and laziness 1.0 means minimizing the walking
time.

For both, the maximal boarding time and the average boarding time, a laziness
factor of 0.1 is optimal. 0.1 is even better than 0.0, because then agents might change
their minds, if another door, that was not their chosen door but is closer, gets free.
This is of special importance at the end, when only a few agents are left, hence the
large gap in the plot of the maximal boarding time (see figure 25).

This leads to quite an astonishing ”paradox”: The more an agent tries to minimize
his walking time, the more he actually has to walk. This can be explained by the
fact that, with the default parameters and the lazy-mode, no coach gets filled, which
saves a few agents to walk some additional, unscheduled extra-distance to another
coach.

5.3.4 Door Decision Frequency

In order to see whether the simulation depends on the frequency of the door decisions,
we varied the number of iterations per seconds of the door decision process (see figure
26). The effect seems to be visible, but not statistically significant.
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Figure 25: Variation of the laziness coefficient
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agent

5.3.5 Door Decision Limit

We also limited the number of times an agent is allowed to change his mind and
approach a different door. Figure 27 shows, that it is important for the agents to
have more than just one chance to decide for a door. The difference between 10 and
unlimited decisions is not significant.

5.3.6 Patience

A variation of the patience factor as in figure 28 seems not to have a significant
influence on the boarding times. A small patience factor of 0.5, which means that
agents redecide only if another door is expected to let them in twice as fast, seems
to be a little bit faster, if we look at the mean boarding time.
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Figure 28: Different patience factors. 0.5 means that the agent compares all the estimated
times to reach another door with half of his current one.

5.3.7 Velocity

Higher velocities reduce the final boarding time drastically (see figure 29). However
the average boarding time does not decrease that much. This is the case, because
during the first 15 seconds no agent can board anyway, so a higher velocity only
helps the agents to get closer to the door before boarding starts. When we distribute
the maximal velocity per agent randomly around 1.5m

s
with standard deviation 0.5m

s
this seems to be a little bit faster compared to the situation, where every agent has
the same maximal velocity of 1.5m

s
. But the difference is not significant.
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Figure 29: Variation of the maximal velocity of the agents

5.3.8 Groups

As expected having a lot of groups on the platform increases the mean boarding
time and the average distance (see figure 30). The different amount of redecisions
might be caused by the fact, that in a group all agents have to redecide together.
But again, the influence seems to be quite small and the differences not statistically
significant, considering that only five simulations of each group have been made.
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Figure 30: Different group ratios. Each group consists of 10 agents.

5.3.9 Simulation Start relative to the Door Opening

When varying the point in time when the waiting area opens and when the doors of
the train open, one can notice some significant differences (see figure 31).

There is a complex reason, why the maximal boarding time for the default start
is bigger than for the two other starts. If the train arrives quicker, then the agents
have no time to group around the still driving doors. Therefore there are more agents
that decide for the doors at the end of the train. These doors are not considered
that often in the default case because they are too far away at the beginning.

With the third case, where the train still drives for 20 seconds, the opposite
happens. The agents pile up in front of the door, but are not fast enough to follow
the train. The agents build a kind of tractrix behind the train until their shortfall
gets too big and they redecide for the next door arriving. Because this process
takes longer in this case, the agents stay more evenly distributed on the boarding
platform and therefore also chose their boarding door more evenly. The duration of
this initial train-following-process also correlates with the number of door decisions
and the covered distance.

If we take a look at the mean boarding time we see, that a longer time period
with closed doors increases it by about 7 seconds for every additional 10 seconds.
This means that the additional ten seconds of preparation on the platform helps the
agents to reduce the boarding time by three seconds.
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Figure 31: Variation of the moment where the simulation starts relative to the train-
entrance

5.3.10 Waiting Area

In our default case the waiting area is quite big and sprawls over almost the entire
platform. In this test case we compared the base case to a smaller waiting area that
only covers the space between the two central subway exits. We did this comparison
for both train stations (see figure 32). The mean boarding time increases with the
smaller area, because they are not able spread as quickly over the platform as in the
base case. It also results in a longer way for the average agent.
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Figure 32: Two sizes of the waiting area simulated in both train stations
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6 Summary and Outlook

Conclusions The main aim of our project was to find an appropriate model that
is able to simulate big crowds moving in a train station. We intended to find some
specific parameters that affect the boarding behaviour of the passengers and with
that an optimization of the minimal boarding time and to maximize distribution of
the passengers in the different coaches.

The model we implemented was able to simulate the intended situations (i.e.
Zurich, Sargans) on a platform quite well. The model is able to include various
scenarios, like different exits and obstacles.

With the introduced decision modes for the passengers, we were able to analyze
the effect of different decision parameters on the resulting final situation. Therefore,
a strategy, which mainly consists of taking the door with the smallest queue, leads to
a minimal final boarding time. All others characteristics as mean distance walked,
mean time waited and the uniform distribution over all coaches are optimized by
this strategy. Other factors like the frequency of decision making, limitations of
maximum redecisions as well as the patience factor had a rather small influence.

Discussion We calculated five simulations in 36 different test cases. This already
took several hours of computation. But in order to get more meaningful results there
would be many more simulations needed. Our test suite was big enough to separate
many differences clearly, but in some unclear cases more data samples would have
been helpful.

There are also some imprecisions in our model. If the scenario is quite complex the
force model does not imply a way from the agents position towards his chosen door.
Another problem is, that if a crowd gets bigger and bigger the agent density increases
to an unrealistic high level. That way it can happen, that an agent experiences a
force so heavy, that he gets ”pressed through the wall” and is unable to get out
again. An additional obstacle-agent-comparison might be helpful there.

All in all our model and our implementation fulfills our expectations and was able
to provide some interesting results.

Outlook There is always room for possible extensions:

• An extended door decision mode, which also takes the number of free seats
behind the door into account, could help to optimize the boarding time even
further.

• If one would like to simulate more complex scenarios, like complete train sta-
tions, with many more trains and obstacles, it would be essential to use much
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more object oriented design in the implementation. That way every door would
be linked to a coach and every coach would be part of a train. This would make
the whole setup process much easier.

• In areas with more obstacles the force model would need to be extended with
some sort of shortest-path detection like Dijkstra’s algorithm. The combination
of such a graph algorithm with the existing model of attracting and repulsive
forces could get quite tricky though.

• To make the boarding process more realistic, it would be necessary to simulate
the interior of the coaches also with freely moving agents. One could take into
account, that boarding an already full coach is still possible, as long going as
through the coach at some slower speed is not impossible.

• Another interesting observation is, that passengers might behave completely
different in some special situations. For instance, when the train is on the
verge of leaving and an agent wants to board, but just realizes that his door is
broken, the agent will start running towards the next door. All agent are just
able to run for some seconds, so they have to decide wisely when it is dramatic
enough to run.

• Our model does not care much about the beginning of the simulation. We just
initialize the agents all over the platform and then give them some time to array
before the train arrives. It would be interesting to see, where agents, who arrive
at the platform several minutes before the entrance of the train, would end up.

• To verify our calculated data some measurement of realistic behaviour would
be needed. That way one could investigate the ”real laziness factor”, which
would probably be located somewhere above our optimal 0.1.

• Finally it would be challenging to reason about possible ways to persuade real
travellers to behave more queue-mode-like. We think that a wise positioning
of the subway exits is very important. If the train stations were already built
with the distribution of the passengers in mind, the laziness of the agent would
not be that important anymore.
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8 Appendix

8.1 Link to further material

This report, the full matlab source code, a video of the basic test case and all the
test case results used for the analysis section are ready to download under this URL:
http://n.ethz.ch/∼grafdan/train/

8.2 Sourcecode

This chapter lists the main source code files of this simulation. To run the simulation
yourself use these commands:

1 % first edit init style.m to configure the plotting and output modes
2 % then specify the testcase id (2 is base case with two trains)
3 Testcase = 2
4 % and start the simulation
5 run testcase
6 % or use the test suite command to run all testcases and save movies,

statistics and workspace snapshots to the result folder
7 run testsuite

8.2.1 Starting points

Listing 1: run testsuite.m

1 test case count = 36;
2 sample count = 5;
3

4 for Testcase = 1:test case count
5 datestr(now)
6 Testcase
7

8 % create file header
9 value names = {'final boarding time mean boarding time

std dev boarding time mean distance std dev distance
mean waiting time std dev waiting time mean decisions
std dev decisions std dev boarded per door unboarded'};

10 dlmwrite(strcat('results/textfiles/', int2str(Testcase), '.txt'),strcat(
'Testcase Nr. ', int2str(Testcase)), 'delimiter', '');

11 dlmwrite(strcat('results/textfiles/', int2str(Testcase), '.txt'),
value names(1), 'delimiter', '','-append');

12

13 for isample = 1:sample count
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14 isample
15 %clear('global')
16 run testcase
17 save(strcat('results/workspace/', int2str(Testcase), ' ', int2str(

isample), '.mat'));
18

19

20 % collect single value results
21 moving agents = (agent(:,agentSTATE) 6= agentSTATEmoving)
22 boarding agents = (agent(:,agentMODE) 6= agent mode enter subway)
23 selected agents = (boarding agents & moving agents)
24

25 final boarding time = max(stat moving time(selected agents,
stat movEND))

26 mean boarding time = mean(stat moving time(selected agents,
stat movEND) - stat moving time(selected agents,stat movSTART))

27 stddev boarding time = std(stat moving time(selected agents,
stat movEND) - stat moving time(selected agents,stat movSTART))

28 mean distance = mean(stat sum distance(selected agents,1))
29 stddev distance = std(stat sum distance(selected agents,1))
30 mean waiting time = mean(stat sum waiting(selected agents,1))
31 stddev waiting time = std(stat sum waiting(selected agents,1))
32 mean decision = mean(stat sum decision(selected agents,1))
33 stddev decision = std(stat sum decision(selected agents,1))
34 stddev boarded per door = std(stat boarded per door(step,door(:,

doorMODE) 6= agent mode enter subway))
35 unboarded = sum(agent(:,agentSTATE) == agentSTATEmoving)
36

37 dlmwrite(strcat('results/textfiles/', int2str(Testcase), '.txt'), [
final boarding time, mean boarding time, stddev boarding time,
mean distance, stddev distance, mean waiting time,
stddev waiting time, mean decision, stddev decision,
stddev boarded per door, unboarded], 'delimiter', '\t','-append'
);

38

39 end
40 end
41 quit

Listing 2: run testcase

1 % Start simulation here!
2 % Arrangment for simulation
3

4

5 init globals;
6 init main;
7 init style;
8

49



9 % ------------------------------
10 % -----Standard-values----------
11

12 % Szenario
13 SZENARIO = TWO TRAINS; % [TT]
14

15 % Crowdness
16 PART FC = 0.2; % [FCR]
17 AGENTS OP = MANY AGENTS OP; % [PoP]
18 AGENTS D = MANY AGENTS D; % [Pd]
19 AGENTS SEATED = MANY AGENTS SEATED; % [Pas]
20

21 WAITING AREA = BIG; % [WA]
22

23 % Behaviour
24 DOOR DECISION MODE = MIN SUM; % [DDM]
25 LAZINESS = 0.5; % [LC]
26 PATIENCE = 0.9; % [P]
27 DECISION STEPFREQ = 1; % [DSF]
28 DECISION LIMIT = agentDECTIMESinfinite; % [DL]
29 VELOCITY = 1.5; % [VD]
30 VELOCITY VAR = 0.5;
31 GROUPING = 0; % [G]
32 GROUP SIZE = 10; % [GS]
33

34 % Time
35 AREA DELAY = 5; % [TW]
36 DOORS DELAY = 10; % [TD]
37

38 % Simulation Stability
39 TIMESTEP = 0.05; % [TS]
40 FORCES COEFF = FC STANDARD;
41 TIMEMAX = 90;
42

43 switch Testcase
44 case 1
45 SZENARIO = ONE TRAIN; % [OT]
46 case 2
47

48 case 3
49 SZENARIO = ONE TRAIN; % [OT]
50 AGENTS OP = FEW AGENTS OP; % [PoP]
51 AGENTS D = FEW AGENTS D; % [Pd]
52 AGENTS SEATED = FEW AGENTS SEATED; % [Pas]
53 case 4
54 AGENTS OP = FEW AGENTS OP; % [PoP]
55 AGENTS D = FEW AGENTS D; % [Pd]
56 AGENTS SEATED = FEW AGENTS SEATED; % [Pas]
57 case 5
58 SZENARIO = ONE TRAIN; % [OT]
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59 AGENTS OP = TOOMANY AGENTS OP; % [PoP]
60 AGENTS D = TOOMANY AGENTS D; % [Pd]
61 AGENTS SEATED = FEW AGENTS SEATED; % [Pas]
62 case 6
63 AGENTS OP = TOOMANY AGENTS OP; % [PoP]
64 AGENTS D = TOOMANY AGENTS D; % [Pd]
65 AGENTS SEATED = FEW AGENTS SEATED; % [Pas]
66 case 7
67 DOOR DECISION MODE = MIN WALK; % [DDM]
68 case 8
69 DOOR DECISION MODE = MIN QUEUE; % [DDM]
70 case 9
71 DOOR DECISION MODE = MIN WAIT; % [DDM]
72 case 10
73 DOOR DECISION MODE = RANDOM; % [DDM]
74 case 11
75 LAZINESS = 0.0; % [LC]
76 case 12
77 LAZINESS = 0.1; % [LC]
78 case 13
79 LAZINESS = 0.2; % [LC]
80 case 14
81 LAZINESS = 0.3; % [LC]
82 case 15
83 LAZINESS = 0.4; % [LC]
84 case 16
85 LAZINESS = 0.5; % [LC]
86 case 17
87 LAZINESS = 0.6; % [LC]
88 case 18
89 LAZINESS = 0.7; % [LC]
90 case 19
91 LAZINESS = 0.8; % [LC]
92 case 20
93 LAZINESS = 0.9; % [LC]
94 case 21
95 LAZINESS = 1.0; % [LC]
96 case 22
97 DECISION STEPFREQ = 1*TIMESTEP; % [DSF]
98 case 23
99 DECISION STEPFREQ = 100*TIMESTEP; % [DSF]

100 case 24
101 DECISION LIMIT = 1; % [DL]
102 case 25
103 DECISION LIMIT = 10; % [DL]
104 case 26
105 PATIENCE = 1; % [P]
106 case 27
107 PATIENCE = 0.5; % [P]
108 case 28
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109 VELOCITY = 1; % [VD]
110 VELOCITY VAR = 0;
111 case 29
112 VELOCITY = 1.5; % [VD]
113 VELOCITY VAR = 0;
114 case 30
115 VELOCITY = 2.5; % [VD]
116 VELOCITY VAR = 1.5;
117 case 31
118 GROUPING = 0.2; % [G]
119 case 32
120 GROUPING = 0.5; % [G]
121 case 33
122 AREA DELAY = 1; % [TW]
123 DOORS DELAY = 1; % [TD]
124 case 34
125 AREA DELAY = 10; % [TW]
126 DOORS DELAY = 20; % [TD]
127 case 35
128 WAITING AREA = SMALL; % [WA]
129 SZENARIO = ONE TRAIN; % [OT]
130 case 36
131 WAITING AREA = SMALL; % [WA]
132 otherwise
133 'unknown testcase id'
134 return;
135

