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1. Introduction and Motivation

Opinion formation is a key process in many areas of human society. Understanding the mech-
anisms behind opinion formation is critical for theoretical research and practical application in
both politics and economics.
We studied two papers on the subject of opinion formation. In �Nonequilibrium phase transition
in the coevolution of networks and opinions� [1] a network-based model with discrete opinions
is presented whereas �Minorities in a Model for Opinion Formation� [2] proposes a continuous
model based on random interactions of agents. We found both approaches interesting and were
wondering how combining the two models would change the behaviour of the agents and in�uence
the process of achieving consensus. Speci�cally, we wanted to study the e�ects from creating a
model that uses both a network of agents, as well as continuous opinion values. Furthermore,
we wanted to analyse the e�ect of using a more complex but theoretically more realistic initial
network structure. This led us to the following research questions.

1. Considering paper [1]: How does a random graph as an approximation of social structures
compare to small world social structures and what are the di�erences, if any? Speci�cally,
how is the formation of opinion groups in�uenced when choosing this network structure
over a purely random based one?

2. How does the continuous network based model1 presented in this project compare to the
discrete network model from [1] and to the continuous (not network-based) model in [2]?

a) Both paper [2] and paper [1] examine the achievement of consensus in their respec-
tive models. What is the in�uence of the network structure in the combined model
compared to the combined model?

b) Research question 1 studies the impact of di�erent networks structures on the opin-
ion formation process. Can the results from the discrete model be repeated in the
continuous model?

c) The model from [2] forms a number of disjoint opinion groups following a speci�c
pattern. Can this pattern also be observed in our combined model?

2. Materials and Methods

2.1. Description of the Model

2.1.1. Discrete network-based model

Paper [1] tries to model opinion formation in social networks. We give a brief description of this
model to allow the reader to familiarize himself with its workings.

The network is represented as an undirected graph of the N agents which represents the relation-
ships between the individuals. The initial network is formed by randomly creating connections
between a certain number of agents. The number of connections (i.e. the number of edges in the
graph) is called M .
The opinion of each agent i is denoted gi. At the beginning, these opinions are assigned randomly

1in the following referred to as combined model
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from a discrete set of opinions with size G. The mean number of people having a particular opin-
ion is denoted λ, whereupon λ = N/G.
The model iteratively simulates the evolution of the network. In each step of the simulation one
of two methods is chosen to model the alteration of opinions in the network. The �rst method
simulates the termination and formation of relationships based on the individuals opinions. The
second method models the propagation of opinions between agents.
To be exact, �rst an agent i is chosen at random. If i has no connections in the network, nothing
happens. Otherwise one of the two methods is chosen.

1. With probability φ, terminate the connection between i and a randomly selected neighbour.
Then connect i to another agent, selected at random from all agents having opinion gi.

2. With probability 1−φ, pick a random neighbour j of i and set i's opinion gi to j's opinion
gj .

From now on we will refer to these as Method 1 and Method 2.

2.1.2. Continuous model

Paper [2] presents a set of i independent agents holding an opinion xi in the interval [0, 1]. In each
iteration two randomly chosen agents meet and potentially move their opinions closer to each
other. Following this mechanism, the model's attempt is not to simply represent a radical opinion
change but to give account to the fact, that opinion formation is an evolutionary process taking
place over time. This gradual change of opinion at the interaction of two agents is determined
by the following parameters.

Opinion Threshold u: This parameter represents the fact that people who strongly disagree with
each other hardly ever get closer in their opinion. That is, two agents i and j will only
change their opinions if their di�erence is less then the opinion threshold, i.e. |xi−xj | < u.

Convergence Parameter µ: Given their social background, agents tend to change their opinions
at a di�erent pace, characterized by the parameter µ ∈ [0, 1].2 If the di�erence in opinion
is below the opinion threshold, the agents change their opinion according to the following
rule:

xi(t+ 1) = xi(t) + µ(xj(t)− xi(t))
xj(t+ 1) = xj(t) + µ(xi(t)− xj(t))

(1)

This model has been analysed by several research groups, as mentioned in [2]. In order to be
able to reason about opinion groups, the parameter u0 was introduced into the model. It allows
the de�nition of opinion clusters, stating that two agents belong to the same cluster if their
opinion di�ers by at most u0. The model is simulated until there is no further change in the
clusterization.

The former research gives evidence that µ does not have a huge in�uence on achieving consensus
for the whole system, but only determines the speed at which consensus is reached. Nevertheless,
the research in [2] has shown that it does impact the behaviour of minorities in the system, being
opinion clusters with less than 10% of the population. But that result is not of interest here. An
interesting fact is the coherence of u and the number of opinion clusters. It has been shown that

2Given the formulas one can easily see that it does not make sense to choose µ > 1
2
. A value of µ = 1

2
would

already cause the two agents to adapt an equal opinion, i.e. to meet on middle ground. So µ ∈ [0, 1
2
] is

assumed.
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consensus can only be achieved with u ≥ 0.3 and that the number of opinion clusters corresponds
to the integer part of the forumla count(u) = 1

2u .

