
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Simulation of
Human Trail Systems

Jonas Pfefferle & Nicholas Pleschko

Zürich

December 13, 2010

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe, keine
anderen als die angegebenen Quellen-Hilsmittel verwenden habe, und alle Stellen,
die wörtlich oder sinngemäss aus veröffentlichen Schriften entnommen wurden, als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Gruppenarbeit
nicht, auch nicht auszugsweise, bereits für andere Prüfung ausgefertigt wurde.

Jonas Pfefferle Nicholas Pleschko

2

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Jonas Pfefferle Nicholas Pleschko

3

Contents

1 Individual contributions 5

2 Introduction and Motivations 5

3 Description of the Model 5
3.1 Active Walker Model . 5
3.2 Ground Structure - Comfort of Walking 5
3.3 Attractiveness of a Trail Segment . 6
3.4 Walking Direction . 6

4 Implementation 7
4.1 A Discrete Model . 7
4.2 Class Design . 8

4.2.1 Plain . 8
4.2.2 Pedestrian . 9
4.2.3 State Machine . 9

4.3 Driver . 9

5 Simulation Results and Discussion 10
5.1 Experimental setup . 10
5.2 Results . 10

5.2.1 Triangle Setup . 10
5.2.2 Corners Setup . 11
5.2.3 Left-to-Right Setup . 13

5.3 Left-to-Right with Obstacle . 16

6 Summary and Outlook 18

References 19

7 Appendix: MATLAB code 20

4

1 Individual contributions

Our code was mostly developed in team work. Jonas described the model and it’s
discretisation. Nicholas did run the simulations and visualised the results. The rest
of the work was done in a cooperative manner.

2 Introduction and Motivations

Most human interactions can be described by mathematical models that invoke self
organization. Surprisingly one can develop simple models for complex systems like
human trails which are in high agreement with observations made in reality. Such
models can for example be used for urban planning or design and building of path
systems. Furthermore one may predict optimal paths for recreational park. Another
interest of ours was the investigation of the evolution of nonplanar trail systems. We
expect the trails to evolve around elevations.

3 Description of the Model

3.1 Active Walker Model

An active walker model1 describes a two-component system. Where one component
is the walker and the other is the landscape and both component are coupled with
each other. The walker can alter the landscape while walking. These effects on the
landscape influences the walker’s movement respectively his walking direction.

3.2 Ground Structure - Comfort of Walking

The ground is represented by a plain. According to [HKM97] one could define the
comfort of walking as a function G(r, t) on the ground which represents the ground
structure at place r and time t. Furthermore because they use the active walker
model to represent the pedestrians, the environmental change of the ground struc-
ture at a place r is determined by all the other pedestrians in the plain and the
durability of a evolved trail. Where the durability of a trail T (r) can be used to
represent the weathering effect 1

T (r)
, i.e. the effect of restoration of the ground struc-

ture. Clearly the ground structure can only be restored to some initial condition G0.
Therefore the comfort of walking of a place r decreases by some value determined
by the durability of a trail segment. The higher the durability the less the comfort
decreases. This can be expressed by 1

T (r)
[G0(r) − G(r, t)]. Furthermore one now

1[KAPL92, cf. Introduction]

5

has to take in account the other pedestrians. As we described in the section before
every walker alters the environment it walks over. One could describe those changes
as footprints every walker leaves on a place r. Their intensity can be expressed by

I(r)[1 − G(r,t)
Gmax(r)

], where Gmax(r) is the maximum comfort of walking at some place

r (e.g. all the vegetation at place r is trampled down). Finally this leads to the
environmental change2 of our ground structure G(r, t):

dG(r,t)
dt

= 1
T (r)

[G0(r)−G(r, t)] + I(r)[1− G(r,t)
Gmax(r)

]
∑
α

δ(r − rα(t))

Where α is the set of all pedestrians walking on the plain.