136 end
137

138 switch SZENARIO
139 case ONE TRAIN
140 init szenario one train;
141 case TWO TRAINS
142 init szenario two trains;
143 end

8.2.2 Initializations

Listing 3: init globals.m

1 % In this script, constants (valid for every scene) are defined
2

3 %set people (position, goal), doors (size, frequency, capacity), obstacles
4 %(rectangle position, size, inside/outisde, active/inactive),
5

6 % To identify the column of the "people" Matrix,
7 % those indices are represented by these variables
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8 agentXPOS = 1; % 1st column: x-position in meters
9 agentYPOS = 2; % 2nd col.: y-position in meters

10 agentXVEL = 3; % x-velocity in meters
11 agentYVEL = 4; % y-velocity in meters
12 agentXFORCE = 5; % Force acting on agent
13 agentYFORCE = 6; % ditto
14 agentMODE = 7; % Mode: Defines the mode of possible doordecision
15 agentSTATE = 8; % current state
16 agentSTATEdeboarding = -1;
17 agentSTATEmoving = 0;
18 agentSTATEboarded = 1;
19 agentLDOOR = 9; % Leaving door
20 agentCDOOR = 10; % current chosen door for bording
21 agentMAXV = 11; % Maximal velocity
22 agentPATIENT = 12; % privilege factor for current door
23 agentLAZY = 13; % balance between movingtime (lazy) and queuetime (1-

lazy)
24 agentDMODE = 14; % Mode of deciding for leaving door
25 agentDMODEsum lazy = 1; % minimum sum of walk(lazy) + queue(1-lazy)
26 agentDMODEsum = 2; % agent decides for minimum sum of walk+queue
27 agentDMODEwalk = 3; % agent decides for minimum walk
28 agentDMODEqueue = 4; % agent decides for minimum queue
29 agentDMODEwait = 5; % minimum difference between walk and queue
30 agentDMODErandom = 6; % agent chooses randomly
31 agentDECTIMES = 15; % Max. times of redecision
32 agentDECTIMESnone = 0;
33 agentDECTIMESinfinite = -1;
34 agentGROUP = 16; % 0 is independent
35 agentGROUPnone = 0;
36 % Amount of columns for agent
37 agentCOLCOUNT = agentGROUP;
38

39 % columns of "door" Matrix represent:
40 doorXPOS = 1; % 1st column: x-position in meters
41 doorYPOS = 2; % y-position
42 doorMODE = 3; % identifies a certain "group" of doors.
43 % can only be entered by people with same mode
44 doorSTATE = 4; % current time left, til next agent can enter
45 doorMEANFREQ = 5; % mean frequency of people entering
46 doorVARFREQ = 6; % variation of frequency
47 doorACTIVITY = 7; % state of the door (gets set to inactive if coach

full)
48 doorINACTIVE = 0;
49 doorACTIVE = 1;
50 doorAGENT = 8; % amount of people enterred the door
51 % (negativ, while people still debording)
52 doorAGENTbord = 1;
53 doorAGENTdebord = -1;
54 % Amount of columns for door
55 doorCOLCOUNT = doorAGENT;
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56

57 % columns of "obstacle" Matrix represents:
58 obstacleXCENTER = 1;
59 obstacleYCENTER = 2;
60 obstacleWIDTH = 3;
61 obstacleHEIGHT = 4;
62 obstacleSTART = 5; % time value, when obstacle starts to be activated
63 obstacleEND = 6; % time value, when obstacle stops being activated
64 obstacleRANGE = 7; % distance in meters where the retracting force has

abs = 1
65 obstaclePASSABLE = 8; % should agents be able to move trough the obstacle

borders
66

67 % Amount of columns for obstacle
68 obstacleCOLCOUNT = obstaclePASSABLE;
69

70 % Direction iteration arrays (East, North, West, South)
71 xdir = [1,0,-1,0];
72 ydir = [0,1,0,-1];
73

74 % Plotting Modes
75 plotMAPview = 1;
76 plotGRAPHview = 2;
77 plotDEFAULT = 3;
78

79 % Video Recording
80 videoOFF = 0;
81 videoON = 1;
82

83 % Data Export
84 data export OFF = 0;
85 data export ON = 1;
86

87 % time when last person boarded
88 final boarding time = 0;
89

90 % train entrance velocity
91 trainVELOCITY = 3;
92

93 % simulation modes
94 simulationMODEtest = 0;
95 simulationMODEonetrain = 1;
96 simulationMODEtwotrains = 2;

Listing 4: init main.m

1 % Szenario
2 ONE TRAIN = 1;
3 TWO TRAINS = 2;

54



4

5 % Crowdness
6 FEW AGENTS OP = 50;
7 MANY AGENTS OP = 100;
8 TOOMANY AGENTS OP = 200;
9 FEW AGENTS D = 25;

10 MANY AGENTS D = 50;
11 TOOMANY AGENTS D = 100;
12 FEW AGENTS SEATED = 50;
13 MANY AGENTS SEATED = 200;
14 TOOMANY AGENTS SEATED = 300;
15

16 SMALL AREA OT = [50, 5];
17 SMALL AREA TT = [50, 5];
18 SMALL = [SMALL AREA OT; SMALL AREA TT];
19 BIG AREA OT = [100,7];
20 BIG AREA TT = [150,9];
21 BIG = [BIG AREA OT; BIG AREA TT];
22

23 % Behaviour (Agents)
24 MIN WALK = agentDMODEwalk; % equal to "SUM" with lazy = 1;
25 MIN SUM = agentDMODEsum lazy;
26 MIN QUEUE = agentDMODEqueue; % equal to "SUM" with lazy = 0;
27 MIN WAIT = agentDMODEwait;
28 RANDOM = agentDMODErandom;
29

30 % Force coeffs
31 FC STANDARD = ones(5,1);
32 FC obstacleRetraction = 1;
33 FC agentAttraction = 2;
34 FC agentAttractionGroup = 3;
35 FC agentRetraction = 4;
36 FC doorAttraction = 5;
37

38 FC STANDARD(FC obstacleRetraction) = 10000;
39 FC STANDARD(FC agentAttraction) = 1000;
40 FC STANDARD(FC agentAttractionGroup) = 2000;
41 FC STANDARD(FC agentRetraction) = 2;
42 FC STANDARD(FC doorAttraction) = 20000;

Listing 5: init style.m

1 % setup of special behaviour (non test case specific options, like movie
output, save paths and plotting mode)

2

3 % plotting mode
4 plotting mode = plotMAPview;
5 % plotting mode = plotGRAPHview;
6 % plotting mode = plotDEFAULT;
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7 if plotting mode 6= plotDEFAULT
8 my figure = figure('Position', [20, 100, 1200, 600], 'Name','Simulation

Plot Window');
9 end

10

11 % video recording
12 %video mode = videoON;
13 video mode = videoOFF;
14 avi file dir = 'results/movies/';
15 avi file specs = strcat('simulation-',int2str(Testcase),'-',int2str(isample)

,'-');
16

17 init video
18

19

20 % Data Export Mode Configuration
21 data export mode = data export OFF;
22 save dt = 0.5;
23 save file prefix = strcat('results/frames/simulation-',int2str(Testcase),'-'

,int2str(isample),'-');
24 save file suffix = '.mat';

Listing 6: init video.m

1 % initialising terms for capturing an avi-file
2 if video mode == videoON
3

4 avi file prefix = 'video ';
5 avi file date = datestr(now, 'yyyy-mm-dd-HH-MM-SS');
6 avi file suffix ='.avi';
7

8 avi filename = strcat(avi file dir, avi file prefix, avi file date, ...
9 ' ', avi file specs, avi file suffix)

10

11 aviobj = avifile(avi filename);
12 aviobj.fps = 20; % Because we simulate with dt = 0.05s
13 aviobj.compression = 'Cinepak';
14 aviobj.quality = 60; % percent
15

16 end

Listing 7: init szenario one train.m

1 %simulate one train as on a platform in Sargans
2

3 % -------
4 % GENERAL
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5 % -------
6

7 simulation mode = simulationMODEonetrain;
8

9 % specify scenario (SI units)
10 border = [0,0,200,45]; %left, bottom, width, height
11

12 % time specification
13 tmax = TIMEMAX;
14 dt = TIMESTEP;
15 stepcount = tmax/dt;
16

17 % ------
18 % AGENTS
19 % ------
20

21 class FIRST = 1;
22 class SECOND = 2;
23 class count = 2;
24

25 agent type BOARDING = 1;
26 agent type DEBOARDING = 2;
27 agent type count = 2;
28

29 % number of agents as summed up (for later use as index ranges)
30

31 agent part count = zeros(class count, agent type count);
32 agent part sum = zeros(class count, agent type count);
33

34 agent part count(class FIRST, agent type BOARDING) = round(AGENTS OP*PART FC
);

35 agent part count(class FIRST, agent type DEBOARDING) = round(AGENTS D*
PART FC);

36

37 agent part count(class SECOND, agent type BOARDING) = round(AGENTS OP*(1-
PART FC));

38 agent part count(class SECOND, agent type DEBOARDING) = round(AGENTS D*(1-
PART FC));

39

40 agent part sum(class FIRST, agent type BOARDING) = agent part count(
class FIRST, agent type BOARDING);

41 agent part sum(class FIRST, agent type DEBOARDING) = agent part count(
class FIRST, agent type DEBOARDING) + agent part sum(class FIRST,
agent type BOARDING);

42

43 agent part sum(class SECOND, agent type BOARDING) = agent part count(
class SECOND, agent type BOARDING) + agent part sum(class FIRST,
agent type DEBOARDING);

44 agent part sum(class SECOND, agent type DEBOARDING) = agent part count(
class SECOND, agent type DEBOARDING) + agent part sum(class SECOND,
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agent type BOARDING);
45

46 agentcount = agent part sum(class SECOND, agent type DEBOARDING);
47

48

49 % Array for agents
50 agent = zeros(agentcount, agentCOLCOUNT);
51 agentspace = FORCES COEFF(FC agentRetraction); % extension of an agent (m

)
52 agentmass = 80; % mass of an agent (kg)
53

54 %specify type of entering door (1 (subway), 2 (2nd class), 3 (1st class)
55 agent mode enter subway = 1;
56 agent mode enter second class = 2;
57 agent mode enter first class = 3;
58

59 agent(1 :
agent part sum(class FIRST, agent type BOARDING), agentMODE) =
agent mode enter first class;

60 agent(agent part sum(class FIRST, agent type BOARDING)+1 :
agent part sum(class FIRST, agent type DEBOARDING), agentMODE) =
agent mode enter subway;

61

62 agent(agent part sum(class FIRST, agent type DEBOARDING)+1 :
agent part sum(class SECOND, agent type BOARDING), agentMODE) =
agent mode enter second class;

63 agent(agent part sum(class SECOND, agent type BOARDING)+1 :
agent part sum(class SECOND, agent type DEBOARDING), agentMODE) =
agent mode enter subway;

64

65 % Specify initial state (moving, deboarding)
66 agent(1 :

agent part sum(class FIRST, agent type BOARDING), agentSTATE) =
agentSTATEmoving;

67 agent(agent part sum(class FIRST, agent type BOARDING)+1 :
agent part sum(class FIRST, agent type DEBOARDING), agentSTATE) =
agentSTATEdeboarding;

68

69 agent(agent part sum(class FIRST, agent type DEBOARDING)+1 :
agent part sum(class SECOND, agent type BOARDING), agentSTATE) =
agentSTATEmoving;

70 agent(agent part sum(class SECOND, agent type BOARDING)+1 :
agent part sum(class SECOND, agent type DEBOARDING), agentSTATE) =
agentSTATEdeboarding;

71

72 %set leaving doors
73 agent(:, agentLDOOR) = zeros(agentcount, 1);
74

75 agent(agent part sum(class FIRST, agent type BOARDING)+1 :
agent part sum(class FIRST, agent type DEBOARDING), agentLDOOR) ...
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76 = round(linspace(10,13,agent part count(class FIRST,
agent type DEBOARDING)));

77 agent(agent part sum(class SECOND, agent type BOARDING)+1 :
agent part sum(class SECOND, agent type DEBOARDING), agentLDOOR) ...

78 = round(linspace(3,9,agent part count(class SECOND,
agent type DEBOARDING)));

79

80 %choice for entering door based on agentMODE
81 agent(:, agentCDOOR) = ones(agentcount,1);
82

83 agent(:, agentMAXV) = VELOCITY*ones(agentcount, 1) + VELOCITY VAR * rand(
agentcount, 1);

84 agent(:, agentPATIENT) = 0.9*ones(agentcount, 1);
85 agent(:, agentLAZY) = LAZINESS*ones(agentcount, 1);
86 agent(:, agentDMODE) = DOOR DECISION MODE*ones(agentcount, 1);
87 agentDECstepfrequency = DECISION STEPFREQ; % inicates the step-based

freq. agent decides for best door
88 agent(:, agentDECTIMES) = DECISION LIMIT*ones(agentcount, 1);
89 agent(:, agentGROUP) = agentGROUPnone*ones(agentcount, 1);
90

91

92 % -----
93 % DOORS
94 % -----
95 doorcount = 13; % 1 train, 3x second class waggons, 1x Bistro (1 door), 2x

first class, 2 exits
96

97 % Array for doors
98 door = zeros(doorcount, doorCOLCOUNT);
99 doorrange = 0.5;

100 doorstrength = FORCES COEFF(FC doorAttraction);
101 doors opening time = DOORS DELAY;
102

103 % Exits
104 door(1, doorXPOS) = 85-30;
105 door(2, doorXPOS) = 85+30;
106

107 door(1:2, doorYPOS) = 15;
108 door(1:2, doorMODE) = agent mode enter subway;
109 door(1:2, doorSTATE) = 0;
110 door(1:2, doorMEANFREQ) = 5; %more people than on the train
111 door(1:2, doorVARFREQ) = 0.1;
112 door(1:2, doorACTIVITY) = doorACTIVE;
113

114 % Train
115 door(3, doorXPOS) = 10+0*25+1.5;
116 door(4, doorXPOS) = 10+0*25+23.5; % Second class
117 door(5, doorXPOS) = 10+1*25+1.5;
118 door(6, doorXPOS) = 10+1*25+23.5;
119 door(7, doorXPOS) = 10+2*25+1.5;
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120 door(8, doorXPOS) = 10+2*25+23.5;
121 door(9, doorXPOS) = 10+3*25+1.5; % Bistro
122 door(10, doorXPOS) = 10+4*25+1.5; % First class
123 door(11, doorXPOS) = 10+4*25+23.5;
124 door(12, doorXPOS) = 10+5*25+1.5;
125 door(13, doorXPOS) = 10+5*25+23.5;
126

127 door(3:13, doorYPOS) = 19.9;
128 door(3:9, doorMODE) = agent mode enter second class;
129 door(10:13, doorMODE) = agent mode enter first class;
130 door(3:13, doorSTATE) = doors opening time; % wait for some seconds until

people can de/board
131 door(3:13, doorMEANFREQ) = 0.7;
132 door(3:13, doorVARFREQ) = 0.1;
133 door(3:13, doorACTIVITY) = doorACTIVE;
134

135 doorMODEsum = max(door(:,doorMODE));
136

137 % Sum up number of leaving agents
138 for idoor = 1:doorcount
139 door(idoor, doorAGENT) = -sum(agent(:, agentLDOOR)==idoor);
140 end
141