2.1.3. Combined model

In this section we present the combined model designed for our research questions. We started
with the discrete network-based model and enhanced it to use continuous opinion values instead
of discrete ones. This allows us to introduce the mechanisms of the continuous model into
the network-based structure. As a result the model features individuals that do not simply
adopt the viewpoint of a neighbour but rather shift in the direction of his opinion as in the
continuous model. Furthermore, we extended the selection process of new neighbours, making
it dependent on the opinion of the individuals. Any person can be selected as a new neighbour,
but with decreasing, normal distributed probability corresponding to their di�erence in opinion.
Therefore, the model introduces the new parameter std which is the standard derivation used in
the normal distribution. In each iteration of the simulation the model randomly selects a person.
If the person has no neighbours, nothing happens. Otherwise, these adjusted versions of Method

1 and Method 2 are used.

1. With probability φ, select at random one of the edges attached to the person and move the
other end of that edge to a another person. The new neighbour is chosen with normally
distributed probability. The expected value is the person's opinion while the standard
derivation is speci�ed by the parameter std.

2. With probability 1−φ, the two agents interact in the same way as in the continuous model.
They change their opinion according to formula (1) if their opinion di�ers by less than the
opinion threshold µ.

2.2. Networks

To examine the impact the initial network itself has on the model, we used two di�erent networks
for comparison.
The �rst is a simple random graph which is also known as an Erd®s-Rényi graph [3]. Random
graphs are a simple and powerful way to model a social network but they lack local clustering.
As a second model we implemented the so called Watts and Strogatz model to generate a graph
which addresses the lack of local clustering and therefore is a better approximation of the small
world structure. Those graphs are generated in the following way.
Given the number of nodes n ∈ N and the mean degree k ∈ N3 as well as a special parameter
β ∈ [0, 1], the model constructs an undirected graph. We assume that the nodes are labeled
a0, a1, . . . an−1. We �rst construct a regular ring lattice, a graph with n nodes, where each node
is connected to k neighbours, k

2 on each side. Therefore there is an edge (ai, aj) if and only if

|i − j| = p or |i − j| = n − p for some p ∈ {1, . . . , k2}. In a second step we take for every node
ai, i ∈ {0, . . . , n− 1} every edge (ai, aj) with i < j and rewire it with probability β. That is, we
replace (ai, aj) with (ai, al) where l is chosen with uniform probability from all possible values.
The possible values are all values that avoid loops (i 6= l) and link duplication (there is no edge
(ai, ap) with p = l).
For β = 0 we get a regular ring lattice and for β = 1 a random graph. Choosing β ∈ (0, 1)
we interpolate between the regular ring lattice and the random graph [4]. Figure 1 visualize
the Watts and Strogatz model for three di�erent values of β. In each graph there are 20 nodes

3k is assumed to be even
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(n = 20) and each node has four neighbours (k = 4). The graph on the left uses β = 0,
which represents the regular ring lattice where each node has two neighbours on each side and
therefore there is a strong local clustering. In contrast the graph on the right uses β = 1 and
is completly random. The graph in the middle uses a value of β = 0.04, which results in a
regular structure, which is modi�ed to hold some random links. This middle graph represents
a small world structure. A small world structure is a structure which has high local clustering.
Additionally in such a structure each pair of nodes are connected by a short link compared to
the size of the network.

Figure 1: Di�erent network structures for n = 20 and k = 4.
Source: http://www.cmt.phys.kyushu-u.ac.jp/kenkyu_syokai_en/NeuralNetworks/images/wsnetwork.png

2.3. Implementation

We implemented our model using MathWorks MATLAB®4. As a basis, we �rst reconstructed
the discrete network-based model from paper [1]. Once the discrete model was functional, we
enhanced it to support our desired extensions. The continuous model was implemented as a
special case of the combined model. To represent the social network graph we used a binary
adjacency matrix. If person i and j are connected, the adjacency matrix holds a value of 1 in
row i and column j. For e�ciency reasons and low memory usage we store the matrix in a sparse
format. To simplify the implementation, we choose not to store the opinions in this matrix but
in a separate vector instead.
For some of the simulations we used the Parallel Computing Toolbox of MATLAB® to speed up
the generation of the graphs.

2.3.1. Reproduction of the discrete model

We �rst give a short description of all �les involved in the discrete model to give a general
overview and then describe the important sections of each �le. In Appendix D one can �nd all
source �les in their full length.

createRandomSocialGraph.m This function is used to create a simple random adjacency matrix
representing the relationship network. (Listing 9)

createWattsAndStrogatzModel.m With this function we create an adjacency matrix conforming
to the Watts and Strogatz model. (Listing 10)

4Version 7.8 (R2009a)
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generateOpinions.m To generate a vector of random opinions, this function can be used. (List-
ing 13)

runModel.m In the analysis we are mostly interested in opinion distributions and opinion groups
distributions. We can use this function to compute those dependent on an adjustable set
of parameters. The function con�gures the data and uses the model function to run the
simulation and generate output data. (Listing 16)

model.m This function operates on an adjacency matrix representing the relationship network
and an opinion vector. It is the actual implementation of the discrete model performing a
certain number of simulation steps. (Listing 14)

We will now give a more detailed description of the essential parts of our implementation. Certain
parts of the code are omitted for clarity.