3.3 Attractiveness of a Trail Segment

Somehow the movement of a pedestrian must be related to the attractiveness of a
trail segment. And this attractiveness must be related to the ground structure, as it
represents the comfort. Clearly a place r is less attractive if its distance |r − rα(t)|
to the pedestrian’s position rα is large. The larger the distance the less attractive
a place gets. Furthermore also the visibility σ(rα) is deciding. If the visibility is
low clearly only places in the close neighbourhood are attractive for the pedestrian’s
movement. According to [HKM97] this leads to the trail potential:

Vtr(rα, t) =
∫
d2re

−|r−rα|
σ(rα) G(r, t)

That is the attractiveness of each place r from the perspective of a pedestrian at
place rα.

3.4 Walking Direction

The walking direction of a pedestrian is determined by his destination dα and the at-
tractiveness of the trail segments. The direction can be expressed by the unit vector
eα(rα) = dα−rα

|dα−rα| . Furthermore considering only the attractiveness of a trail segment

the pedestrian should move into the direction given by the highest slope at the place
rα in Vtr, i.e. the gradient ∇rαVtr(rα, t). Finally combining those to aspects this
leads to the walking direction:

eα(rα) = dα−rα+∇rαVtr(rα,t)
|dα−rα+∇rαVtr(rα,t)|

2[HKM97, c.f. page 48 - (1)]

6

4 Implementation

4.1 A Discrete Model

To implement a simulation we had to discretise the in section 3 described model.
Therefore we partitioned the plain into a mesh, i.e. small squares of equal sizes.
Furthermore we had to discretise the time such that a time step goes from time t to
t+ 1. Finally this leads to the equation of environmental change with direct update
of the ground structure:

G(r, t+ 1) = G(r, t) + 1
T (r)

[G0(r)−G(r, t)] + I(r)[1− G(r,t)
Gmax(r)

]
∑
α

δ(r − rα(t))

Let Ω be the set of all places r in the plain than the attractiveness at a place rα is
approximated by an arithmetic average over this set:

Vtr(rα, t) =

[∑
r∈Ω

e
−|r−rα|
σ(rα) G(r, t)

]
/|Ω|

Where the direction of the gradient becomes the direction to the maximum value of
Vtr of all direct neighbors surrounding rα, i.e. one of the nine squares adjacent to
rα. The movement of the pedestrian is then determined by the direction of the next
destination where we can use the described formula of section 3 and the direction
given by the maximum value of the surrounding squares. Let Λ ⊆ Ω be the set of
surrounding squares:

eα(rα, t) = dα−rα
|dα−rα| +

arg max
r∈Λ

Vtr(r,t)

| arg max
r∈Λ

Vtr(r,t)|

7

As we have only eight directions the pedestrian can move to, we had to divide the
directions into eight equally sized segments of the circle. Where each is 2π/8 wide:

To change the behaviour whether the next destination or the attractiveness for de-
ciding the direction to go to is more important we introduced a new variable ρ. If
ρ is larger than 1 the distance gets more important elsewise the attractiveness gets
more important.

eα(rα, t) = ρ · dα−rα|dα−rα| +
arg max

r∈Λ
Vtr(r,t)

| arg max
r∈Λ

Vtr(r,t)|

4.2 Class Design

In this section we describe our class design.

4.2.1 Plain

The Plain class represents the ground structure, i.e. a matrix representing the equally
sized squares. Where each value at a coordinate (i, j) is related to the comfort of
walking as described in previous sections. Furthermore we store a matrix (cf. Gmax)
holding the maximum comfort value at a given coordinate. When instantiating a
Plain object one has to specify a initial ground structure representing G0. Also the
intensity of a footprint and the durability at coordinate (i, j) are stored as a matrix.

8

Finally all to the plain relevant information is stored in this Plain class, the comfort
of walking, the maximum comfort of walking, the intensity and the durability.

4.2.2 Pedestrian

The Pedestrian class represents a pedestrian α at a position rα. As each pedestrian
has to have a destination dα in the plain this coordinate is also stored. If one would
like to check if a pedestrian is at its given destination he easily can call the helper
function isAtDestination returning a boolean value.