142

143 % ---------
144 % OBSTACLES
145 % ---------
146

147 traincount = 1;
148

149 obstaclecount = 5; %1 train, 1 waiting area, 1 building, 2 doublesubways
150

151 % Array for obstacles
152 obstacle = zeros(obstaclecount, obstacleCOLCOUNT);
153

154 obstacle(:, obstacleRANGE) = FORCES COEFF(FC obstacleRetraction)*ones(
obstaclecount, 1);

155 obstacle(:, obstaclePASSABLE) = zeros(obstaclecount, 1);
156

157 obstacle(:, obstacleSTART) = 0;
158 obstacle(:, obstacleEND) = tmax;
159

160 % train
161 obstacle(1, [obstacleXCENTER, obstacleYCENTER]) = [95, 22.5];
162 obstacle(1, [obstacleWIDTH, obstacleHEIGHT]) = [170,5];
163

164 % start area
165 oSTARTAREA = 2;
166 obstacle(oSTARTAREA, [obstacleXCENTER, obstacleYCENTER]) = [85, 16];
167 obstacle(oSTARTAREA, [obstacleWIDTH, obstacleHEIGHT]) = WAITING AREA(1,:);
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168

169 obstacle(oSTARTAREA, obstacleSTART) = 0;
170 obstacle(oSTARTAREA, obstacleEND) = AREA DELAY;
171

172 % building
173 obstacle(3, [obstacleXCENTER, obstacleYCENTER]) = [100, 5];
174 obstacle(3, [obstacleWIDTH, obstacleHEIGHT]) = [200,10];
175

176 % subways;
177 obstacle(4, [obstacleWIDTH, obstacleHEIGHT]) = [20,5];
178 obstacle(4, [obstacleXCENTER, obstacleYCENTER]) = ...
179 door(1, [doorXPOS, doorYPOS]) + [obstacle(4, obstacleWIDTH)/2 + 1, 0];
180 obstacle(5, [obstacleWIDTH, obstacleHEIGHT]) = [20,5];
181 obstacle(5, [obstacleXCENTER, obstacleYCENTER]) = ...
182 door(2, [doorXPOS, doorYPOS]) - [obstacle(4, obstacleWIDTH)/2 + 1, 0];
183

184

185 % -----------
186 % TRAIN SEATS
187 % -----------
188

189 trainseats = zeros(traincount,6*10,2);
190 % Restaurant Coach and first Class already half full
191 trainseats(:,31:60,1) = 4*ones(traincount,3*10,1);
192

193 % set people, that are already seated
194 trainseats(:,1:30,:) = round(AGENTS SEATED / 90);
195 trainseats(:,31:60,2) = round(AGENTS SEATED / 90);
196

197

198 % ---------------
199 % AGENT POSITIONS
200 % ---------------
201

202 % Set random position for boarding agents
203 % (debording agents are going to be reset on their startposition in
204 % "simulation.m")
205 dspace = 0.2; % min space between obstacle and agent (and also STARTAREA

and agent)
206

207 for iagent=1:agentcount
208 % call of script that sets random position until outside of any
209 % obstacle, that is not the starting area
210 set agent outside of any obstacle
211 end
212

213

214 % - - -
215 % Group
216 % - - -
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217 % A group consists of a couple of boarding(!) agents. They are all heading
218 % to the same door, which only can be chosen by their group-master.
219

220 N groups(class FIRST) = round(GROUPING*PART FC*AGENTS OP/GROUP SIZE);
221 N groups(class SECOND) = round(GROUPING*(1-PART FC)*AGENTS OP/GROUP SIZE);
222 groupcount = N groups(class FIRST)+N groups(class SECOND);
223

224 Size group = zeros(groupcount, 1);
225 Size group(1:N groups(class FIRST)) = GROUP SIZE;
226 Size group(N groups(class FIRST)+1:groupcount) = GROUP SIZE;
227

228 % First-Class Groups
229 sagent = 1;
230 sgroup = 1;
231 for igroup = sgroup:N groups(class FIRST)
232 init group
233 end
234

235 % Second-Class Groups
236 sgroup = sgroup + N groups(class FIRST);
237 sagent = agent part sum(class FIRST, agent type DEBOARDING)+1;
238 for igroup = sgroup:(sgroup-1) + N groups(class SECOND)
239 init group
240 end
241

242

243 % remaining Time between agent and door
244 remainingdistance = zeros(agentcount, doorcount);
245 remainingwalktime = zeros(agentcount, doorcount);
246 remainingqueuetime = zeros(agentcount, doorcount);
247 placeinqueue = ones(agentcount, doorcount);
248

249 % load statistic variables
250 init statistics
251

252 %start simulation
253

254 simulation

Listing 8: init szenario two trains.m

1 %simulate two parallel trains as in Zurich HB
2

3 % -------
4 % GENERAL
5 % -------
6

7 simulation mode = simulationMODEtwotrains;
8
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9 % specify scenario (SI units)
10 border = [0,0,200,45]; %left, bottom, width, height
11

12 % time specification
13 tmax = TIMEMAX;
14 dt = TIMESTEP;
15 stepcount = tmax/dt;
16

17 % ------
18 % AGENTS
19 % ------
20

21 class FIRST = 1;
22 class SECOND = 2;
23 class count = 2;
24

25 agent type BOARDING A = 1;
26 agent type BOARDING B = 2;
27 agent type DEBOARDING A = 3;
28 agent type DEBOARDING B = 4;
29 agent type CHANGING A B = 5;
30 agent type CHANGING B A = 6;
31 agent type count = 6;
32

33 % number of agents as summed up (for later use as index ranges)
34

35 agent part count = zeros(class count, agent type count);
36 agent part sum = zeros(class count, agent type count);
37

38 agent part count(class FIRST, agent type BOARDING A) = round(AGENTS OP*
PART FC);

39 agent part count(class FIRST, agent type BOARDING B) = round(AGENTS OP*
PART FC);

40 agent part count(class FIRST, agent type DEBOARDING A) = round(AGENTS D*
PART FC/2);

41 agent part count(class FIRST, agent type DEBOARDING B) = round(AGENTS D*
PART FC/2);

42 agent part count(class FIRST, agent type CHANGING A B) = round(AGENTS D*
PART FC/2);

43 agent part count(class FIRST, agent type CHANGING B A) = round(AGENTS D*
PART FC/2);

44

45 agent part count(class SECOND, agent type BOARDING A) = round(AGENTS OP*(1-
PART FC));

46 agent part count(class SECOND, agent type BOARDING B) = round(AGENTS OP*(1-
PART FC));

47 agent part count(class SECOND, agent type DEBOARDING A) = round(AGENTS D*(1-
PART FC)/2);

48 agent part count(class SECOND, agent type DEBOARDING B) = round(AGENTS D*(1-
PART FC)/2);
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49 agent part count(class SECOND, agent type CHANGING A B) = round(AGENTS D*(1-
PART FC)/2);

50 agent part count(class SECOND, agent type CHANGING B A) = round(AGENTS D*(1-
PART FC)/2);

51

52

53 agent part sum(class FIRST, agent type BOARDING A) = agent part count(
class FIRST, agent type BOARDING A);

54 agent part sum(class FIRST, agent type BOARDING B) = agent part count(
class FIRST, agent type BOARDING B) + agent part sum(class FIRST,
agent type BOARDING A);

55 agent part sum(class FIRST, agent type DEBOARDING A) = agent part count(
class FIRST, agent type DEBOARDING A) + agent part sum(class FIRST,
agent type BOARDING B);

56 agent part sum(class FIRST, agent type DEBOARDING B) = agent part count(
class FIRST, agent type DEBOARDING B) + agent part sum(class FIRST,
agent type DEBOARDING A);

57 agent part sum(class FIRST, agent type CHANGING A B) = agent part count(
class FIRST, agent type CHANGING A B) + agent part sum(class FIRST,
agent type DEBOARDING B);

58 agent part sum(class FIRST, agent type CHANGING B A) = agent part count(
class FIRST, agent type CHANGING B A) + agent part sum(class FIRST,
agent type CHANGING A B);

59

60 agent part sum(class SECOND, agent type BOARDING A) = agent part count(
class SECOND, agent type BOARDING A) + agent part sum(class FIRST,
agent type CHANGING B A);

61 agent part sum(class SECOND, agent type BOARDING B) = agent part count(
class SECOND, agent type BOARDING B) + agent part sum(class SECOND,
agent type BOARDING A);

62 agent part sum(class SECOND, agent type DEBOARDING A) = agent part count(
class SECOND, agent type DEBOARDING A) + agent part sum(class SECOND,
agent type BOARDING B);

63 agent part sum(class SECOND, agent type DEBOARDING B) = agent part count(
class SECOND, agent type DEBOARDING B) + agent part sum(class SECOND,
agent type DEBOARDING A);

64 agent part sum(class SECOND, agent type CHANGING A B) = agent part count(
class SECOND, agent type CHANGING A B) + agent part sum(class SECOND,
agent type DEBOARDING B);

65 agent part sum(class SECOND, agent type CHANGING B A) = agent part count(
class SECOND, agent type CHANGING B A) + agent part sum(class SECOND,
agent type CHANGING A B);

66

67 agentcount = agent part sum(class SECOND, agent type CHANGING B A);
68

69

70 % Array for agents
71 agent = zeros(agentcount, agentCOLCOUNT);
72 agentspace = FORCES COEFF(FC agentRetraction); % extension of an agent (m

)
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73 agentmass = 80; % mass of an agent (kg)
74

75 %specify type of entering door (1 (subway), 2 (A 2nd class), 3 (A 1st
76 %class), 4 (B 2nd class), 5 (B 1st class))
77 agent(:, agentMODE) = zeros(agentcount, 1);
78 agent(1 :

agent part sum(class FIRST, agent type BOARDING A), agentMODE) = 3;
79 agent(agent part sum(class FIRST, agent type BOARDING A)+1 :

agent part sum(class FIRST, agent type BOARDING B), agentMODE) = 5;
80 agent(agent part sum(class FIRST, agent type BOARDING B)+1 :

agent part sum(class FIRST, agent type DEBOARDING A), agentMODE) = 1;
81 agent(agent part sum(class FIRST, agent type DEBOARDING A)+1 :

agent part sum(class FIRST, agent type DEBOARDING B), agentMODE) = 1;
82 agent(agent part sum(class FIRST, agent type DEBOARDING B)+1 :

agent part sum(class FIRST, agent type CHANGING A B), agentMODE) = 5;
83 agent(agent part sum(class FIRST, agent type CHANGING A B)+1 :

agent part sum(class FIRST, agent type CHANGING B A), agentMODE) = 3;
84

85 agent(agent part sum(class FIRST, agent type CHANGING B A)+1 :
agent part sum(class SECOND, agent type BOARDING A), agentMODE) = 2;

86 agent(agent part sum(class SECOND, agent type BOARDING A)+1 :
agent part sum(class SECOND, agent type BOARDING B), agentMODE) = 4;

87 agent(agent part sum(class SECOND, agent type BOARDING B)+1 :
agent part sum(class SECOND, agent type DEBOARDING A), agentMODE) = 1;

88 agent(agent part sum(class SECOND, agent type DEBOARDING A)+1 :
agent part sum(class SECOND, agent type DEBOARDING B), agentMODE) = 1;

89 agent(agent part sum(class SECOND, agent type DEBOARDING B)+1 :
agent part sum(class SECOND, agent type CHANGING A B), agentMODE) = 4;

90 agent(agent part sum(class SECOND, agent type CHANGING A B)+1 :
agent part sum(class SECOND, agent type CHANGING B A), agentMODE) = 2;

91

92

93 % Specify initial state (moving, deboarding)
94 agent(1 :

agent part sum(class FIRST, agent type BOARDING A), agentSTATE) =
agentSTATEmoving;

95 agent(agent part sum(class FIRST, agent type BOARDING A)+1 :
agent part sum(class FIRST, agent type BOARDING B), agentSTATE) =
agentSTATEmoving;

96 agent(agent part sum(class FIRST, agent type BOARDING B)+1 :
agent part sum(class FIRST, agent type DEBOARDING A), agentSTATE) =
agentSTATEdeboarding;

97 agent(agent part sum(class FIRST, agent type DEBOARDING A)+1 :
agent part sum(class FIRST, agent type DEBOARDING B), agentSTATE) =
agentSTATEdeboarding;

98 agent(agent part sum(class FIRST, agent type DEBOARDING B)+1 :
agent part sum(class FIRST, agent type CHANGING A B), agentSTATE) =
agentSTATEdeboarding;

99 agent(agent part sum(class FIRST, agent type CHANGING A B)+1 :
agent part sum(class FIRST, agent type CHANGING B A), agentSTATE) =
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agentSTATEdeboarding;
100

101 agent(agent part sum(class FIRST, agent type CHANGING B A)+1 :
agent part sum(class SECOND, agent type BOARDING A), agentSTATE) =
agentSTATEmoving;

102 agent(agent part sum(class SECOND, agent type BOARDING A)+1 :
agent part sum(class SECOND, agent type BOARDING B), agentSTATE) =
agentSTATEmoving;

103 agent(agent part sum(class SECOND, agent type BOARDING B)+1 :
agent part sum(class SECOND, agent type DEBOARDING A), agentSTATE) =
agentSTATEdeboarding;

104 agent(agent part sum(class SECOND, agent type DEBOARDING A)+1 :
agent part sum(class SECOND, agent type DEBOARDING B), agentSTATE) =
agentSTATEdeboarding;

105 agent(agent part sum(class SECOND, agent type DEBOARDING B)+1 :
agent part sum(class SECOND, agent type CHANGING A B), agentSTATE) =
agentSTATEdeboarding;

106 agent(agent part sum(class SECOND, agent type CHANGING A B)+1 :
agent part sum(class SECOND, agent type CHANGING B A), agentSTATE) =
agentSTATEdeboarding;

107

108

109 %set leaving doors
110 agent(:, agentLDOOR) = zeros(agentcount, 1);
111

112 agent(1 :
agent part sum(class FIRST, agent type BOARDING A), agentLDOOR) ...