The main loop of �le model.m is shown in Listing 1. It simulates the interaction of the agents
over a certain amount of time steps.

Listing 1: Excerpt from model.m

1 % Main loop, iterating over t

2 for t=1:iter

3

4 % Select a person and a neighbour at random

5 [...]

6

7 % Chose Method 1 or 2 with probability phi

8 if rand() <= phi % METHOD 1

9

10 % Find all people with the same opinion as person

11 opinion_group = find(opinions == opinions(person));

12

13 % Select one of the people with the same opinion at random

14 j = randi(length(opinion_group));

15 new_neighbour = opinion_group(j);

16

17 % Connect person and new_neighbour

18 % Disconnect person and old_neighbour

19 if person ~= new_neighbour

20 people(person,new_neighbour) = 1;

21 people(new_neighbour,person) = 1;

22 people(person,neighbour) = 0;

23 people(neighbour,person) = 0;

24 end

25 else % METHOD 2

26 % Adopt opinion of neighbour

27 opinions(person) = opinions(neighbour);

28 end

29 end

In every iteration we generate a random value (Line 8) to simulate the selection of Method 1

(Line 8) or Method 2 (Line 25) with probability φ. We then randomly choose one of the agents
and a corresponding neighbour to act upon.
In Method 1 we �rst select a new neighbour at random that shares the same opinion as the
selected one and use it to replace the old neighbour. For this we manually adjust the adjacency
matrix by connecting the person to the new neighbour (Lines 20 and 21) and breaking up the
connection to the old one (Lines 22 and 23).
In Method 2 the person's opinion is set to the one held by the selected neighbour (Line 27).
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run_model.m enables us to run the simulation with speci�c parameters and to generate the opin-
ion group size distribution which is used to analyze our implementation of the model. All the
people having the same opinion form a group. The opinion group size distribution is the distribu-
tion of the number of people in those groups. The function can be con�gured with all the model
parameters as well as to average the results over several runs of the simulation. Furthermore the
model can either be run for a speci�c number of iterations or terminated automatically if the
change of the opinion distribution over a certain number of steps falls below a speci�ed threshold.
Listing 2 shows how run_model.m works when run with a �xed number of iterations.

Listing 2: Excerpt from run_model.m

1 % Generate initial graph structure and opinions

2 [...]

3

4 % Simulate the requested number of steps on the model with the specified parameters

5 [~, opinions] = model(people,opinions,phi,iterations);

6

7 % Compute the opinion distribution with the histogram function 'hist'

8 % There are (n/gamma) opinions, so we want to bin the values into (n/gamma) groups

9 % We pass a vector with the exact binning points to be used

10 opinion_distribution = hist(opinions,1:(n/gamma));s

11

12 % Compute the opinion group size distribution

13 group_distribution = hist(opinion_distribution,1:n);

After the generation of the initial values we call the model function to run the simulation. This
way we get back the opinion vector after the iterations (Line 5). Then the opinion distribution,
i.e. how many people hold each opinion, is computed (Line 10). This is done by creating a
histogram of the opinions. This basically counts the number of times each of the G opinions (see
section 2.1.1) occurs in the �nal system. Finally, the opinion group size distribution is determined
by creating another histogram, this time of the opinion distribution (Line 13). In this way, the
number of opinion groups of same size is evaluated.
In order to average over several simulations, the mean of the opinion group size distributions of
all the simulations is calculated.
Listing 3 shows how run_model.m operates if it is con�gured to determine automatically how
many iterations should be performed.

Listing 3: Excerpt from run_model.m

1 % Generate initial graph structure and opinions

2 [...]

3

4 for j=1:(max_iterations/d_it)

5 % Continue to run the simulation with the specified parameters

6 [people, opinions] = model(people,opinions,phi,d_it);

7

8 % Compute the opinion distribution with the histogram function 'hist'

9 % There are (n/gamma) opinions, so we want to bin the values

10 % into (n/gamma) groups

11 % We pass a vector with the exact binning points to be used

12 opinion_distribution = hist(opinions,1:(n/gamma));

13

14 % Add the momentary opinion distribution

15 % Only computed for one computation (i.e. the last averaging step)

16 if (i==average_iterations)

17 opinion_dist(:,j) = opinion_distribution';

18 end

19
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20 % Compute the opinion group size distribution

21 group_distribution = hist(opinion_distribution,1:n);

22

23

24 % Compute the normed difference between the last steps

25 dist_old = dist_new;

26 dist_new = group_distribution;

27 diff = norm(dist_new-dist_old)/norm(dist_new);

28

29 % Add the normed difference between the last steps

30 % Only computed for one computation (i.e. the last averaging step)

31 if (i==average_iterations)

32 step_differences(1,j) = j*d_it;

33 step_differences(2,j) = diff;

34 end

35

36 % Abort if threshhold is reached

37 if (diff < threshold)

38 break;