4.2.3 State Machine

The State Machine class is the heart of our simulation. In this class the transitions are
performed. This could be seen as a finite state machine as each entry in the matrix
is bounded by the precision of the floating point value. Our state machine simply
uses a state at time t given by a plain object and the pedestrians on the plain stored
in this class and transforms it to a state of time t+ 1. This is done in the transition
function. When calling transition one can specify a function handle representing a
function which generates new pedestrian at some point in the plain. So first the new
pedestrians are computed by calling the function handle and adding them to the list
of pedestrians in the plain. Then the comfort of walking is computed with this list of
pedestrians and the plain’s ground structure, initial ground structure and maximum
comfort of walking as described in environmental change to the plain. Now the
pedestrians can be moved according to the new ground structure by computing the
attractiveness Vtr and moving the pedestrian as described in the previous subsection.

4.3 Driver

The driver is responsible for actually running the state machine. It instantiates the
plain, i.e. the initial ground structure, maximum comfort, intensity and durability.
Furthermore it creates the a state machine with the given plain. Then it calls the
transition function with a function handle for a function placing new pedestrians.
This call is repeated in a loop running until a predefined time limited is exceeded.
The driver is also responsible for visualising the output where both the comfort of
walking and the attractiveness are shown. Furthermore we included the pedestrians
in the visualisation as small white circles.

9

(a) Triangle setup (b) Corners setup (c) Left-to-right setup

Figure 1: Entry-points and destinations (red) of our simulations

5 Simulation Results and Discussion

5.1 Experimental setup

We defined 4 basic setups for visualizing our results. They are characterized by
their starting points and destinations of the walkers around the grass area. The first
experiment arranges the entry and destination points as a triangle as shown in figure
2a, which corresponds to an fork in a path in the real world. Secondly we simulated
a system with four entry points at the corners of the grass area (see figure 2b). This
could be the case in a park or the like. The third setup shows the walking of humans
which all have the same destination (the grass areas right border) and similar entry
points (left border), see figure 2c. Furthermore we decided to generate one new
pedestrian “randomly” every time-step.

5.2 Results

5.2.1 Triangle Setup

From this setup we expected simulations which show trails like those at the fork of
a path. Increasing the visibility parameter while fixing the other parameters should
lead to minimal way system. The following results show the our results on a 25x25
squares grid, increasing the visibility from left to right.

These visualizations of the ground structure show a clear transformation from a
direct way system into a minimal way system. Although there are some effects which
we didn’t expect. For example increasing the visibility to an certain extend yields a
more random behavior of the pedestrians.

10

(a) Visibility = 2 (b) Visibility = 4 (c) Visibility = 6

Figure 2: Visualization of ground structure after 140 time steps with varying visibility

5.2.2 Corners Setup

In this simulation we let the pedestrians walk from all the four corners of the grass
area to all the other corners. In the early evolution of this system trails should grow
in a clear cross and the border lines. But after a while we would like to have more
of a minimal way system, such that the outer border lines grow towards the center
of the grass area. This would reflect a common behavior on campus grass areas (cf.
[HKM97]) and the like.

The following graphics show how the trails evolve in this system. There is an
obvious tendency for the borderline paths to move to the center, which is what we
would expect. We explain this by the attractiveness maps on the right hand side.
They gradually grow into a clear cross. So it makes sense for the walkers to walk
towards those highlighted areas.

(a) Ground structure (b) Attractiveness

Figure 3: After 20 time steps

11

(a) Ground structure (b) Attractiveness

Figure 4: After 40 time steps

(a) Ground structure (b) Attractiveness

Figure 5: After 80 time steps

(a) Ground structure (b) Attractiveness

Figure 6: After 80 time steps

12

5.2.3 Left-to-Right Setup

When the visibility is low (figure 7a-10b) in this setup there are many trails evolving.
But somehow a isle develops were almost all pedestrians walk through. This is very
similar to the result shown by [HKM97] figure 4 on page 49. Where they compare this
to a real world example of the campus of Brasilia. Note that even such a isle is develop
there are always pedestrian walking beside this isle. Therefore their destination gets
more important as the attractiveness to this isle. We expected this behavior because
of the low visibility the pedestrians are more guided by their destination than the
most attractive places in the plain. One can easily see how this behavior changes if
we increases the visibility (figure 11a-14b). There a almost unique path is created
were all pedestrians walk over. only a few at the border of the plain are developing
their own trails. But this trails are likely to get restorated to the initial ground
conditions.