113 = 0;
114 agent(agent part sum(class FIRST, agent type BOARDING A)+1 :

agent part sum(class FIRST, agent type BOARDING B), agentLDOOR) ...
115 = 0;
116 agent(agent part sum(class FIRST, agent type BOARDING B)+1 :

agent part sum(class FIRST, agent type DEBOARDING A), agentLDOOR) ...
117 = round(linspace(11,14,agent part count(class FIRST,

agent type DEBOARDING A)));
118 agent(agent part sum(class FIRST, agent type DEBOARDING A)+1 :

agent part sum(class FIRST, agent type DEBOARDING B), agentLDOOR) ...
119 = round(linspace(22,25,agent part count(class FIRST,

agent type DEBOARDING B)));
120 agent(agent part sum(class FIRST, agent type DEBOARDING B)+1 :

agent part sum(class FIRST, agent type CHANGING A B), agentLDOOR) ...
121 = round(linspace(11,14,agent part count(class FIRST,

agent type CHANGING A B)));
122 agent(agent part sum(class FIRST, agent type CHANGING A B)+1 :

agent part sum(class FIRST, agent type CHANGING B A), agentLDOOR) ...
123 = round(linspace(22,25,agent part count(class FIRST,

agent type CHANGING B A)));
124

125 agent(agent part sum(class FIRST, agent type CHANGING B A)+1 :
agent part sum(class SECOND, agent type BOARDING A), agentLDOOR) ...
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126 = 0;
127 agent(agent part sum(class SECOND, agent type BOARDING A)+1 :

agent part sum(class SECOND, agent type BOARDING B), agentLDOOR) ...
128 = 0;
129 agent(agent part sum(class SECOND, agent type BOARDING B)+1 :

agent part sum(class SECOND, agent type DEBOARDING A), agentLDOOR) ...
130 = round(linspace(4,10,agent part count(class SECOND,

agent type DEBOARDING A)));
131 agent(agent part sum(class SECOND, agent type DEBOARDING A)+1 :

agent part sum(class SECOND, agent type DEBOARDING B), agentLDOOR) ...
132 = round(linspace(15,21,agent part count(class SECOND,

agent type DEBOARDING B)));
133 agent(agent part sum(class SECOND, agent type DEBOARDING B)+1 :

agent part sum(class SECOND, agent type CHANGING A B), agentLDOOR) ...
134 = round(linspace(4,10,agent part count(class SECOND,

agent type CHANGING A B)));
135 agent(agent part sum(class SECOND, agent type CHANGING A B)+1 :

agent part sum(class SECOND, agent type CHANGING B A), agentLDOOR) ...
136 = round(linspace(15,21,agent part count(class SECOND,

agent type CHANGING B A)));
137

138 %choice for entering door based on agentMODE
139 agent(:, agentCDOOR) = ones(agentcount,1);
140

141 agent(:, agentMAXV) = VELOCITY*ones(agentcount, 1) + VELOCITY VAR * rand(
agentcount, 1);

142 agent(:, agentPATIENT) = 0.9*ones(agentcount, 1);
143 agent(:, agentLAZY) = LAZINESS*ones(agentcount, 1);
144 agent(:, agentDMODE) = DOOR DECISION MODE*ones(agentcount, 1);
145 agentDECstepfrequency = DECISION STEPFREQ; % inicates the step-based freq.

agent decides for best door
146 agent(:, agentDECTIMES) = DECISION LIMIT*ones(agentcount, 1);
147 agent(:, agentGROUP) = agentGROUPnone*ones(agentcount, 1);
148

149

150

151

152 % -----
153 % DOORS
154 % -----
155 doorcount = 25; % 2 trains, each 3x second class, 1x Bistro (1 door), 2x

first class, 3 exits
156

157 % Array for doors
158 door = zeros(doorcount, doorCOLCOUNT);
159 doorrange = 0.5;
160 doorstrength = FORCES COEFF(FC doorAttraction);
161 doors opening time = DOORS DELAY;
162

163
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164 % Exits
165 door(1, doorXPOS) = 49.9;
166 door(2, doorXPOS) = 155.1;
167 door(3, doorXPOS) = 195;
168

169 door(1:3, doorYPOS) = 20;
170 agent mode enter subway = 1;
171 door(1:3, doorMODE) = agent mode enter subway;
172 door(1:3, doorSTATE) = 0;
173 door(1:3, doorMEANFREQ) = 10; %more people than on the train
174 door(1:3, doorVARFREQ) = 0.1;
175 door(1:3, doorACTIVITY) = doorACTIVE;
176

177 % First Train
178 door(4, doorXPOS) = 15+0*25+1.5;
179 door(5, doorXPOS) = 15+0*25+23.5; % Second class
180 door(6, doorXPOS) = 15+1*25+1.5;
181 door(7, doorXPOS) = 15+1*25+23.5;
182 door(8, doorXPOS) = 15+2*25+1.5;
183 door(9, doorXPOS) = 15+2*25+23.5;
184 door(10, doorXPOS) = 15+3*25+1.5; % Bistro
185 door(11, doorXPOS) = 15+4*25+1.5; % First class
186 door(12, doorXPOS) = 15+4*25+23.5;
187 door(13, doorXPOS) = 15+5*25+1.5;
188 door(14, doorXPOS) = 15+5*25+23.5;
189

190 door(4:14, doorYPOS) = 24.9;
191 door(4:10, doorMODE) = 2;
192 door(11:14, doorMODE) = 3;
193 door(4:14, doorSTATE) = doors opening time; % wait for some seconds until

people can de/board
194 door(4:14, doorMEANFREQ) = 0.7;
195 door(4:14, doorVARFREQ) = 0.1;
196 door(4:14, doorACTIVITY) = doorACTIVE;
197

198 % Second Train
199 door(15, doorXPOS) = 15+0*25+1.5;
200 door(16, doorXPOS) = 15+0*25+23.5; % Second class
201 door(17, doorXPOS) = 15+1*25+1.5;
202 door(18, doorXPOS) = 15+1*25+23.5;
203 door(19, doorXPOS) = 15+2*25+1.5;
204 door(20, doorXPOS) = 15+2*25+23.5;
205 door(21, doorXPOS) = 15+3*25+1.5; % Bistro
206 door(22, doorXPOS) = 15+4*25+1.5; % First class
207 door(23, doorXPOS) = 15+4*25+23.5;
208 door(24, doorXPOS) = 15+5*25+1.5;
209 door(25, doorXPOS) = 15+5*25+23.5;
210

211 door(15:25, doorYPOS) = 15.1;
212 door(15:21, doorMODE) = 4;
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213 door(22:25, doorMODE) = 5;
214 door(15:25, doorSTATE) = doors opening time; % wait for some seconds until

people can de/board
215 door(15:25, doorMEANFREQ) = 0.7;
216 door(15:25, doorVARFREQ) = 0.1;
217 door(15:25, doorACTIVITY) = doorACTIVE;
218

219 doorMODEsum = max(door(:,doorMODE));
220

221 % Sum up number of leaving agents
222 for idoor = 1:doorcount
223 door(idoor, doorAGENT) = -sum(agent(:, agentLDOOR)==idoor);
224 end
225

226

227 % ---------
228 % OBSTACLES
229 % ---------
230

231 traincount = 2;
232

233 obstaclecount = 9; %2 trains, 2 triple subway entrances, 1 start area
234

235 % Array for obstacles
236 obstacle = zeros(obstaclecount, obstacleCOLCOUNT);
237

238 obstacle(:, obstacleSTART) = 0;
239 obstacle(:, obstacleEND) = tmax;
240

241 obstacle(:, obstacleRANGE) = FORCES COEFF(FC obstacleRetraction)*ones(
obstaclecount, 1);

242 obstacle(:, obstaclePASSABLE) = zeros(obstaclecount, 1);
243

244 % trains
245 obstacle(1, [obstacleXCENTER, obstacleYCENTER]) = [100, 27.5];
246 obstacle(1, [obstacleWIDTH, obstacleHEIGHT]) = [170,5];
247 obstacle(2, [obstacleXCENTER, obstacleYCENTER]) = [100, 12.5];
248 obstacle(2, [obstacleWIDTH, obstacleHEIGHT]) = [170,5];
249

250 % subway entrances
251 obstacle(3, [obstacleXCENTER, obstacleYCENTER]) = [55, 20];
252 obstacle(3, [obstacleWIDTH, obstacleHEIGHT]) = [9.5, 5];
253 obstacle(4, [obstacleXCENTER, obstacleYCENTER]) = [150, 20];
254 obstacle(4, [obstacleWIDTH, obstacleHEIGHT]) = [9.5, 5];
255

256 % further small obstacles
257 obstacle(5, [obstacleXCENTER, obstacleYCENTER]) = [80, 20];
258 obstacle(5, [obstacleWIDTH, obstacleHEIGHT]) = [3, 1.5];
259 obstacle(6, [obstacleXCENTER, obstacleYCENTER]) = [105, 20];
260 obstacle(6, [obstacleWIDTH, obstacleHEIGHT]) = [3, 1.5];
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261 obstacle(7, [obstacleXCENTER, obstacleYCENTER]) = [130, 20];
262 obstacle(7, [obstacleWIDTH, obstacleHEIGHT]) = [3, 1.5];
263 obstacle(8, [obstacleXCENTER, obstacleYCENTER]) = [30, 20];
264 obstacle(8, [obstacleWIDTH, obstacleHEIGHT]) = [3, 1.5];
265

266

267 %start area
268 oSTARTAREA = 9;
269 obstacle(oSTARTAREA, [obstacleXCENTER, obstacleYCENTER]) = [90, 20];
270 obstacle(oSTARTAREA, [obstacleWIDTH, obstacleHEIGHT]) = WAITING AREA(2,:);
271

272 obstacle(oSTARTAREA, obstacleSTART) = 0;
273 obstacle(oSTARTAREA, obstacleEND) = AREA DELAY;
274

275

276 % -----------
277 % TRAIN SEATS
278 % -----------
279

280 trainseats = zeros(traincount,6*10,2);
281 % Restaurant Coach and first Class already half full
282 trainseats(:,31:60,1) = 4*ones(traincount,3*10,1);
283

284 % set people, that are already seated
285 trainseats(:,1:30,:) = round(AGENTS SEATED / 90);
286 trainseats(:,31:60,2) = round(AGENTS SEATED / 90);
287

288 % ---------------
289 % AGENT POSITIONS
290 % ---------------
291

292 % Set random position for boarding agents
293 % (debording agents are going to be reset on their startposition in
294 % "simulation.m")
295 dspace = 0.2; % min space between obstacle and agent
296

297 for iagent=1:agentcount
298 % call of script that sets random position until outside of any
299 % obstacle, that is not the starting area
300 set agent outside of any obstacle
301 end
302

303

304 % - - -
305 % Group
306 % - - -
307 % A group consists of a couple of boarding(!) agents. They are all heading
308 % to the same door, which only can be chosen by their group-master.
309

310 N groups(class FIRST) = round(GROUPING*PART FC*AGENTS OP*2/GROUP SIZE);
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311 N groups(class SECOND) = round(GROUPING*(1-PART FC)*AGENTS OP*2/GROUP SIZE);
312 groupcount = N groups(class FIRST)+N groups(class SECOND);
313

314 Size group = zeros(groupcount, 1);
315 Size group(1:N groups(class FIRST)) = GROUP SIZE;
316 Size group(N groups(class FIRST)+1:groupcount) = GROUP SIZE;
317

318 % First-Class Groups
319 sagent = 1;
320 sgroup = 1;
321 for igroup = sgroup:N groups(class FIRST)
322 init group
323 end
324 sgroup = sgroup + N groups(class FIRST);
325

326 % Second-Class Groups
327 sagent = agent part sum(class FIRST, agent type CHANGING B A)+1;
328 for igroup = sgroup:(sgroup-1) + N groups(class SECOND)
329 init group
330 end
331

332

333 % ----------
334

335

336 % remaining Time between agent and door
337 remainingdistance = zeros(agentcount, doorcount);
338 remainingwalktime = zeros(agentcount, doorcount);
339 remainingqueuetime = zeros(agentcount, doorcount);
340 placeinqueue = ones(agentcount, doorcount);
341

342

343

344 % load statistic variables
345 init statistics
346

347 %start simulation
348 simulation

Listing 9: init group.m

1 % loop through all members of a group and init agent-values for XPOS,
2 % YPOS,GROUP and DECTIMES
3

4 for iagent = sagent:(sagent-1)+Size group(igroup)
5 % all agents of the group get grouped around a circle, that gets scaled
6 % according to the number of people inside the group (10 people -> in
7 % circle with diameter of 2 meters
8 radius = Size group(igroup)/10;
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9 % only master of group can decide
10 if iagent 6= sagent
11 agent(iagent, agentDECTIMES) = agentDECTIMESnone;
12 else
13 dspace = 1.5 * radius;
14 set agent outside of any obstacle;
15 group CENTER = agent(sagent, [agentXPOS, agentYPOS]);
16 end
17 agent(iagent, agentGROUP) = igroup;
18 phi = 2*pi()*iagent/Size group(igroup); % Angle to set group in a cyrcle
19 agent(iagent, [agentXPOS, agentYPOS]) = group CENTER + radius*[cos(phi),

sin(phi)];
20 end
21 sagent = sagent + Size group(igroup);

Listing 10: init statistics.m

1 % initialistation of saved statistic data
2 %--------
3 % Arrays for saving data
4 %--------
5

6 % # agents heading to spec. door
7 stat approaching to door = zeros(stepcount,doorcount);
8 % # agents on platform
9 stat moving agents = zeros(stepcount, 1);

10 % mean distance of all moving agents to their door
11 stat distance to go = zeros(stepcount, 1);
12 % # agents boarded on spec. door
13 stat boarded per door = zeros(stepcount, doorcount);
14 % start end end time of moving
15 stat moving time = zeros(agentcount, 2);
16 stat movSTART = 1;
17 stat movEND = 2;
18 % # agents waiting in queue
19 stat waiting agents = zeros(stepcount, 2);
20 % sum. waiting time
21 stat sum waiting = zeros(agentcount, 1);
22 % walking distance per agent
23 stat sum distance = zeros(agentcount, 1);
24 % min. distance between leavingdoor and chosendoor
25 stat min distance = zeros(agentcount, 1);
26 % startpostion (is needed to calculate stat min distance
27 stat start position = zeros(agentcount, 2); % set in simulation.m
28 % sum of redecicions
29 stat sum decision = zeros(agentcount, 1);
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Listing 11: set agent outside of any obstacle.m

1 % move agent randomly inside the StartArea until a minimal distance of ...
2 % 'dspace' to every other obstacle and the border of the startarea is

garanteed
3

4 % Consider also, that a person will not start from a position too far from
5 % its desteny, i.e. that a first-class passenger is rather startig from a
6 % point not so far from the nearest first-class entrance.
7

8 %agent(iagent, agentXPOS) = obstacle(oSTARTAREA, obstacleXCENTER) - obstacle
(oSTARTAREA, obstacleWIDTH)/2 + ...

9 % (obstacle(oSTARTAREA, obstacleWIDTH)-2*dspace)*rand(1,1)+dspace;
10 %agent(iagent, agentYPOS) = obstacle(oSTARTAREA, obstacleYCENTER) - obstacle

(oSTARTAREA, obstacleHEIGHT)/2 + ...
11 % (obstacle(oSTARTAREA, obstacleHEIGHT)-2*dspace)*rand(1,1)+dspace;
12

13 is agentPOSok = 0;
14 while is agentPOSok == 0
15 agent(iagent, agentXPOS) = obstacle(oSTARTAREA, obstacleXCENTER) -

obstacle(oSTARTAREA, obstacleWIDTH)/2 + ...
16 (obstacle(oSTARTAREA, obstacleWIDTH)-2*dspace)*rand(1,1)+dspace;
17 agent(iagent, agentYPOS) = obstacle(oSTARTAREA, obstacleYCENTER) -

obstacle(oSTARTAREA, obstacleHEIGHT)/2 + ...
18 (obstacle(oSTARTAREA, obstacleHEIGHT)-2*dspace)*rand(1,1)+dspace;
19

20 is agentPOSok = 1; % assuming pos is ok
21

22 % Check if agent ist not too far away from its nearest possible door
23 for idoor = 1:doorcount
24 remainingdistance(iagent, idoor) = norm(agent(iagent, [agentXPOS,

agentYPOS]) - door(idoor, [doorXPOS, doorYPOS]));
25 end
26 min remainingdistance MODE = min(remainingdistance(iagent, door(:,

doorMODE) == agent(iagent, agentMODE)));
27 if min remainingdistance MODE > border(3)/4 % more than quarter

scene?
28 is agentPOSok = 0;
29

30 end
31

32 % now check for obstacles
33 for iobstacle = 1:obstaclecount
34 if iobstacle 6= oSTARTAREA % dont check start area
35 if agent(iagent, agentXPOS) > (obstacle(iobstacle,

obstacleXCENTER) - obstacle(iobstacle, obstacleWIDTH)/2 -
dspace)

36 if agent(iagent, agentXPOS) < (obstacle(iobstacle,
obstacleXCENTER) + obstacle(iobstacle, obstacleWIDTH)/2
+ dspace)
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37 if agent(iagent, agentYPOS) > (obstacle(iobstacle,
obstacleYCENTER) - obstacle(iobstacle,
obstacleHEIGHT)/2 - dspace)

38 if agent(iagent, agentYPOS) < (obstacle(iobstacle,
obstacleYCENTER) + obstacle(iobstacle,
obstacleHEIGHT)/2 + dspace)

39 is agentPOSok = 0; % Position was NOT ok
40 %agent(iagent, agentXPOS) = obstacle(oSTARTAREA,

obstacleXCENTER) - obstacle(oSTARTAREA,
obstacleWIDTH)/2 + ...