39 end

40 end

After the data structures have been initialized the simulation is run in small, user con�gurable
steps. This is done in a loop (Line 4) in which the simulation is �rst run for a small amount of
iterations (Line 6). In order to be able to later continue with the simulation, the data structures
need to be updated. The opinion values and the adjacency matrix representing the agent graph
are both changed by running the simulation, so both need to be extracted afterwards (Line 6).
The opinion distribution is then calculated (Line 12) and stored (Lines 16-18). The aggregated
opinion distributions over time are optionally returned as a result of the function. This enables
examination of the opinion distribution development over time.
Now the opinion group size distribution is calculated (Line 21) and compared with the result
from the last simulation step (Lines 25, 26 and 27). This is done by computing the normed
di�erence between those two steps, which can be thought of as the relative amount of change in
the opinion group size distribution since the last simulation step. This data is also aggregated
and optionally returned (Lines 31-34).
If this di�erence is smaller than the requested threshold, we exit the loop (Line 38). Otherwise,
the loop begins anew and so the next simulation step is computed. For a threshold of 0 the
computation will continue until the model shows no further change over the supplied iteration
step size. With a negative threshold the model can be forced to run until the maximum number
of iterations is reached. This is useful to accumulate all the data between steps over an exact
number of iterations, even if the model does not show any further change.

To create the adjacency matrix representing the Watts and Strogatz model we use the �le
createWattsAndStrogatzModel.m. An Excerpt of it is shown in Listing 4.

Listing 4: Excerpt from createWattsAndStrogatzModel.m

1 % create sparse nxn matrix A representing regular ring lattice (step 1)

2 [...]

3 A = sparse(row_index, col_index, ones(n*k, 1), n, n, n*k);

4

5 % For every node take every edge (n_i, n_j) with i < j and rewire it

6 % with probability beta. (step 2)

7 for i=1:n

8 neighbours = find(A(i,:));

9 for j=neighbours

10 if (i < j) && (rand < beta)

9



11 r = i;

12 % choose until candidate found that avoid loops and link duplication

13 while ( (r == i) || (full(A(i,r)) == 1) )

14 r = randi(n); % choose random integer number

15 end

16 A(i,j) = 0; A(j,i) = 0; % reset edge

17 A(i,r) = 1; A(r,i) = 1; % new edge

18 end

19 end

20 end

As described in Section 2.2 we �rst create a regular ring lattice (Line 3). In a second step we
now modify this structure. We loop over every node of the graph, which is represented as a row
in the matrix, (Line 7) and replace every neighbour with probability β by a randomly chosen
node, which is not yet connected to the current node. (Lines 16 and 17)

2.3.2. Reproduction of the continuous model

The continuous model can be simulated by setting φ = 0 in the combined model, which results
in only using Method 2 of the combined model, and using a complete graph as the network
structure.

2.3.3. Combined model extensions

The extension features the following additional �les.

generateContinuousOpinions.m This function generates uniform distributed values as opinions
for the continuous model. (Listing 11)

continuousModel.m This is the main �le implementing the combined model and returning a
histogram of it. (Listing 8)

runContinuousModel.m This is the overall setup function. It sets all parameters required for the
model which is then run. It is responsible for processing the data generated and ploting
the change in opinion over time. (Listing 15)

As this model is an extension of the network-based model, a lot of its functionality has already
been explained. The important changes in continuousModel.m are explained in detail here.

Listing 5 introduces two important data containers used during computation. The histogram in
(Line 3) is the main return value of the model. It keeps track of the change of opinion in the
system over time and aims to be a basis to produce an overview similar to Figure 2 in paper [2].
The columns represent the time scale. The model parameter clusters determines how many
di�erent opinion groups should be formed out of the continuous opinions existing in the system.
Thus, the matrix histogram has (clusters+ 1) rows leaving the last row to keep track for the
norm of change since the last examination.
The combined model creates new connections between agents based on a probability in opinion
di�erence. This requires a sorted array of opinions for an e�cient computation of the opinion
di�erence. However, each agent is uniquely identi�ed by its array index. Sorting the array results
in an inconsistency between the opinion of agents and the adjacency matrix representing their
social network - especially when constantly changing the opinion during the simulation process.
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The helper variable sorted_opinions addresses this problem. It provides a mapping between
the opinion and the array index which is updated whenever opinions change in the system.

Listing 5: Data organisation in continuousModel.m

1 % histogram stores the count of poeple holding the opinion in each cluster

2 % and the norm in clusterization change.

3 histogram = zeros(clusters + 1,floor(iter/cskip));

4

5 % in order to find people with a similiar opinion, a sorted copy

6 % of the opinions is created with a link to the original person

7 % index: sorted_opinions = [ opinion , index ]

8 sorted_opinions = [opinions , (1:n)'];

9 sorted_opinions = sortrows(sorted_opinions);

Listing 6 shows the implementation ofMethod 1 of the combined model which determines a person
that shares a similar opinion. First, the opinion the new neighbour should have is determined
according to the speci�cation of the model (Lines 3-24). If the probability in (Line 4) is out of
range, it retries at most 100 times to achieve a valid opinion and defaults to 0 or 1 respectively if it
fails. Then in (Lines 26-46), the person with the closest opinion is selected as a new neighbour.