13

(a) Ground structure (b) Attractiveness

Figure 7: After 20 time steps

(a) Ground structure (b) Attractiveness

Figure 8: After 80 time steps

(a) Ground structure (b) Attractiveness

Figure 9: After 140 time steps

(a) Ground structure (b) Attractiveness

Figure 10: After 200 time steps

14

(a) Ground structure (b) Attractiveness

Figure 11: After 20 time steps

(a) Ground structure (b) Attractiveness

Figure 12: After 80 time steps

(a) Ground structure (b) Attractiveness

Figure 13: After 140 time steps

(a) Ground structure (b) Attractiveness

Figure 14: After 200 time steps

15

5.3 Left-to-Right with Obstacle

In this setup we tried to modify the given model to simulate trails evolving where
obstacles block the pedestrians’ way. As we described in previous sections we change
the initial ground structure (i.e comfort of walking) such that the slope of a hill is
related to a less comfortable ground. We expected the trails to evolve around the
obstacle.

As shown in figure 15a - 18b the expectations where met. One can see that in the
early evolution there are two main paths above and below the obstacle. In the later
process they merge to one more attractive path above. We explain this behavior
by the random placement of the pedestrians. Probably in the previous steps there
were more pedestrians spawned in the upper half than in the lower half of the plain’s
border.

We observed a problem with the intensity at our obstacle. It sometimes happens
that a walker walks through the obstacle area which mean that he leaves footprints
there. So if there is one pedestrian who chooses the path over the obstacle there will
be many to follow. This doesn’t represent what we want as the pedestrians trample
down our hill.

We therefore decreased the intensity of the footprints in the obstacle area such
that pedestrians don’t leave any footprints on the obstacle. This models a immutable
hill.

16

(a) Ground structure (b) Attractiveness

Figure 15: After 20 steps

(a) Ground structure (b) Attractiveness

Figure 16: After 40 steps

(a) Ground structure (b) Attractiveness

Figure 17: After 80 steps

(a) Ground structure (b) Attractiveness

Figure 18: After 160 steps

17

6 Summary and Outlook

The model seems to fit well compared to real world trail systems. But it is very
hard to find satisfying values for all the parameters. The paper [HKM97] does not
give any hint of how the values should be chosen to gain good results. So we had to
somehow guess the values and test if they fulfil our requirements.
Furthermore our idea to model elevation with comfort of walking is as we saw a too
simple description. Consider a plain ground where there is some kind of trench from
left to right with decreasing height such that on the left side it has equal height to
the rest of the plain. Furthermore the pedestrians are walking from left to right.
Because we described slope as unattractive this would be the last path taken. But
considering the slope is not too high probably a human would choose such paths.
Therefore one better changes the behaviour of the attractiveness function Vtr such
that small decreasing slopes are more attractive and a increasing slope is always
unattractive. Note that large decreasing slopes should be considered to be very
unattractive as walking downwards on such a path is very exhausting. One might
think of trails evolving on precipitous hillsides. There more often than not zig-zag
paths develop. It would be interesting if such paths would develop in a modified
simulated environment.

18

References

[HKM97] Modelling the evolution of human trail systems, Nature - Volume 388, Dirk
Helbing, Joachim Keltsch and Pter Molnr July 1997

[KAPL92] Active walker models: tracks and landscapes, Physica A 191, D.R. Kayser,
L.K. Aberle ,R.D. Pochy and L. Lam 1992

19

7 Appendix: MATLAB code

1 classdef Plain < handle
2 %PLAIN Saves state of the plain
3

4 properties(SetAccess = public)
5 ground; % The current ground structure
6 groundMax; % The maximum values of the walking comfort
7 intensity; % The footprint intensity
8 durability; % The durability of trails
9 visibility; % The visibility at each point

10 end
11

12 properties(SetAccess = private, GetAccess = private)
13 initialGround;
14 end
15

16 methods
17 function obj=Plain(initialGround,aGroundMax,aIntensity,aDurability,

aVisibility)
18 initSize = size(initialGround);
19

20 if((nnz(initSize == size(aIntensity)) == 2) &&...
21 (nnz(initSize == size(aDurability))==2) &&...
22 (nnz(initSize == size(aGroundMax))==2) &&...
23 (nnz(initSize == size(aVisibility)))==2)
24