41 % (obstacle(oSTARTAREA, obstacleWIDTH)-2*
dspace)*rand(1,1)+dspace;

42 %agent(iagent, agentYPOS) = obstacle(oSTARTAREA,
obstacleYCENTER) - obstacle(oSTARTAREA,

obstacleHEIGHT)/2 + ...
43 % (obstacle(oSTARTAREA, obstacleHEIGHT)-2*

dspace)*rand(1,1)+dspace;
44 end
45 end
46 end
47 end
48 end
49 end
50 end

8.2.3 Simulation

Listing 12: simulation.m

1 % simulation
2

3 % set deboarding agents on the doorpoint
4 for iagent = 1:agentcount
5 if agent(iagent, agentSTATE) == agentSTATEdeboarding
6 agent(iagent, [agentXPOS, agentYPOS]) = door(agent(iagent,

agentLDOOR), [doorXPOS, doorYPOS]);
7 end
8 stat start position(iagent, :) = agent(iagent, [agentXPOS, agentYPOS]);
9 end

10

11 %timestep iteration
12 for step = 1:stepcount
13 t = step*dt;
14

15 if t ≤ DOORS DELAY
16 train entrance;
17 end

74



18 % random order for agents
19 order = randperm(agentcount);
20 doordecision frequency;
21 % decrement door state ("blocking" time)
22 door(:,doorSTATE) = door(:,doorSTATE) - dt*ones(doorcount,1);
23 calculate distances;
24

25 for i = 1:agentcount
26 iagent = order(i);
27 % people update in random order (board, deboard, status change)
28 agent update
29 if agent(iagent, agentSTATE) == agentSTATEmoving
30 door decision;
31 calculate forces;
32 end
33 end
34 % move agents simultaneously
35 move agents
36

37 % draw
38 paint
39 video capture
40 pause(0.02)
41 save data
42 data export
43

44 end

Listing 13: train entrance.m

1 % let train drive into its final position before the doors open
2

3 if step == 1
4 % set initial position of train and doors
5 obstacle(1:traincount, obstacleXCENTER) = obstacle(1:traincount,

obstacleXCENTER) - DOORS DELAY * trainVELOCITY;
6 door(door(:,doorMODE) 6= agent mode enter subway, doorXPOS) = door(door

(:,doorMODE) 6= agent mode enter subway, doorXPOS) - DOORS DELAY *
trainVELOCITY;

7 end
8 obstacle(1:traincount, obstacleXCENTER) = obstacle(1:traincount,

obstacleXCENTER) + dt * trainVELOCITY;
9 door(door(:,doorMODE) 6= agent mode enter subway, doorXPOS) = door(door(:,

doorMODE) 6= agent mode enter subway, doorXPOS) + dt * trainVELOCITY;

Listing 14: doordecision frequency.m
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1 % The frequency of redecision is checked
2 if agentDECstepfrequency ≤ 1
3 if mod(step, 1/agentDECstepfrequency) < mod((step-1), 1/

agentDECstepfrequency);
4 Ndec = 0;
5 else
6 Ndec = 1;
7 end
8 else
9 if mod(step, agentDECstepfrequency) < mod((step-1),

agentDECstepfrequency);
10 Ndec = floor(agentDECstepfrequency) + 0;
11 else
12 Ndec = floor(agentDECstepfrequency) + 1;
13 end
14 end

Listing 15: calculate distances.m

1 % calculate the all pairs of distances between any person and any door
2

3 for iagent = 1:agentcount
4 for idoor = 1:doorcount
5 remainingdistance(iagent, idoor) = norm(agent(iagent, [agentXPOS,

agentYPOS]) - door(idoor, [doorXPOS, doorYPOS]));
6 end
7 end

Listing 16: agent update.m

1 % agent's state update (board, deboard: status change)
2

3 % check if agent can debord
4 if agent(iagent, agentSTATE) == agentSTATEdeboarding;
5 ldoor = agent(iagent, agentLDOOR);
6 if door(ldoor, doorSTATE) ≤ 0;
7 % let agent debord
8 agent(iagent, agentSTATE) = agentSTATEmoving;
9 stat moving time(iagent, stat movSTART) = t;

10 % block door for a moment
11 door(ldoor, doorSTATE) = 1/(door(ldoor, doorMEANFREQ)+...
12 randn(1)*door(ldoor, doorVARFREQ));
13 % decrease counter of people left in door
14 door(ldoor, doorAGENT) = door(ldoor, doorAGENT) - doorAGENTdebord;
15 end
16 end
17
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18 % check if agent can bord
19 if agent(iagent, agentSTATE) == agentSTATEmoving;
20 cdoor = agent(iagent, agentCDOOR);
21 if remainingdistance(iagent, cdoor) < doorrange & ...
22 door(cdoor, doorSTATE) < 0
23 % check whether there is a free seat in this coach
24 agent seat search;
25 if free seat found == 1
26 % let agent board
27 agent(iagent, agentSTATE) = agentSTATEboarded;
28 stat moving time(iagent, stat movEND) = t;
29 stat sum distance(iagent) = stat sum distance(iagent) + norm(

agent(iagent, [agentXPOS, agentYPOS]) - door(agent(iagent,
agentCDOOR), [doorXPOS, doorYPOS]));

30 % block door for a moment
31 door(cdoor, doorSTATE) = 1/(door(cdoor, doorMEANFREQ)+...
32 randn(1)*door(cdoor, doorVARFREQ));
33 % increase counter of people borded
34 door(cdoor, doorAGENT) = door(cdoor, doorAGENT) + doorAGENTbord;
35 else
36 % lock the door
37 door(cdoor, doorACTIVITY) = doorINACTIVE;
38 % give the agent a chance to possibly redecide for a new door
39 if agent(iagent, agentDECTIMES) == agentDECTIMESnone
40 agent(iagent, agentDECTIMES) = 1;
41 end
42 end
43 end
44 end

Listing 17: agent seat search.m

1 % tries to find a free seat for iagent starting from its current chosen
2 % door
3

4 % important note: this file is specifically designed for the two train
5 % station layouts and needs to be updated if any door-configuration gets
6 % changed
7 free seat found = 0;
8 % making szenario-specific-separations
9 if simulation mode == simulationMODEonetrain

10 if cdoor ≤ 2
11 free seat found = 1;
12 return;
13 end
14 % each door of second class coach and bistro wagon
15 ctrain = 1;
16 if (cdoor ≤ 9)
17 ccoach = (cdoor - mod(cdoor+1,2) - 1) / 2;
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18 % first class coaches
19 else
20 ccoach = (cdoor - mod(cdoor,2)) / 2;
21 end
22 end
23

24 if simulation mode == simulationMODEtwotrains
25 if cdoor ≤ 3
26 free seat found = 1;
27 return;
28 end
29 % each door of second class coach and bistro wagon
30 if (cdoor ≤ 10)
31 ctrain = 1;
32 ccoach = (cdoor - mod(cdoor,2) - 2) / 2;
33 % first class coaches
34 elseif (cdoor ≤ 14)
35 ctrain = 1;
36 ccoach = (cdoor - mod(cdoor+1,2) -1) / 2;
37

38 elseif (cdoor ≤ 21)
39 ctrain = 2;
40 ccoach = (cdoor - mod(cdoor+1,2) -1) / 2 - 6;
41 else
42 ctrain = 2;
43 ccoach = (cdoor - mod(cdoor,2)) / 2 - 6;
44 end
45

46 end
47 coach seat search;

Listing 18: coach seat search.m

1 start compartment = 10*(ccoach-1)+1;
2 end compartment = 10*ccoach;
3

4 for icompartment = start compartment : end compartment
5 for iside = 1 : 2
6 if trainseats(ctrain, icompartment, iside) < 4
7 trainseats(ctrain, icompartment, iside) = trainseats(ctrain,

icompartment, iside) + 1;
8 free seat found = 1;
9 return;

10 end
11 end
12

13 end
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Listing 19: door decision.m

1 % choose best door for the current moving agents
2

3 for idec = 1:Ndec
4 if agent(iagent,agentSTATE) == agentSTATEmoving
5 if agent(iagent, agentDECTIMES) 6= agentDECTIMESnone
6 placeinqueue(iagent, :) = ones(1, doorcount);
7 for kagent = 1:agentcount
8 if agent(kagent,agentSTATE) == agentSTATEmoving
9 kdoor = agent(kagent,agentCDOOR);

10 if(remainingdistance(kagent,kdoor) < remainingdistance(
iagent,kdoor))

11 % agents in the same group are not considered
12 if ((agent(kagent, agentGROUP) 6= agent(iagent,

agentGROUP)) | | (agent(iagent, agentGROUP) ==
agentGROUPnone))

13 placeinqueue(iagent, kdoor) = placeinqueue(
iagent, kdoor) + 1;

14 end
15 end
16 end
17 end
18

19 % calculate expected remaining time
20 for idoor = 1:doorcount
21 if ((agent(iagent, agentMODE) == door(idoor, doorMODE)) &&

(agent(iagent, agentLDOOR) 6= idoor) && (door(idoor,
doorACTIVITY) == doorACTIVE))

22 remainingwalktime(iagent, idoor) = remainingdistance(
iagent, idoor) / agent(iagent, agentMAXV);

23 remainingqueuetime(iagent, idoor) = placeinqueue(iagent
, idoor)/door(idoor, doorMEANFREQ);

24 else
25 remainingwalktime(iagent, idoor) = 9999; %%%%%%% NOT

PROPER
26 remainingqueuetime(iagent, idoor) = 9999999; %%%%%%

NEITHER
27 end
28 end
29

30 % prefer current decision with the patient factor
31 remainingwalktime(iagent, agent(iagent, agentCDOOR)) =

remainingwalktime(iagent, agent(iagent, agentCDOOR)) * (
agent(iagent, agentPATIENT));

32 remainingqueuetime(iagent, agent(iagent, agentCDOOR)) = (
remainingqueuetime(iagent, agent(iagent, agentCDOOR))) * (
agent(iagent, agentPATIENT));

33

34 % Choose appropriate door (depending choosing-mode)
35 switch agent(iagent, agentDMODE)
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36 case agentDMODEsum lazy
37 [remainingtime(iagent), newdoor] = min(

remainingwalktime(iagent, :)*agent(iagent,
agentLAZY) + remainingqueuetime(iagent, :)*(1-agent
(iagent, agentLAZY)));

38 case agentDMODEsum
39 [remainingtime(iagent), newdoor] = min(

remainingwalktime(iagent, :) + remainingqueuetime(
iagent, :));

40 case agentDMODEwalk
41 [remainingtime(iagent), newdoor] = min(

remainingwalktime(iagent, :));
42 case agentDMODEqueue
43 [remainingtime(iagent), newdoor] = min(

remainingqueuetime(iagent, :));
44 case agentDMODEwait
45 [remainingtime(iagent), newdoor] = min(abs(

remainingqueuetime(iagent, :) - remainingwalktime(
iagent, :)));

46 case agentDMODErandom
47 [remainingtime(iagent), newdoor] = max(rand(doorcount

,1) .* (remainingwalktime(iagent, :)' < 9000*ones(
doorcount,1)));

48 end
49

50

51 if agent(iagent, agentCDOOR) 6= newdoor
52 % decrease number of possible redicisiontimes left
53 if agent(iagent, agentDECTIMES) 6= agentDECTIMESinfinite;
54 agent(iagent, agentDECTIMES) = agent(iagent,

agentDECTIMES) - 1;
55 end
56 % All members of a group to the same door
57 igroup = agent(iagent, agentGROUP);
58 if (igroup 6= agentGROUPnone)
59 agent(agent(:, agentGROUP)==igroup, agentCDOOR) =

newdoor;
60 stat sum decision(agent(:, agentGROUP)==igroup) =

stat sum decision(agent(:, agentGROUP)==igroup) +
1;

61 else
62 agent(iagent, agentCDOOR) = newdoor;
63 stat sum decision(iagent) = stat sum decision(iagent) +

1;
64 end
65 end
66 end
67 end
68 end
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Listing 20: calculate forces.m

1 % calculate the resulting force acting on "iagent"
2

3 % temporary sum of forces
4 agentforce = [0,0];
5 doorforce = [0,0];
6 obstacleforce = [0,0];
7 % people attraction and retraction
8 for kagent = 1:agentcount
9 if (kagent 6= iagent & agent(kagent, agentSTATE) == agentSTATEmoving)

10 vec agentdist = agent(kagent, [agentXPOS, agentYPOS]) - ...
11 agent(iagent, [agentXPOS, agentYPOS]);
12 norm agentdist = norm(vec agentdist);
13

14 % group people keep more together
15 if (agent(iagent, agentGROUP) == agent(kagent, agentGROUP) & ...
16 agent(iagent, agentGROUP) > 0)
17 strength = FORCES COEFF(FC agentAttractionGroup);
18 else
19 strength = FORCES COEFF(FC agentAttraction);
20 end
21

22 agentforce = agentforce - strength/(norm agentdist)ˆ3 ...
23 * vec agentdist/norm agentdist;
24 % agent attraction
25 agentforce = agentforce + (strength/agentspace)/(norm agentdistˆ2)

...
26 * vec agentdist/norm agentdist;
27 end
28 end
29

30 % Door attraction and retraction
31 vec doordist = door(agent(iagent, agentCDOOR), [doorXPOS, doorYPOS]) - ...
32 agent(iagent, [agentXPOS, agentYPOS]);
33 norm doordist = norm(vec doordist);
34

35 % door attraction
36 doorforce = vec doordist/norm doordist;
37 % door retraction while occupied
38 if door(agent(iagent, agentCDOOR), doorSTATE) > 0
39 doorforce = doorforce - doorrange/norm doordist * ...
40 vec doordist/norm doordist;
41 end
42 doorforce = doorstrength * doorforce;
43

44

45 % Obstacle retraction
46 for kobstacle = 1:obstaclecount
47 iforce = [0,0];
48
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49 if obstacle(kobstacle,obstacleSTART) ≤ t && obstacle(kobstacle,
obstacleEND) ≥ t