Listing 6: Implementation of Method 1 in continuousModel.m

1 % METHOD 1

2 [...]

3 % figure out what opinion the new neighbour should have

4 neighbours_opinion = opinions(person) + std*randn();

5 % do not accept opinions out of range [0,1]

6 % try to find another person

7 acceptable = 0;

8 for i=1:100

9 if neighbours_opinion < 0 || neighbours_opinion > 1

10 neighbours_opinion = opinions(person) + std*randn();

11 else

12 acceptable = 1;

13 break;

14 end

15 end

16 % if that person has such an extreme opinion that it can't find

17 % anyone within range [0,1], the extrema is taken

18 if acceptable == 0

19 if neighbours_opinion < 0

20 neighbours_opinion = 0;

21 elseif neighbours_opinion > 1

22 neighbours_opinion = 1;

23 end

24 end;

25

26 % find the person with the closest opinion to

27 % neighbours_opinion

28 i = find(sorted_opinions(:,1) > neighbours_opinion, 1 , 'first');

29 if size(i,1) == 0

30 % no one has such a strong (-> 1) opinion.

31 % Take the person with the strongest opinion

32 new_neighbour = sorted_opinions(end,2);

33 elseif i == 1

34 % there is no person with a lower opinion, so the person

35 % at index i is the new neighbour

36 new_neighbour = sorted_opinions(i,2);

37 else

38 % the person at index i-1 might be closer to the opinion

11



39 diff_n1 = neighbours_opinion - sorted_opinions(i,1);

40 diff_n2 = neighbours_opinion - sorted_opinions(i-1,1);

41 if abs(diff_n1) < abs(diff_n2)

42 new_neighbour = sorted_opinions(i,2);

43 else

44 new_neighbour = sorted_opinions(i-1,2);

45 end

46 end

Listing 7 shows the implementation of Method 2 which is a slightly modi�ed version of the
continuous model presented in paper [2]. After changing the opinion of the agents (Lines 5,

7-8), the change in opinion is also applied to the sorted list of opinions (Lines 10-14).

Listing 7: Excerpt from continuousModel.m

1 % METHOD 2

2 [...]

3

4 diff = opinions(neighbour) - opinions(person);

5 if( abs( diff ) <= u )

6 % update opinion vector

7 opinions(person) = opinions(person) + mu*diff;

8 opinions(neighbour) = opinions(neighbour) + mu*(-diff);

9 % pass update to sorted vector

10 altPerson = sorted_opinions(:,2) == person;

11 altNeighbour = sorted_opinions(:,2) == neighbour;

12 sorted_opinions(altPerson,1) = opinions(person);

13 sorted_opinions(altNeighbour,1) = opinions(neighbour);

14 sorted_opinions = sortrows( sorted_opinions );

15 end

2.3.4. Data generation to examine the behaviour of the model

The �le generateGraphs.m (Listing 12) is used to run the simulations that generate the �gures
presented in this paper. It contains di�erent sections for the discrete, continuous and combined
model with several model con�gurations. The �le makes use of the MATLAB® cell mode
feature. Each section that starts with a double comment %% can be run as a seperate execution
unit.5 Although the �le may seem rather complex, large parts are repeated several times and
di�er only in a few con�gurations. This allows for computation of di�erent model con�gurations
in parallel. Each simulation in itself is completely sequential as using MATLAB®'s Parallel

Computing Toolbox would have required considerable restructuring of our code. Therefore the
models themselves do not make use of todays multicore computer systems. Instead we used
the Parallel Computing Toolbox when running several simulations with varying paramters. As
running the �le as a MATLAB® script takes several days if not weeks, using cell mode, we
could run several cells in parallel on several multicore machines, using multiple instances of
MATLAB®. Note that comments in this �le are rather concise. Since the code is simply setting
parameters, running simulations and generating plots, this should not constitute a problem.

5For further information on cell mode, please refer to the MATLAB® documentation.
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3. Simulation Results and Discussion

3.1. Discrete network-based model

3.1.1. Validity of our implementation

Our �rst objective was to recreate the discrete model described in paper [1]. Since this formed
the basis for all our later e�orts, we decided it was necessary to verify our variant. To this end,
we decided to try to recreate some of the results from paper [1]. We chose the �rst simulation
as our comparison test. In this simulation a histogram of group sizes in the consensus state is
generated. The consensus state describes the state in which the model has degraded into opinion
groups that are no longer connected to each other but only within themselves. In this state the
model will not be undergoing any further changes in terms of opinions. The results from paper
[1] can be seen in Figure 2 of the paper.
Fortunately, most of the simulation parameters used to generate these results were also indicated.
The supplied parameters are shown in Table 3.

Parameter Value Description

φ 0.04, 0.458 and 0.96 Probability value for choosing Method 1 or
Method 2 of the discrete model

N 3200 Number of agents in the model

k 4 Number of connections of each agent, i.e. num-
ber of other agents know to each one

γ 10 Opinion ratio � Number of opinions = N/γ

Averaging iterations 104 The model will be run this many times and the
resulting data averaged over the intermediate re-
sults

Table 1: Parameters used in paper [1] to create Figure 2.