25 obj.ground = initialGround;
26 obj.groundMax = aGroundMax;
27 obj.initialGround = initialGround;
28 obj.intensity = aIntensity;
29 obj.durability = aDurability;
30 obj.visibility = aVisibility;
31 else
32 error('PLAIN(): initialGround must be same size as intensity

and durability');
33 end
34 end
35

36 function changeEnvironment(obj,pedestrians)
37 % Changes the environment according to the positions of the
38 % pedestrians
39 [n m] = size(obj.ground);
40 pedAt = sparse(n,m);
41

42 for i=1:length(pedestrians)
43 ped = pedestrians(i);
44 pedAt(ped.position(1),ped.position(2)) = ...

20

45 pedAt(ped.position(1),ped.position(2)) + 1;
46 end
47

48 % Change the environment on each square of the plain
49 for i=1:n
50 for j=1:m
51 % Change the ground according to the formula
52 obj.ground(i,j) = obj.ground(i,j) + ...
53 1/obj.durability(i,j) * (obj.initialGround(i,j)−...
54 obj.ground(i,j)) + obj.intensity(i,j) * ...
55 (1−(obj.ground(i,j)/obj.groundMax(i,j))) * ...
56 pedAt(i,j);
57

58 % Check for the boundaries of the ground values
59 if(obj.ground(i,j) > obj.groundMax(i,j))
60 obj.ground(i,j) = obj.groundMax(i,j);
61 elseif(obj.ground(i,j) < obj.initialGround(i,j))
62 obj.ground(i,j) = obj.initialGround(i,j);
63 end
64 end
65 end
66

67 end
68

69 function val = isPointInPlain(obj,y,x)
70 % Returns wheter or not a point (x,y) is in this plain
71 val = (y>0 && x>0);
72 val = val && y≤size(obj.ground,1) && x≤size(obj.ground,2);
73

74 end
75 end
76

77 end

1 classdef Pedestrian < handle
2 %PEDESTRIAN our pedestrian class
3

4 properties(SetAccess = private)
5 destination;
6 end
7

8 properties
9 position;

10 end
11

12 methods
13 function obj = Pedestrian(dest)
14 obj.destination = dest;

21

15 end
16

17 function set.position(obj,x)
18 obj.position = x;
19 end
20

21 function val = isAtDestination(obj)
22 val = (norm(obj.position − obj.destination)<2);
23 end
24 end
25

26 end

1 classdef StateMachine < handle
2 %STATEMACHINE Handles the state changes in the simulation
3 % Computes the change of the environment and moves all the pedestrians
4

5 properties(SetAccess = public)
6 plain; % G ... the current plain
7 pedestrians; % Array of pedestrians which are currently walking
8 importance; % How to weight the vector to the destination
9 end

10

11 methods
12 function obj = StateMachine(aPlain)
13 % Constructor: set the plain
14 obj.plain = aPlain;
15 end
16

17 function [Vtr] = transition(obj, newPedsFun)
18 % Does a transition in the state machine according to the plain
19 % and the pedestrians.
20 % newPeds ... function handle returns pedestrian vector
21 [n m] = size(obj.plain.ground);
22 Vtr = zeros(n,m);
23

24 % Generate new pedestrians
25 newPeds = newPedsFun(size(obj.plain.ground));
26 obj.pedestrians = [obj.pedestrians,newPeds];
27

28 % Change the environment according to the pedestrian positions
29 obj.plain.changeEnvironment(obj.pedestrians);
30

31 % Compute the attractiveness for each point in the plain
32 for i=1:n
33 for j=1:m
34 Vtr(i,j) = obj.computeAttractiveness([i;j]);
35 end

22

36 end
37

38 % Delete pedestrians which are at their destination (or close
39 % to it)
40 deletePeds = [];
41 for i=1:length(obj.pedestrians)
42 if(obj.pedestrians(i).isAtDestination())
43 deletePeds = [deletePeds,i];
44 else
45 obj.movePedestrian(i,Vtr);
46 end
47 end
48