50 agentx = agent(iagent, agentXPOS);
51 agenty = agent(iagent, agentYPOS);
52 obstaclex = obstacle(kobstacle, obstacleXCENTER);
53 obstacley = obstacle(kobstacle, obstacleYCENTER);
54 obstaclew = obstacle(kobstacle, obstacleWIDTH);
55 obstacleh = obstacle(kobstacle, obstacleHEIGHT);
56 %if inside obstacle
57 if (abs(agentx - obstaclex) < obstaclew/2) && (abs(agenty -

obstacley) < obstacleh/2)
58

59 mindistance = max([obstaclew, obstacleh]);
60 closestwall = 0;
61 for idir = 1:4
62 % orthogonal distance to the closest wall
63 distance = abs(xdir(idir)) * abs(obstaclex+xdir(idir)*

obstaclew/2 - agentx) + abs(ydir(idir)) * abs(obstacley+
ydir(idir)*obstacleh/2 - agenty);

64

65 if mindistance > distance
66 mindistance = distance;
67 closestwall = idir;
68 end
69 end
70

71 iforce(1) = (-xdir(closestwall)*obstacle(kobstacle,obstacleRANGE
))/mindistance;

72 iforce(2) = (-ydir(closestwall)*obstacle(kobstacle,obstacleRANGE
))/mindistance;

73

74 obstacleforce = obstacleforce + iforce;
75

76 %outside of the obstacle
77 else
78 x∆ = 0; y∆ = 0;
79 if agentx > obstaclex + obstaclew/2
80 x∆ = 1;
81 end
82 if agentx < obstaclex - obstaclew/2
83 x∆ = -1;
84 end
85 if agenty > obstacley + obstacleh/2
86 y∆ = 1;
87 end
88 if agenty < obstacley - obstacleh/2
89 y∆ = -1;
90 end
91

92 edge = [0,0];
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93

94 %nearest point is an edge
95 if (x∆ 6= 0) && (y∆ 6= 0)
96 edge(1) = obstaclex + x∆*obstaclew/2;
97 edge(2) = obstacley + y∆*obstacleh/2;
98

99 %neares point is a side
100 else
101 if x∆ 6= 0
102 edge(1) = obstaclex + x∆*obstaclew/2;
103 edge(2) = agenty;
104 else
105 edge(1) = agentx;
106 edge(2) = obstacley + y∆*obstacleh/2;
107 end
108 end
109

110 %calculate distance and resulting force
111 vec diff = agent(iagent, [agentXPOS, agentYPOS]) - edge;
112 iforce = vec diff/norm(vec diff) * obstacle(kobstacle,

obstacleRANGE)/norm(vec diff);
113 obstacleforce = obstacleforce + iforce;
114

115 end
116 end
117 end
118

119 % Correction Force (helps to avoid obstacles)
120 if (abs(doorforce(1) + obstacleforce(1)) < 1000 && remainingdistance(iagent

, agent(iagent, agentCDOOR)) > 5*doorrange) ...
121 % "cross product" between obstacleforce and doorforce
122 cross OxD = obstacleforce(1)*doorforce(2)-obstacleforce(2)*doorforce(1);
123 orth O = obstacleforce*[0, -1; 1, 0];
124 %orth O = [obstacleforce(2), -obstacleforce(1)];
125 corrforce = sign(cross OxD) * 999999999*orth O; %very high
126 % For Agents entering Train inverse way round
127 if agent(iagent, agentMODE) 6= agent mode enter subway;
128 corrforce = -corrforce;
129 end
130 else
131 corrforce = [0, 0];
132 end
133

134 agent(iagent, [agentXFORCE, agentYFORCE]) = doorforce + agentforce +
obstacleforce + corrforce;

Listing 21: move agents.m

1 % move agents: a -> dv -> v -> ds -> s
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2

3 for iagent = 1:agentcount
4 dv = agent(iagent, [agentXFORCE, agentYFORCE])/agentmass;
5

6 agent(iagent, [agentXVEL, agentYVEL]) = ...
7 agent(iagent, [agentXVEL, agentYVEL]) + dv*dt;
8

9 if norm(agent(iagent, [agentXVEL, agentYVEL])) > agent(iagent, agentMAXV
)

10 agent(iagent, [agentXVEL, agentYVEL]) = agent(iagent, [agentXVEL,
agentYVEL]) / norm(agent(iagent, [agentXVEL, agentYVEL])) * agent(
iagent, agentMAXV);

11 end
12

13 if agent(iagent, agentSTATE) == agentSTATEmoving
14 ds = (agent(iagent, [agentXVEL, agentYVEL])) * dt;
15 else
16 ds = [0, 0];
17 end
18

19 % sum distance per agent
20 stat sum distance(iagent) = stat sum distance(iagent) + norm(ds);
21

22 agent(iagent, [agentXPOS, agentYPOS]) = agent(iagent, [agentXPOS,
agentYPOS]) + ds;

23 end

8.2.4 Statistical evaluation

Listing 22: save data.m

1 % save/update statistical data
2

3 stat moving agents(step) = sum(agent(:,agentSTATE)==agentSTATEmoving);
4

5 for iagent = 1 : agentcount
6 if agent(iagent, agentSTATE) == agentSTATEmoving
7 % calculate average distance
8 stat distance to go(step) = stat distance to go(step) + (

remainingdistance(iagent, agent(iagent,agentCDOOR))/
stat moving agents(step));

9

10

11 % count waiting agents
12 if (remainingdistance(iagent, agent(iagent, agentCDOOR)) < 3*

doorrange)
13 % Differentiate between boarder and deboarder
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14 if agent(iagent, agentMODE) == agent mode enter subway
15 stat waiting agents(step,1) = stat waiting agents(step,1) +

1;
16 else
17 stat waiting agents(step,2) = stat waiting agents(step,2) +

1;
18 end
19 stat sum waiting(iagent) = stat sum waiting(iagent) + dt;
20 else
21 end
22

23 % calculate min distance between startposition and heading door
24 stat min distance(iagent) = norm(stat start position(iagent, :) -

door(agent(iagent, agentCDOOR), [doorXPOS, doorYPOS]));
25 end
26 end
27

28 for kdoor = 1:doorcount
29 for iagent = 1:agentcount
30 if (agent(iagent,agentSTATE) == agentSTATEmoving) && (agent(iagent,

agentCDOOR) == kdoor)
31 stat approaching to door(step,kdoor) = stat approaching to door(

step,kdoor) + 1;
32 end
33 end
34 end
35

36 % if all agents boarded, save the time:
37 if (sum(agent(agent(:, agentMODE) 6= agent mode enter subway, agentSTATE) 6=

agentSTATEboarded) == 0) ...
38 && (final boarding time == 0)
39 final boarding time = t;
40 end
41

42 stat boarded per door(step,:) = door(:, doorAGENT);

8.2.5 Plotting

Listing 23: paint.m

1 % plot current situation
2

3 if plotting mode == plotDEFAULT
4 if(mod(t,10) == 0)
5 t
6 end
7 else
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8 figure(my figure);
9 if plotting mode == plotMAPview

10 clf
11

12 img scale factor = 10;
13

14 axis(img scale factor*[border(1), border(1)+border(3), border(2),
border(2)+border(4)]);

15 axis equal;
16 hold on;
17

18 rgb = imread('Train EC.jpg');
19 for itrain = 1:traincount
20 xtrain = obstacle(itrain, obstacleXCENTER) - obstacle(itrain,

obstacleWIDTH)/2;
21 ytrain = obstacle(itrain, obstacleYCENTER) - obstacle(itrain,

obstacleHEIGHT)/2;
22

23 % shift dots outside of the train image
24 if traincount == 2
25 if itrain == 1
26 y offshift = 5;
27 else
28 y offshift = -5;
29 end
30 else
31 y offshift = 5;
32 end
33

34 image(img scale factor*(xtrain), img scale factor*(ytrain),rgb);
35

36 for a = 1:60
37 for b = 1:2
38 if(trainseats(itrain,a,b) ≥ 4)
39 plot(img scale factor*( xtrain + 150/60 * (a-0.5)),

img scale factor*( y offshift + ytrain - 2 + 3*b
), 'sr');

40 elseif(trainseats(itrain,a,b) == 3)
41 plot(img scale factor*( xtrain + 150/60 * (a-0.5)),

img scale factor*( y offshift + ytrain - 2 + 3*b
), 'sm');

42 elseif(trainseats(itrain,a,b) == 2)
43 plot(img scale factor*( xtrain + 150/60 * (a-0.5)),

img scale factor*( y offshift + ytrain - 2 + 3*b
), 'sy');

44 elseif(trainseats(itrain,a,b) == 1)
45 plot(img scale factor*( xtrain + 150/60 * (a-0.5)),

img scale factor*( y offshift + ytrain - 2 + 3*b
), 'sc');

46 else
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47 plot(img scale factor*( xtrain + 150/60 * (a-0.5)),
img scale factor*( y offshift + ytrain - 2 + 3*b
), 'sg');

48 end
49 end
50 end
51 end
52

53 % plot the moving agents (red color = no group, blue color = some
54 % group)
55 plot(img scale factor*agent(((agent(:,agentSTATE)==agentSTATEmoving)

& (agent(:,agentGROUP)==agentGROUPnone)),agentXPOS), ...
56 img scale factor*agent(((agent(:,agentSTATE)==agentSTATEmoving)

& (agent(:,agentGROUP)==agentGROUPnone)),agentYPOS), ...
57 'r.')
58 plot(img scale factor*agent(((agent(:,agentSTATE)==agentSTATEmoving)

& (agent(:,agentGROUP)6=agentGROUPnone)),agentXPOS), ...
59 img scale factor*agent(((agent(:,agentSTATE)==agentSTATEmoving)

& (agent(:,agentGROUP)6=agentGROUPnone)),agentYPOS), ...
60 'm.')
61

62 plot(img scale factor*door(door(:,doorSTATE)>10*dt,doorXPOS), 10*
door(door(:,doorSTATE)>10*dt,doorYPOS), 'xr')

63 plot(img scale factor*door(door(:,doorSTATE)<10*dt,doorXPOS), 10*
door(door(:,doorSTATE)<10*dt,doorYPOS), 'og')

64

65 for iobstacle = (traincount+1):obstaclecount
66 rect(1,:) = [obstacle(iobstacle,obstacleXCENTER) - obstacle(

iobstacle,obstacleWIDTH)/2 , obstacle(iobstacle,
obstacleYCENTER) - obstacle(iobstacle,obstacleHEIGHT)/2];

67 rect(2,:) = [obstacle(iobstacle,obstacleXCENTER) - obstacle(
iobstacle,obstacleWIDTH)/2 , obstacle(iobstacle,
obstacleYCENTER) + obstacle(iobstacle,obstacleHEIGHT)/2];

68 rect(3,:) = [obstacle(iobstacle,obstacleXCENTER) + obstacle(
iobstacle,obstacleWIDTH)/2 , obstacle(iobstacle,
obstacleYCENTER) + obstacle(iobstacle,obstacleHEIGHT)/2];

69 rect(4,:) = [obstacle(iobstacle,obstacleXCENTER) + obstacle(
iobstacle,obstacleWIDTH)/2 , obstacle(iobstacle,
obstacleYCENTER) - obstacle(iobstacle,obstacleHEIGHT)/2];

70 rect(5,:) = [obstacle(iobstacle,obstacleXCENTER) - obstacle(
iobstacle,obstacleWIDTH)/2 , obstacle(iobstacle,
obstacleYCENTER) - obstacle(iobstacle,obstacleHEIGHT)/2];

71 if (obstacle(iobstacle,obstacleSTART) ≤ t) && (obstacle(
iobstacle,obstacleEND) ≥ t)

72 plot(img scale factor*rect(:,1),img scale factor*rect(:,2),
'k-');

73 else
74 plot(img scale factor*rect(:,1),img scale factor*rect(:,2),

'k.:');
75 end
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76 end
77

78 text(img scale factor*(border(1)+1),img scale factor*(border(2)+1),
num2str(t));

79

80 end
81

82 if plotting mode == plotGRAPHview
83 clf
84 plot saved data
85 end
86 end

Listing 24: plot saved data.m

1 timevector = dt:dt:t;
2

3 subplot(3,3,1)
4 plot saved approaching;
5

6 subplot(3,3,2)
7 plot saved moving;
8

9 subplot(3,3,3)
10 plot saved distance;
11

12 subplot(3,3,4)
13 plot saved deboarded;
14

15 subplot(3,3,5)
16 plot saved boarded;
17

18 subplot(3,3,6)
19 plot saved waiting;
20

21 subplot(3,3,7)
22 plot saved time waited;
23

24 subplot(3,3,8)
25 plot saved redecisions;
26

27 subplot(3,3,9)
28 plot saved distance walked;

Listing 25: plot saved approaching.m

1 hold on
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2 if(1 ≤ doorMODEsum)
3 plot(timevector, stat approaching to door(1:step, door(:, doorMODE)==1),

'-')
4 end
5 if(2 ≤ doorMODEsum)
6 plot(timevector, stat approaching to door(1:step, door(:, doorMODE)==2),

'-.')
7 end
8 if(3 ≤ doorMODEsum)
9 plot(timevector, stat approaching to door(1:step, door(:, doorMODE)==3),

'--')
10 end
11 if(4 ≤ doorMODEsum)
12 plot(timevector, stat approaching to door(1:step, door(:, doorMODE)==4),

':')
13 end
14 if(5 ≤ doorMODEsum)
15 plot(timevector, stat approaching to door(1:step, door(:, doorMODE)==5),

'-')
16 end
17 xlabel('time')
18 ylabel('# approaching')
19 hold off

Listing 26: plot saved moving.m

1 plot(timevector, stat moving agents(1:step, :))
2 xlabel('time')
3 ylabel('# moving')

Listing 27: plot saved distance.m

1 plot(timevector, stat distance to go(1:step, :))
2 xlabel('time')
3 ylabel('distance')

Listing 28: plot saved deboarded.m

1 plot(timevector, (stat boarded per door(1:step, :) < 0) .* abs(
stat boarded per door(1:step, :)))

2 xlabel('time')
3 ylabel('# deboarded')
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Listing 29: plot saved boarded.m

1 plot(timevector, (stat boarded per door(1:step, :) > 0) .*
stat boarded per door(1:step, :))

2 xlabel('time')
3 ylabel('# boarded')

Listing 30: plot saved waiting.m

1 plot(timevector, stat waiting agents(1:step, :))
2 hold on
3 plot(timevector, sum(stat waiting agents(1:step, :)')', 'r')
4 hold off
5 legend('to subway', 'to train', 'sum')
6 xlabel('time')
7 ylabel('# waiting')

Listing 31: plot saved time waited.m

1 hold on
2 plot(1:agentcount, (agent(:, agentSTATE) == agentSTATEmoving) .*

stat sum waiting, 'b.')
3 plot(1:agentcount, (agent(:, agentSTATE) == agentSTATEboarded) .*

stat sum waiting, 'g.')
4 plot separation lines;
5 legend('moving', 'boarded')
6 hold off
7 xlabel('agent')
8 ylabel('time waited')

Listing 32: plot saved redecisions.m

1 hold on
2 plot(1:agentcount, (agent(:, agentSTATE) == agentSTATEmoving) .*

stat sum decision, 'b.')
3 plot(1:agentcount, (agent(:, agentSTATE) == agentSTATEboarded) .*

stat sum decision, 'g.')
4 plot separation lines;
5 legend('moving', 'boarded')
6 hold off
7 xlabel('agent')
8 ylabel('redecisions')