For our simulations we chose to use the same values. This allows for direct comparison with
the results from Figure 2 in paper [1]. The above table supplied us with all but one parameter
required to run the simulation ourselves. In order to be able to run the simulation we needed
to know the number of iterations that have to be performed in order to reach consensus state.
To determine this we ran the simulation piecewise, always stopping after a certain number of
iterations. We then measured the di�erences between the resulting data from these stopping
points and tried to determine the number of iterations necessary in order to arrive in consensus
state. Obviously consensus state is reached when the data does not change anymore. The actual
opinion data does not change every iteration even before consensus is achieved. This is because
an iteration might produce a change in the model that does not have any in�uence on the opinion
values. So it was important to set the number of iterations between each measurement su�ciently
high in order not to come to any false conclusions. Furthermore, the number of necessary
iterations obviously varies between simulations. In order to easily make such measurements we
ran the model for an extremely large number of iterations while frequently collecting data about
the continuing di�erences between the iterations.
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We found that the number of required iterations depends heavily on the value of φ and so we
determined the number for each value of φ separately. What we found was that for φ = 0.96 the
model stopped changing very quickly, mostly after at most 50 000 to 60 000 iterations. Figure 4
provides an example of such a simulation. With φ = 0.458 it never took more than 100 000 to
150 000 iterations to reach consensus. For an example, see Figure 3. When φ was set to 0.04,
the required number of iterations was much higher, ranging from �ve million up to well over
thirty-million iterations. See also Figure 2. This di�erence is not unexpected. As described in
paper [1], for φ → 1 edges are moved to agents sharing opinions, thus disconnecting groups of
di�erent opinions. In contrast, for φ → 0 only opinions are changed and so the simulation only
reaches consensus when all connected agents have equal opinions.
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Figure 2: Convergence of model φ = 0.04
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Figure 3: Convergence of model φ = 0.458
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Figure 4: Convergence of model φ = 0.96

We now had some rough estimates for the number of iterations necessary to run the simulations
until consensus is reached. We now set out to run the simulations and to produce an equivalent
to Figure 2 from paper [1] in order to compare the models.
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Regrettably we very quickly realized that with our limited computational power we would not be
able to produce those results in the available time. Running a single simulation for thirty-million
iterations could take up to an hour which made averaging over 10 000 simulations an impossible
task. We decided to reduce the number of averaging simulations to 50. Also we used rather
conservative numbers of iterations. We would have preferred to set the number of iterations
well above our estimated bounds to ensure consensus for all simulations. Insted we chose to run
twenty-million iterations for φ = 0.04 and φ = 0.458. For φ = 0.96 we only ran one million
iterations per simulation. With these values we expected to get at least reasonably close to
consensus for small φ while being more than su�cient for larger values.

Before we compare the results of our model to those made in paper [1], we want to spend a
moment to describe the actual observed behaviour of our model. Figures 5, 6 and 7 show the
change of the opinion distributions over the indicated number of iterations for each value of φ
for three particular simulations.

Figure 5: Opinion development over time for φ = 0.04
We can see that as expected the opinions change intensively. At the beginning most
opinion groups have sizes between 0 and approximately 100 with a mean of γ = 10.
Very quickly several larger groups emerge. When the simulation is run long enough,
eventually the largest opinion group dominates and absorbs all agents in the system
it can connect to. When consensus is reached only one giant community is left.
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Figure 6: Opinion development over time for φ = 0.458
As could be expected using the data in paper [1], this value of φ lets some opinion
exchange occur but after some time the network degenerates into several medium-
sized, disconnected groups. This is caused by the also equally probable destruction
of connections in the network that connect agents of di�erent opinions.
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Figure 7: Opinion development over time for φ = 0.96
Since for such a large φ the model mostly connects agents of equal opinions, the actual
number of people having a certain opinion stays almost completely unchanged over
the course of the simulation.
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Figure 8: Equivalent to Figure 2 from paper [1] with our discrete model used for simulation.
The �gure represents histograms of the community sizes s in the consensus state. The
x-axis represents the size of opinion groups, whereas the y-axis speci�es proportion
of groups of a speci�c size compared to the number of opinion groups. In principle
this is the probability of a certain opinion group size occurring during a simulation.
Simulation parameters as in Table 3, except that the data was averaged over 50
simulations. Simulations for φ = 0.04 and φ = 0.458 were run for 20 · 106 iterations,
106 iterations were used for φ = 0.96.

Figure 8 shows the results of our simulations. The �gure is formatted identically to Figure 2 from
paper [1] to allow straightforward comparisons. Ideally these two �gures would be identical but
as we have already described, we could not run the simulations with exactly the same parameters.
While the �gures have a very similar overall structure, there also are some notable di�erences.
We will discuss the results for each panel (a), (b) and (c) separately.