49 obj.pedestrians(deletePeds) = [];
50

51

52 end
53

54 function movePedestrian(obj,pedestNum,vtr)
55 % Moves a pedestrian according to the attractiveness of the
56 % neighbourhood and its destination
57

58 pedest = obj.pedestrians(pedestNum);
59

60 maxvtr = −inf;
61 maxcoords = [0;0];
62

63 % compute the maximum value of vtr in the neighbourhood and
64 % save the direction to it
65 for i = −1:1
66 for j = −1:1
67 y = pedest.position(1)+i;
68 x = pedest.position(2)+j;
69 if(obj.plain.isPointInPlain(y,x))
70 if maxvtr < vtr(y,x)
71 maxvtr = vtr(y,x);
72 maxcoords = [i j];
73 end
74 end
75

76 end
77 end
78

79 % normalize the gradient vector (but check for zero division)
80 if(norm(maxcoords)>0)
81 maxcoords = maxcoords / norm(maxcoords);
82 end
83

84 % compute the vector to the destination and normalize it
85 toDest = pedest.destination − pedest.position;

23

86 toDest = toDest ./ norm(toDest);
87

88 % add both vectors, but multiply the toDest vector with
89 % importance to get better results
90 moveDir = obj.importance * toDest + maxcoords;
91

92 % compute the angle of the directional vector
93 alpha = atan(moveDir(1)/moveDir(2));
94

95 % Because tan is pi periodic we have to add pi to the angle
96 % if x is less than zero
97 if moveDir(2) < 0
98 alpha = alpha + pi;
99 end

100

101 % Define the direction vectors
102 up = [−1 0];
103 down = [1 0];
104 left = [0 −1];
105 right = [0 1];
106

107 % Initialize the move vector
108 move = [0 0];
109

110 % Shortcut for pi/8
111 piEi = pi/8;
112

113 % Check the angle of the resulting vector and choose
114 % the moving direction accordingly
115

116 if (alpha < −3*piEi) | | (alpha > 11*piEi)
117 % move up
118 move = up;
119

120 elseif (alpha ≥ −3*piEi) && (alpha < −piEi)
121 % move right up
122 move = up + right;
123

124 elseif (alpha ≥ −piEi) && (alpha < piEi)
125 % move right
126 move = right;
127

128 elseif (alpha ≥ piEi) && (alpha < 3*piEi)
129 % move down right
130 move = down + right;
131

132 elseif (alpha ≥ 3*piEi) && (alpha < 5*piEi)
133 % move down
134 move = down;
135

24

136 elseif (alpha ≥ 5*piEi) && (alpha < 7*piEi)
137 % move down left
138 move = down + left;
139

140 elseif (alpha ≥ 7*piEi) && (alpha < 9*piEi)
141 % move left
142 move = left;
143

144 elseif (alpha ≥ 9*piEi) && (alpha < 11*piEi)
145 % move up left
146 move = up + left;
147 end
148

149 % Actually move the pedestrian
150 pedest.position = pedest.position + move;
151 end
152

153 function [Vtr] = computeAttractiveness(obj,coords)
154 % This function computes the sum of all attracivenesses
155 % of the whole area from the viewpoint of coords
156

157 Vtr = 0;
158

159 % Get the visibility at point coords
160 visibility = obj.plain.visibility(coords(1),coords(2));
161

162 % Get the current ground structure
163 G = obj.plain.ground;
164 [n m] = size(G);
165

166 % Efficient implementation for the sum
167 S = zeros(size(G));
168 [A,B]=meshgrid(([1:m]−coords(2)).ˆ2,([1:n]−coords(1)).ˆ2);
169 S=−sqrt(A+B);
170 S = exp(S/visibility);
171 S = S.*G;
172 Vtr = sum(sum(S));
173

174 % Average the sum over the number of squares in the plain
175 Vtr = Vtr/(m*n);
176