Listing 33: plot saved distance walked.m
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1 hold on
2 plot(1:agentcount, (agent(:, agentSTATE) == agentSTATEmoving) .*

stat sum distance, 'b.')
3 plot(1:agentcount, (agent(:, agentSTATE) == agentSTATEboarded) .*

stat sum distance, 'g.')
4 plot(1:agentcount, stat min distance, 'r.')
5 plot separation lines;
6 legend('moving', 'boarded', 'minimal-dist')
7 hold off
8 xlabel('agent')
9 ylabel('distance walked')

Listing 34: plot separation lines.m

1

2 dimension = axis;
3 for iclass = 1 : class count
4 for itype = 1 : agent type count
5 plot([agent part sum(iclass,itype),agent part sum(iclass,itype)],[

dimension(3), dimension(4)],'k');
6 end
7 end

8.2.6 Saving and loading simulation data

Listing 35: video capture.m

1 % add picture to video
2 if video mode == videoON
3

4 new Frame = getframe(my figure);
5 aviobj = addframe(aviobj, new Frame);
6

7 if t == tmax
8 aviobj = close(aviobj);
9 end

10

11 end

Listing 36: data export.m

1 % save current workspace to file if activated
2 if data export mode == data export ON
3 if (mod(step,round(save dt/dt)) == 0)
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4 save(strcat(save file prefix,int2str(step),save file suffix))
5 end
6 end

Listing 37: load and playback.m

1 % playback saved simulation keyframes in real time
2 init style
3 for i = 1:round(tmax/save dt)
4 filename = strcat(save file prefix,num2str(i*(round(save dt/dt))),

save file suffix)
5 load(filename)
6 plotting mode = plotMAPview;
7 paint
8 pause(save dt)
9 end

8.3 Simulation Results

This is the complete list of all simulated test cases, that have been used for the
analysis in section 5.3. There are 5 samples per test case. The number of the test
case corresponds to the variable that needs to be set in order to initialize the Matlab-
program. For each measurement in each test case, there is the calculated average
and standard deviation in the two grey bottom lines. The last column indicates
the number of agents that have not reached their destination until the end of the
simulation. Especially for the very crowded setup and the random door decision
mode, this number can get quite relevant. The order of the other columns matches
the list of statistical measurements in section 5.2.
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1 Standard OT 150 Agents
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
61.900 29.647 11.497 46.921 17.070 12.769 7.812 5.750 2.679 8.272 4.000
62.450 30.328 12.605 47.197 18.597 12.847 7.837 5.090 2.462 8.933 11.000
61.100 29.186 11.570 45.697 17.655 11.729 6.783 5.542 2.934 8.380 4.000
63.500 29.541 11.494 46.675 17.829 12.000 8.342 4.876 2.247 8.530 3.000
65.600 30.396 12.861 48.090 19.040 12.624 8.000 4.906 2.437 8.912 4.000

62.910 29.820 12.005 46.916 18.038 12.394 7.755 5.233 2.552 8.605 5.200
3.023 0.275 0.450 0.750 0.611 0.249 0.340 0.154 0.069 0.092 10.700

2 Standard TT 2x150 Agents
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
75.650 26.887 12.879 41.778 19.495 11.637 8.425 3.932 2.568 6.623 0.000
75.800 27.306 13.328 42.510 19.835 11.287 8.249 3.784 2.402 6.870 0.000
75.250 26.831 12.794 42.162 19.155 11.346 7.498 3.536 2.413 6.959 0.000
77.200 26.526 11.859 41.453 17.680 11.591 8.313 3.868 2.537 6.543 0.000
75.150 26.587 12.264 41.596 18.087 11.217 7.655 3.728 2.470 6.455 0.000

75.810 26.827 12.625 41.900 18.850 11.416 8.028 3.770 2.478 6.690 0.000
0.677 0.095 0.326 0.187 0.858 0.035 0.177 0.023 0.005 0.047 0.000

3 Few OT 75 Agents
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
40.100 21.594 7.473 35.350 12.271 5.626 4.569 5.511 2.765 5.140 3.000
37.450 21.192 6.855 35.310 11.655 4.570 3.750 5.265 2.439 4.967 1.000
37.250 21.521 6.886 35.998 11.436 5.366 3.906 4.646 2.514 5.085 2.000
36.650 21.806 6.399 35.733 10.392 5.917 4.649 5.755 3.257 5.317 1.000
34.300 20.337 6.048 33.662 9.347 5.787 4.507 5.740 3.155 4.741 0.000

37.150 21.290 6.732 35.211 11.020 5.453 4.276 5.383 2.826 5.050 1.400
4.294 0.332 0.291 0.830 1.334 0.286 0.173 0.210 0.136 0.046 1.300

4 Few TT 2x75 Agents
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
34.650 17.764 6.505 28.754 9.706 5.767 4.620 3.405 1.877 3.425 0.000
36.850 18.617 6.968 30.189 11.251 5.891 4.629 3.175 1.948 4.388 0.000
36.850 18.133 7.316 29.766 11.620 5.181 4.713 3.159 2.200 3.847 0.000
34.800 17.969 6.760 29.368 10.704 5.417 4.092 3.413 2.371 3.757 0.000
35.350 17.986 6.932 29.173 10.637 5.657 4.525 4.365 2.982 3.869 0.000

35.700 18.094 6.896 29.450 10.784 5.582 4.516 3.503 2.275 3.857 0.000
1.170 0.103 0.088 0.303 0.527 0.081 0.061 0.247 0.195 0.120 0.000

5 Too Many OT 300 Agents
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
82.950 42.529 15.921 69.423 25.544 20.227 11.884 5.565 2.696 11.193 23.000
84.700 42.288 15.907 69.375 26.238 20.016 12.362 5.840 3.079 11.021 19.000
81.200 41.834 15.704 67.916 25.790 19.465 11.573 5.346 2.547 10.750 21.000
83.350 41.938 15.848 68.752 26.432 19.424 11.811 5.546 2.810 10.890 24.000
86.900 42.410 15.799 67.790 24.027 19.527 12.041 5.317 2.588 11.147 20.000

83.820 42.200 15.836 68.651 25.606 19.732 11.934 5.523 2.744 11.000 21.400
4.526 0.091 0.008 0.603 0.903 0.133 0.086 0.044 0.045 0.033 4.300

6 Too Many TT 2x300 Agents
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
89.400 39.991 16.329 64.216 27.401 18.276 10.877 3.964 2.606 9.531 27.000
89.050 40.100 15.957 64.873 27.823 18.082 10.443 3.802 2.559 9.037 30.000
89.400 40.423 17.175 64.978 28.240 18.402 10.943 4.108 2.613 9.865 27.000
89.100 39.911 16.411 64.349 27.212 18.431 11.144 3.943 2.600 9.323 28.000
89.000 39.929 16.394 64.231 27.435 18.239 10.419 3.945 2.746 9.440 25.000

89.190 40.071 16.453 64.529 27.622 18.286 10.765 3.952 2.625 9.439 27.400
0.038 0.044 0.197 0.135 0.169 0.020 0.103 0.012 0.005 0.091 3.300

7 Doordecision Walk
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
88.800 29.446 15.995 46.219 23.876 12.491 10.131 1.730 0.744 9.171 2.000
87.400 29.366 16.603 46.150 24.820 12.270 9.470 1.784 0.807 8.861 0.000
73.600 29.396 15.247 46.643 22.485 12.339 9.029 1.722 0.696 9.818 2.000
88.700 29.315 15.375 46.715 23.956 12.638 9.630 1.713 0.708 9.870 6.000
88.800 29.526 15.509 46.766 23.194 12.668 9.654 1.722 0.710 9.667 5.000

85.460 29.410 15.746 46.499 23.666 12.481 9.583 1.734 0.733 9.478 3.000
44.308 0.006 0.310 0.085 0.769 0.031 0.157 0.001 0.002 0.195 6.000

8 Doordecision Queue
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
61.200 25.481 8.403 40.439 12.990 9.368 6.685 27.016 29.284 4.260 0.000
65.050 25.402 9.253 40.627 14.575 8.277 6.432 33.317 38.217 4.466 2.000
62.450 25.665 9.467 40.798 15.944 8.466 6.776 35.500 40.514 4.345 3.000
56.700 25.538 9.043 41.006 15.087 8.458 6.428 38.316 42.204 4.403 1.000
65.100 25.601 9.426 41.160 15.399 7.808 6.494 44.692 50.620 4.520 1.000

62.100 25.537 9.118 40.806 14.799 8.475 6.563 35.768 40.168 4.399 1.400
11.949 0.010 0.188 0.083 1.269 0.321 0.025 42.202 58.944 0.010 1.300



10 Doordecision Random
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
89.050 55.495 19.459 97.933 35.225 2.903 2.199 916.030 332.740 9.297 185.000
89.900 54.120 20.045 96.691 35.207 2.679 1.838 886.390 340.120 9.764 176.000
89.050 54.520 18.165 96.837 33.334 2.605 1.795 899.890 323.040 8.797 186.000
89.050 55.136 18.319 97.886 32.792 2.753 2.515 905.450 310.660 9.480 181.000
89.150 54.549 18.868 96.719 34.699 2.539 2.066 896.380 328.380 9.385 182.000

89.240 54.764 18.971 97.213 34.251 2.696 2.082 900.828 326.988 9.344 182.000
0.138 0.298 0.619 0.407 1.258 0.020 0.086 120.396 122.416 0.124 15.500

11 Lazy 0.0
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
63.200 25.396 9.204 40.731 15.318 8.721 6.196 27.708 30.521 4.226 0.000
56.300 25.315 9.010 40.345 14.601 8.262 6.547 35.344 39.317 4.489 2.000
69.100 25.871 9.998 41.506 16.172 8.004 6.696 41.220 44.561 4.520 1.000
71.900 25.564 9.712 40.751 16.357 8.747 6.641 30.484 34.906 4.403 1.000
72.400 25.600 9.791 40.948 16.376 8.332 6.283 36.400 40.234 4.403 1.000

66.580 25.549 9.543 40.856 15.765 8.413 6.472 34.231 37.908 4.408 1.000
46.407 0.046 0.174 0.180 0.611 0.101 0.049 27.845 28.809 0.013 0.500

12 Lazy 0.1
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
48.100 25.198 8.518 39.542 13.469 9.246 6.727 15.232 14.408 4.726 0.000
48.200 25.010 8.632 39.384 13.727 9.472 7.008 16.316 16.913 4.706 0.000
45.250 24.762 8.566 39.161 13.444 9.200 6.850 16.656 16.385 4.531 0.000
46.350 24.927 8.960 39.625 13.956 9.229 6.683 18.080 18.296 4.645 0.000
50.700 25.263 8.914 39.732 13.960 9.433 6.860 14.832 14.786 4.614 0.000

47.720 25.032 8.718 39.489 13.711 9.316 6.825 16.223 16.158 4.644 0.000
4.308 0.041 0.042 0.050 0.063 0.016 0.016 1.640 2.534 0.006 0.000

13 Lazy 0.2
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
51.900 25.575 10.178 40.594 15.922 9.440 7.114 11.176 8.947 5.491 0.000
48.200 25.516 9.982 40.420 15.506 9.437 7.236 9.700 8.527 5.350 0.000
47.400 25.382 9.345 39.851 14.772 9.259 6.274 9.156 7.408 5.197 0.000
46.700 25.551 9.287 40.420 14.318 9.614 7.057 10.492 8.710 5.403 0.000
51.250 25.416 9.125 40.571 14.579 9.542 6.676 10.240 8.618 5.178 0.000

49.090 25.488 9.583 40.371 15.019 9.458 6.871 10.153 8.442 5.324 0.000
5.480 0.007 0.217 0.091 0.450 0.018 0.155 0.592 0.359 0.018 0.000

14 Lazy 0.3
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
50.450 25.217 9.417 39.801 14.225 10.447 6.742 5.824 3.868 5.560 0.000
50.950 25.569 9.946 39.764 14.808 10.749 6.783 6.172 4.165 5.670 0.000
52.300 25.633 9.921 40.182 15.317 10.340 6.875 5.932 4.033 6.004 0.000
50.900 25.315 9.474 39.277 14.042 10.601 6.537 5.600 3.794 5.645 0.000
48.850 24.800 9.078 38.785 13.651 10.522 6.466 6.028 4.161 5.067 0.000

50.690 25.307 9.567 39.562 14.409 10.532 6.681 5.911 4.004 5.589 0.000
1.537 0.110 0.135 0.292 0.432 0.024 0.030 0.047 0.028 0.114 0.000

15 Lazy 0.4
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
74.300 26.329 11.769 41.028 17.652 10.963 6.654 4.744 2.978 6.176 0.000
71.700 26.316 11.383 41.072 16.669 10.835 7.126 4.632 2.827 6.344 0.000
57.950 25.978 10.746 40.475 15.526 11.283 6.839 4.532 2.930 6.404 0.000
56.100 25.607 10.153 40.070 14.644 11.385 7.253 5.216 3.415 5.949 0.000
74.300 26.143 10.776 40.842 16.222 10.910 7.194 5.032 3.260 6.404 0.000

66.870 26.075 10.965 40.697 16.143 11.075 7.013 4.831 3.082 6.255 0.000
82.325 0.089 0.391 0.178 1.297 0.059 0.066 0.081 0.060 0.038 0.000

16 Lazy 0.5
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
76.400 26.403 11.550 40.803 17.071 11.460 7.888 4.144 2.567 6.366 0.000
78.300 26.675 11.721 41.689 17.109 11.545 7.996 4.000 2.500 6.601 0.000
75.400 26.514 12.451 41.400 18.006 11.281 7.764 3.588 2.540 6.485 0.000
73.450 25.916 10.417 40.696 16.092 11.131 7.216 3.940 2.648 6.291 0.000
75.750 26.272 11.086 41.527 16.940 11.057 7.481 3.964 2.667 6.659 0.000

75.860 26.356 11.445 41.223 17.044 11.295 7.669 3.927 2.584 6.480 0.000
3.069 0.082 0.571 0.199 0.462 0.043 0.101 0.042 0.005 0.024 0.000

9 Doordecision Wait
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
73.550 36.762 17.086 64.487 30.654 2.593 1.714 453.460 283.250 7.017 8.000
69.650 34.515 15.604 59.869 26.887 2.631 1.825 406.080 241.010 6.887 8.000
71.800 37.282 17.124 64.554 29.698 2.999 2.527 458.170 291.140 7.553 8.000
65.700 34.534 15.362 60.559 27.247 2.613 1.969 410.590 260.270 6.890 8.000
78.400 37.162 18.335 64.709 32.512 2.748 1.968 448.670 298.580 6.883 7.000

71.820 36.051 16.702 62.836 29.400 2.717 2.000 435.394 274.850 7.046 7.800
22.113 1.979 1.498 5.793 5.574 0.028 0.098 623.982 564.190 0.084 0.200



17 Lazy 0.6
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
80.950 27.492 13.568 42.712 19.859 11.856 8.485 3.848 2.376 7.082 0.000
75.650 26.377 11.105 41.130 16.096 11.391 8.034 3.328 2.148 6.849 0.000
78.650 26.584 11.634 41.571 17.330 11.515 7.155 2.944 1.909 6.744 0.000
75.450 26.383 11.651 41.231 17.617 11.432 8.114 3.112 2.091 6.716 0.000
78.600 27.221 12.742 42.578 19.020 11.467 7.924 3.232 2.116 7.235 0.000