(a) φ = 0.04

In general, our results show the same structure and tendencies as the simulations from
paper [1]. But most notably, opinion group size varies far more for small P (s) in our simu-
lations. This is quite probably the e�ect of our insu�cient number of iterations. In paper
[1] most groups are of size 10 and smaller while a very small number consists of almost all
the people. Since we were unable to run the simulation for a su�ciently long time, many
simulations had not yet reached consensus and still had a few large competing opinion
groups. These groups would probably coalesce if allowed more time and all reach a similar
large size. Also our distribution values P (s) don't get as small as in paper [1]. But since
P (s) is essentially the probability of an opinion group to reach a speci�c size, this isn't
surprising. In contrast to paper [1] we only averaged over 50 simulations instead of 104.
Obviously only one group per simulation can reach a size approaching N so the probability
of such large groups decreases heavily as we average over more simulations.

(b) φ = 0.458
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This panel seems to show the largest di�erence when compared. The distribution of com-
munity sizes does approximately match the values from paper [1] for the resulting size and
distribution combinations. On the other hand, neither do we get such low probabilities
nor the correspondent larger group sizes. Again, the lack of small P (s) can be justi�ed
by the smaller number of averaging simulations. But while the lack of large group sizes
can be partially explained by their rather low probability, we still expected at least a few
outliers. The group sizes seem to hit a ceiling at about size 100. It could be that our model
somehow favors the disconnection of opinion groups and therefore the formation of more
smaller, disconnected opinion communities. But we were unable to ascertain the exact
reason for this unexpected behaviour.

(c) φ = 0.96

Panel (c) seems to be almost identical. Our simulation seems to produce the Poisson
distribution with mean λ. This was expected, as we were able to run more than enough it-
erations to reach consensus state and since for such large φ the original random distribution
is mostly preserved. Once more the lack of very small values of P (s) can most probably be
explained by the smaller number of simulations that we averaged about.

While our recreated model does not exactly match the original networked model from paper [1],
our model still produces very similar results and we therefore decided to use it as the basis for
our later e�orts.

3.1.2. Watts and Strogatz network

In the previous subsection we ran all the simulations with a random graph as the initial social
structure. Now we change the underlying network to the Watts and Strogatz model and examine
the similarities and di�erences. To compare the results to the previous ones, we used the same
simulation parameters. The simulation is run with N = 3200 agents, each one having k = 4
neighbours and the probability value φ has the values 0.04, 0.458 and 0.96 whereas the opinion
ratio γ is 10.
The important parameter for the Watts and Strogatz model is β, which describes whether we
have a regular network structure with local clustering β → 0.0 or a random graph β → 1.0.
Figure 9 shows the simulation like in Figure 8 but now with the Watts and Strogatz model for
β = 0.25. That each agent has four neighbours β = 1

4 means that on average three of the four
neighbours are local ones and one is completely randomly chosen from all agents.

20



 

1E−4

 

0.01

 

 P
(s

)

(a) φ = 0.04

1E−8

 

1E−6

 

1E−4

 

0.01

 P
(s

)

(b) φ = 0.458

1 10 100 1000
1E−6

 

1E−4

 

0.01

 

 s

 P
(s

)

(c) φ = 0.96

Figure 9: Equivalent to Figure 2 from paper [1]. Computed using our discrete model with a
Watts Strogatz network.
See Figure 8 for more information and parameter values. The value of β was set to
0.25.

We observe no remarkable di�erence between Figure 9 and Figure 8 and therefore studied the
impact of di�erent values of β.
To examine the dependency on β we run the simulation for di�erent values of β. Figure 10 shows
the simulation for β = 0.0, Figure 11 for β = 0.5 and Figure 12 for β = 1.0. For each Figure the
simulation was run 10 times and shows the average over these runs.
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Figure 10: Opinion group size distribution with Watts and Strogatz model and β = 0.00
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Figure 11: Opinion group size distribution with Watts and Strogatz model and β = 0.50
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Figure 12: Opinion group size distribution with Watts and Strogatz model and β = 1.00

As can be observed in Figures 10, 11 and 12, there is no notable di�erence in the opinion group
size distribution for varying values of β. This allows us to answer our �rst research question.
We determined that whether we choose a random graph or the Watts and Strogatz graph as
the initial network does not in�uence the distribution of opinion group sizes in the given model.
Therefore a random graph performs well as an approximation of social structures.
We explain that there is no di�erence whichever network structure is chosen because of the way
the discrete model works. In step one of the model (see section 2.1.1) one of the neighbours of
the agent is replaced by a random agent holding the same opinion. Because the opinions are
initially distributed randomly an initial regular network structure does not in�uence the �nal
opinion group size distribution. This is because the regular structure is broken up during the
iterations of the simulation by the above described step one of the model, which introduces links
to random agents. So during the simulation the regular structure changes to a random one before
the consensus state is reached.
Although we could not notice an in�uence of the network structure on the opinion group size
distribution we noticed a di�erence in the number of iterations required to fall below the speci�ed
threshold for di�erent values of beta. So we did not run the simulation with a �xed number of
iterations but with a threshold of 0.05 (see section 2.3.1). Figure 13 shows the number of iterations
for the three values of φ. The values were measured for β = 0.0, β = 0.5 and β = 1.0.
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Figure 13: Number of iterations required to fall below threshold 0.05 for β = 0.0, β = 0.5 and
β = 1.0

For φ = 0.458 and φ = 0.96 no striking dependency on β can be observed. For φ = 0.04
however the number of iterations goes down for increasing β. This corresponds nicely with the
above explanation. For φ = 0.04 Method 1 of the discrete model is chosen with low probability,
therefore it takes longer to break up the regular structure and reach the consensus state.