177 end
178 end
179 end

1 function smDriver()
2 %SMDRIVER Sets up a simulation
3

25

4 f1 = figure('OuterPosition',[0 0 700 600]);
5

6 % Set the grid size
7 m = 25;
8 n = 50;
9

10

11 % Set the parameters
12 gauss = fspecial('gaussian',15,5);
13

14 initialGround = zeros(m,n); % Modify this to get objects or slopes into
15 %initialGround(6:20,16:30)= − (gauss * 5000);
16 % the simulation.
17 % Example: Box in the middle
18 % initialGround(9:12,20:40) = −1000;
19 dur = 25; % Durability
20 inten = 10; % Intensity
21 vis = 2; % Visability
22 importance = 1.6; % Weight of the destination vector
23

24 groundMax = ones(m,n) * 100;
25 intensity = ones(m,n) * inten;
26 %intensity(6:20,16:30) = inten − gauss*1000 ;
27 durability = ones(m,n) * dur;
28 visibility = ones(m,n) * vis;
29

30

31 % create new plain with the specified values
32 myplain = Plain(initialGround,groundMax,intensity,durability,visibility);
33

34 % show the plain for input of the entry points
35 pcolor(myplain.ground);
36 entryPoints = ginput;
37

38 % create a state machine with the specified plain
39 mysm = StateMachine(myplain);
40 mysm.importance = importance;
41

42 % Do 200 timesteps
43 for i=1:200
44

45 % print every 20th timestep into a .png file
46 if(mod(i,20)==0 && i >0)
47 str = sprintf('images/triangle/im %d d%d i%d v%d %d.png',...
48 importance,dur,inten,vis,i);
49 saveas(f1,str);
50 end
51

52 % specify the function handle which generates new pedestrians
53 %newpedsfun = @(size)entries(i,size,entryPoints);

26

54 %newpedsfun = @(size)corners(i,size);
55 newpedsfun = @(size)leftToRight(i,size);
56

57 % compute a new transition in the state machine
58 vtr = mysm.transition(newpedsfun);
59 pedestrians = mysm.pedestrians;
60 %positions = zeros(m,n);
61 fprintf('Number of pedestrians: %d\n',length(pedestrians));
62

63 clf(f1);
64 suptitle({[];[];['Grid:' num2str(m) 'x' num2str(n)];['Durability:'...
65 num2str(dur) ' Visibility:' num2str(vis) ' '];['Intensity:' ...
66 num2str(inten) ' Importance:' num2str(importance) ' '];['After '...
67 num2str(i) ' timesteps']});
68 subplot(1,2,1);
69 title('Ground structure (evolving trails)');
70 pcolor(myplain.ground);
71 caxis([0 50]);
72 shading interp;
73 axis equal tight off;
74

75 subplot(1,2,2);
76 pcolor(vtr);
77 caxis([0 1]);
78 shading interp;
79 axis equal tight off;
80

81 for j=1:length(pedestrians)
82 ped = pedestrians(j);
83

84 subplot(1,2,1);
85 title('Ground structure (evolving trails)');
86

87 hold on;
88 plot(ped.position(2),ped.position(1),'wo');
89

90 subplot(1,2,2);
91 title('Attractiveness');
92

93 hold on;
94 plot(ped.position(2),ped.position(1),'wo');
95 end
96

97

98 drawnow;
99 end

100 end
101

102 function peds = leftToRight(i,pSize)
103 n = pSize(1);

27

104 m = pSize(2);
105 ystart = 1 + floor((n).*rand(1,1));
106 ydest = 1 + floor((n).*rand(1,1));
107 xstart = 1;
108 xdest = m;
109 ped = Pedestrian([ydest xdest]);
110 ped.position = [ystart xstart];
111 peds = [ped];
112 end
113

114 function peds = corners(i,pSize)
115 corners = [1 1;...
116 1 pSize(2);...
117 pSize(1) pSize(2);...
118 pSize(1) 1];
119

120 r = randperm(4);
121 ped = Pedestrian(corners(r(1),:));
122 ped.position = corners(r(2),:);
123 peds = [ped];
124

125 end
126

127 function peds = entries(i,pSize,ent)
128 corners = floor([ent(:,2) ent(:,1)]);
129

130 r = randperm(size(corners,1));
131 ped = Pedestrian(corners(r(1),:));
132 ped.position = corners(r(2),:);
133 peds = [ped];
134

135 end

28