77.860 26.811 12.140 41.844 17.984 11.532 7.942 3.293 2.128 6.925 0.000
5.353 0.264 0.992 0.563 2.179 0.035 0.238 0.117 0.028 0.051 0.000

18 Lazy 0.7
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
87.500 29.549 17.019 46.921 26.491 12.275 9.477 2.468 1.434 7.895 0.000
81.850 27.953 14.702 43.668 21.437 11.947 8.930 2.408 1.435 7.122 0.000
87.950 29.511 17.278 46.693 26.205 12.286 9.014 2.488 1.435 7.506 0.000
61.350 26.496 10.929 41.420 16.243 11.280 7.344 2.520 1.506 6.898 0.000
83.500 27.479 13.323 42.785 19.958 11.910 8.487 2.692 1.582 7.208 0.000

80.430 28.198 14.650 44.297 22.067 11.940 8.650 2.515 1.478 7.326 0.000
120.506 1.756 7.032 5.896 18.865 0.167 0.657 0.011 0.004 0.149 0.000

19 Lazy 0.8
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
81.100 27.616 13.139 43.496 19.736 12.037 8.022 2.288 1.118 7.088 0.000
89.850 29.661 17.734 47.100 27.322 12.357 9.638 2.169 1.173 7.925 1.000
77.900 26.980 12.399 42.298 18.178 11.359 7.763 2.356 1.340 7.261 0.000
86.650 28.442 15.930 44.415 24.081 12.056 9.091 2.344 1.213 7.359 0.000
88.800 29.248 17.148 45.995 25.940 12.412 10.054 2.339 1.343 7.667 2.000

84.860 28.389 15.270 44.661 23.051 12.044 8.913 2.299 1.237 7.460 0.600
26.552 1.235 5.704 3.682 15.596 0.176 0.994 0.006 0.010 0.112 0.800

20 Lazy 0.9
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
88.900 29.239 16.391 45.880 24.778 12.265 9.251 2.040 0.928 7.834 1.000
88.600 27.965 14.899 43.445 21.971 12.222 9.106 1.924 0.854 7.506 0.000
87.450 28.720 15.693 45.306 25.045 11.946 9.467 2.128 1.033 7.525 0.000
89.350 29.334 17.309 46.964 26.601 12.444 9.426 2.061 0.953 7.982 2.000
88.800 29.699 17.064 46.673 26.334 12.883 9.942 2.089 0.998 8.328 2.000

88.620 28.991 16.271 45.654 24.946 12.352 9.438 2.048 0.953 7.835 1.000
0.503 0.452 0.984 1.952 3.389 0.120 0.100 0.006 0.005 0.117 1.000

21 Lazy 1.0
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
89.450 29.472 14.944 46.487 22.713 12.566 9.271 1.744 0.710 9.090 0.000
88.800 29.368 15.016 46.444 22.618 12.376 9.438 1.719 0.736 9.378 1.000
89.100 29.761 17.506 47.078 26.687 12.587 9.971 1.746 0.807 9.160 6.000
88.650 29.210 15.438 45.801 23.053 12.489 10.115 1.699 0.703 9.078 1.000
89.500 29.674 16.461 47.284 25.336 12.402 9.844 1.756 0.736 9.542 8.000

89.100 29.497 15.873 46.619 24.081 12.484 9.728 1.733 0.738 9.249 3.200
0.144 0.050 1.200 0.343 3.359 0.009 0.129 0.001 0.002 0.041 12.700

22 Decision Step Frequency 1 per second
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
77.250 26.993 13.002 42.156 19.024 11.557 8.072 3.804 2.428 6.723 0.000
76.650 27.122 12.669 42.358 19.364 11.799 7.871 4.000 2.571 6.821 0.000
76.700 26.557 12.051 41.857 18.455 11.432 8.039 3.932 2.616 6.404 0.000
76.250 26.396 11.340 41.182 16.534 11.160 7.468 3.976 2.693 6.499 0.000
74.200 26.349 11.230 40.944 16.671 11.818 7.929 3.984 2.551 6.558 0.000

76.210 26.683 12.058 41.699 18.010 11.553 7.876 3.939 2.572 6.601 0.000
1.389 0.125 0.616 0.376 1.758 0.075 0.059 0.006 0.009 0.029 0.000

23 Decision Step Frequency 100 per second
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
78.350 26.704 12.246 41.584 17.869 11.447 7.742 4.080 2.750 6.433 0.000
60.150 25.992 10.378 40.397 14.872 11.121 7.416 4.508 3.040 6.558 0.000
76.450 26.556 11.930 41.137 17.345 11.816 7.897 4.100 2.790 6.396 0.000
75.950 26.074 11.151 40.819 16.471 10.824 6.843 3.976 2.683 6.793 0.000
78.150 26.824 13.421 41.784 19.215 11.238 8.182 3.992 2.466 6.898 0.000

73.810 26.430 11.825 41.144 17.154 11.289 7.616 4.131 2.746 6.616 0.000
59.398 0.141 1.321 0.317 2.617 0.137 0.263 0.047 0.043 0.049 0.000

24 one decision per agent
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
82.000 30.509 17.404 49.319 26.529 9.931 8.841 1.172 0.565 8.116 0.000
88.600 30.708 18.028 49.539 27.956 10.136 9.678 1.218 0.662 8.328 2.000
82.250 30.145 16.889 49.022 26.438 10.365 9.017 1.157 0.535 8.317 1.000
83.450 30.150 17.390 48.634 26.009 9.787 8.923 1.161 0.545 8.079 1.000
81.000 29.921 16.440 47.882 24.340 10.328 9.200 1.173 0.602 8.166 2.000

83.460 30.287 17.230 48.879 26.254 10.109 9.132 1.176 0.582 8.201 1.200
9.017 0.100 0.358 0.426 1.682 0.062 0.111 0.001 0.003 0.013 0.700



25 ten decisions per agent
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
76.000 26.302 11.981 40.988 17.318 11.353 7.481 3.712 2.284 6.630 0.000
77.850 26.145 11.162 40.874 16.564 11.147 7.322 4.140 2.513 6.507 0.000
76.700 26.725 12.544 41.817 19.144 11.714 8.408 4.116 2.582 6.644 0.000
76.350 26.282 12.025 41.074 18.014 11.499 7.422 3.680 2.248 6.521 0.000
75.400 26.037 11.076 40.480 16.226 11.370 7.588 3.696 2.412 6.536 0.000

76.460 26.298 11.758 41.047 17.453 11.417 7.644 3.869 2.408 6.568 0.000
0.834 0.069 0.390 0.237 1.372 0.044 0.192 0.056 0.021 0.004 0.000

26 no patience
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
76.950 27.250 13.536 42.896 20.635 11.532 8.355 3.796 2.457 6.680 0.000
74.900 25.769 11.279 40.642 16.763 10.942 7.985 3.588 2.471 6.411 0.000
76.400 26.188 11.927 40.953 17.796 10.962 7.604 3.580 2.296 6.665 0.000
72.900 25.918 10.850 40.418 16.980 11.138 7.490 3.524 2.415 6.433 0.000
71.150 25.800 10.296 39.951 15.279 11.339 6.873 3.976 2.636 6.299 0.000

74.460 26.185 11.578 40.972 17.491 11.183 7.661 3.693 2.455 6.497 0.000
5.887 0.382 1.555 1.290 3.915 0.064 0.310 0.036 0.015 0.028 0.000

27 patience high
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
73.200 26.174 11.502 40.974 17.778 10.986 7.700 3.712 2.718 6.359 0.000
78.000 27.267 12.934 42.362 19.080 11.236 7.863 3.956 2.636 6.814 0.000
77.300 26.652 11.863 41.722 17.390 11.449 7.327 4.256 2.772 6.694 0.000
75.450 26.981 13.059 42.573 19.937 10.963 7.875 3.940 2.716 6.499 0.000
56.900 25.947 10.490 40.072 15.333 11.413 7.276 3.848 2.430 6.389 0.000

72.170 26.604 11.970 41.541 17.904 11.209 7.608 3.942 2.654 6.551 0.000
76.325 0.300 1.134 1.063 3.102 0.053 0.083 0.040 0.018 0.039 0.000

28 velocity 1m/s
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
88.850 28.580 12.465 26.788 11.782 9.188 6.985 3.073 1.999 6.977 2.000
89.550 28.592 13.394 26.822 12.582 9.186 6.954 2.886 1.672 7.187 4.000
58.100 26.587 10.152 24.804 9.741 9.025 6.243 3.036 1.848 5.541 1.000
84.850 28.027 13.030 26.273 12.352 9.055 6.596 2.884 1.623 6.715 1.000
90.000 28.606 13.261 27.012 12.715 8.508 6.942 3.136 1.975 6.863 0.000

82.270 28.078 12.460 26.340 11.834 8.992 6.744 3.003 1.823 6.657 1.600
186.723 0.755 1.791 0.812 1.497 0.079 0.104 0.013 0.029 0.419 2.300

29 velocity 1.5 m/s
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
61.450 26.389 10.255 35.671 12.975 10.856 7.228 3.472 2.162 6.426 0.000
82.750 27.069 12.947 36.699 17.194 10.621 7.229 3.632 2.317 6.572 0.000
82.800 27.055 12.362 36.530 16.125 11.036 7.983 3.496 2.257 6.644 0.000
79.250 26.244 10.331 35.256 13.225 11.087 7.440 3.740 2.453 6.253 0.000
83.000 27.867 14.152 37.710 18.452 11.104 7.272 3.564 2.267 6.856 0.000

77.850 26.925 12.009 36.373 15.594 10.941 7.430 3.581 2.291 6.550 0.000
86.489 0.419 2.872 0.915 5.870 0.042 0.103 0.012 0.011 0.052 0.000

30 velocity 2.5+/-1.5 m/s
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
49.600 25.393 10.168 71.326 29.401 13.245 8.352 3.756 2.351 5.437 0.000
52.500 25.089 10.306 71.593 29.109 13.069 8.076 3.316 2.119 5.795 0.000
50.700 25.009 10.263 70.649 28.215 12.933 8.459 3.284 1.964 5.542 0.000
48.850 24.705 9.855 70.412 28.313 13.236 8.001 3.440 2.139 5.438 0.000
51.550 25.430 10.858 72.694 30.448 13.075 8.953 3.568 2.490 5.941 0.000

50.640 25.125 10.290 71.335 29.097 13.112 8.368 3.473 2.213 5.631 0.000
2.144 0.089 0.132 0.809 0.828 0.017 0.143 0.038 0.043 0.051 0.000

31 20% Groups
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
82.350 28.302 14.817 44.192 21.282 11.449 8.050 4.024 2.880 7.280 0.000
80.050 27.545 13.070 42.915 18.627 11.356 8.236 4.032 2.627 7.248 0.000
52.600 25.690 9.225 39.732 13.257 11.078 7.236 3.480 2.232 5.745 0.000
76.150 27.562 13.668 43.370 20.276 11.625 8.075 3.996 2.540 6.925 0.000
73.650 26.751 12.657 42.227 19.491 10.403 7.084 3.668 2.396 6.779 0.000

72.960 27.170 12.687 42.487 18.587 11.182 7.736 3.840 2.535 6.795 0.000
140.906 0.985 4.408 2.882 9.836 0.229 0.285 0.064 0.060 0.390 0.000

32 50% Groups
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
74.600 27.120 12.151 42.919 18.561 10.287 7.563 3.976 2.653 6.723 0.000
84.100 28.395 14.595 44.280 21.187 11.451 8.154 4.116 2.374 7.352 0.000
78.550 26.816 12.138 41.780 17.761 10.936 7.583 4.408 2.878 6.737 0.000
78.150 28.950 15.381 45.944 23.215 10.811 8.213 3.723 2.416 7.332 1.000
79.350 28.286 14.818 44.989 22.136 10.983 7.983 3.880 2.524 7.326 0.000

78.950 27.913 13.817 43.982 20.572 10.894 7.899 4.021 2.569 7.094 0.200
11.601 0.820 2.412 2.733 5.439 0.174 0.096 0.067 0.041 0.111 0.200



33 instant start
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
67.550 20.075 10.882 30.507 16.320 9.646 6.824 1.984 1.451 7.378 0.000
49.750 19.462 10.630 29.610 16.556 9.176 6.452 1.948 1.586 6.593 0.000
67.700 19.465 10.943 29.306 16.499 9.778 6.981 1.688 1.082 6.849 0.000
68.450 19.682 10.774 29.693 16.350 9.740 6.572 1.732 1.194 6.898 0.000
69.050 19.610 10.847 29.537 16.106 10.152 6.999 1.520 0.893 6.779 0.000

64.500 19.659 10.815 29.731 16.366 9.698 6.766 1.774 1.241 6.899 0.000
68.353 0.063 0.014 0.209 0.031 0.122 0.060 0.037 0.078 0.085 0.000

34 late start
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
81.500 34.382 12.814 55.023 19.767 12.935 7.769 5.492 3.315 6.514 0.000
65.000 33.605 11.841 53.611 18.862 12.629 7.311 6.440 4.729 6.215 0.000
61.100 33.247 11.204 53.097 18.075 12.462 7.069 6.372 4.621 5.793 0.000
65.300 33.673 11.536 53.379 18.028 12.771 7.928 6.124 3.769 6.176 0.000
62.000 33.453 11.255 53.078 17.820 12.461 7.192 6.296 4.135 6.107 0.000

66.980 33.672 11.730 53.638 18.510 12.652 7.454 6.145 4.114 6.161 0.000
69.237 0.184 0.432 0.648 0.650 0.042 0.140 0.147 0.348 0.067 0.000

35 small waiting area OT
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
57.800 30.674 10.000 49.166 13.398 12.546 8.633 6.582 3.004 8.822 9.000
52.850 30.795 8.526 49.632 12.557 12.886 8.167 6.828 3.367 8.017 7.000
57.850 30.968 9.849 49.157 13.864 12.595 8.956 6.000 3.081 8.663 8.000
54.350 31.047 9.066 49.275 12.465 12.579 8.370 6.689 3.193 8.341 10.000
56.250 30.571 9.543 48.175 12.652 13.006 8.199 6.370 3.102 8.594 8.000

55.820 30.811 9.397 49.081 12.987 12.722 8.465 6.494 3.149 8.487 8.400
4.802 0.039 0.364 0.294 0.377 0.044 0.110 0.104 0.019 0.099 1.300

36 small waiting area TT
f_b_time m_b_time d_b_time m_distance d_distance m_waiting_t d_waiting_t m_decisions d_decisions d_door_distrib. unboarded
78.200 30.670 14.556 48.422 20.967 12.447 9.275 4.804 2.772 8.589 0.000
75.800 31.033 14.920 49.188 21.539 12.267 8.725 5.512 3.328 8.824 0.000
75.950 30.625 14.776 48.042 21.843 12.499 9.647 4.980 2.947 8.483 0.000
78.050 30.591 15.266 48.046 21.808 12.423 9.501 4.564 2.592 8.775 0.000
74.900 30.067 13.890 47.403 20.096 12.242 9.685 4.920 2.777 8.567 0.000

76.580 30.597 14.682 48.220 21.251 12.376 9.367 4.956 2.883 8.647 0.000
2.153 0.119 0.262 0.427 0.540 0.013 0.155 0.122 0.078 0.021 0.000
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