3.2. Continuous network-based model

3.2.1. Behaviour of the continuous model implementation

The formation of di�erent opinion groups was studied in more detail for the continuous network
based model6. The continuous, not network-based model presented in [2] was known the have
the following behaviour.

1. Consensus can only be achieved for u ≥ 0.3.

2. The number of di�erent opinion groups is de�ned by the integer part of the expression 1
2u .

The parameter u is the opinion threshold of the continuous model presented in section 2.1.2
and is used in the opinion transformation (1). Two agents meeting will only converge in their
opinion if it di�ers by less than u. The continuous model is a special case of the combined model
when setting φ = 0 and using a complete graph as the social network structure. We found our
implementation to almost match the speci�cation given in the paper, varying in only ±1 group.
The result is shown in table 2. Although some of the simulation parameters were speci�ed in [2]
we used di�erent ones as the simulation would have taken too much computational e�ort.

6called combined model from now on to prevent confusion
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Threshold u 0.3 0.25 0.1 0.0625 0.0333

Expected Groups 1.67 2 5 8 15

Continuous Model 1 2 4 7 15

Table 2: Number of opinion groups in the continuous model implementation.

3.2.2. Simulation setup for the combined model

To study the convergence of the combined model, most of the parameters were �xed and only few
were changed. The setup aimed to be similar to the one in the discrete model. The parameters
are shown in Table 3.

Parameter Value Description

N 3200 Number of agents in the model

k 4 Number of connections of each agent, i.e. number of other agents
know to each one

clusters 320 Number of opinion clusters to extract from the continuous range.
This matches the γ = 10 setting in the discrete model.

std 0.1 Standard distribution of probability to �nd like-minded people.

µ 0.3 Convergence parameter.

iterations 1000000 Number of iterations to perform.

cskip 100 Number of iterations to summarize in one entry of the histogram.

Table 3: Simulation setup for the combined model.

The varying settings are the underlaying graph and the parameter φ describing the probability
of choosing Method 1 or 2 of the agent interaction in each simulation step as already known from
the discrete model. For φ we chose the values 0.040, 0.458 and 0.960 as in the discrete model. To
model the social network, the random graph, the Watts and Strogatz graph with β = 0.25 and
the Watts and Strogatz graph with β = 0.50 were chosen.

3.2.3. Group formation behaviour and interpretation of the combined model

The incorporation of a network structure into the continous model leading to the combined model
had a huge impact on the opinion formation in the system. Research question 2a was therefore
revealed to be the most interesting one and is discussed in detail in this section. Research
questions 2b and 2c will be discussed when appropriate in the discussion of research question 2a.

In section 3.1.2 was explained that the Watts and Strogatz graph compared to the random graph
did not have an notable impact on the result for the discrete model. The same was found for the
combined model and the explanation from section 3.1.2 applies also for the combined model. So
research question 2b does not reveal any notable result.
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The combined model was found to form disjoint opinion groups with the same pattern count(u) =
1
2u as the continuous model. However the convergence di�ers hugely based on the chosen param-
eters. Furthermore, even though the opinion groups separate themselves from each other, they
tend to not really agree on a speci�c opinion but accept a much broader range of opinions in one
single group.

(a) Continuous Model

(b) Combined Model, φ = 0.040 (c) Combined Model, φ = 0.458

Figure 14: Convergence behaviour from continuous and combined model.

Note that for all graphs the same simulation settings were chosen. The count of iterations on
the x-axis has to be multiplied by 100 as cskip = 100.
One can see that the continuous model in Figure 14a converges very fast in less than 100 000
iterations. The combined model in Figure 14b also has a very clean look, but it takes 250 000
iterations to converge. This can easily be understood as the low value of φ = 0.040 makes the
model behave similar to the continuous model. It should be mentioned though, that while the
continuous model considers interactions of any two agents in the system, in the combined model
only adjacent agents will meet in Method 2 of the model and converge in their opinion. This
might be an explanation for the glitch in Figure 14b around the 450 000th iteration. The e�ect
becomes even stronger when giving the network structure more in�uence by setting φ = 0.458.
See Figure 14c. The opinion range in the single group is much broader as well. The impact of
the network structure will be examined further now. Let us consider the graphs in Figure 15.
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(a) Example of a very unstable decision

(b) Example of a clear decision (c) Opinion groups cannot separate

Figure 15: Stability of the decision in the combined model for φ = 0.040 and 1
2u ≈ 2

Given a small value of φ the behaviour on higher u, so that only one or two opinion groups
are expected, is very unstable. We assume this is due to the very few changes in the network
structure. With a small φ the second method is almost always chosen. This method only lets
agents change their opinion in their given network which itself remains almost static. Only the
�rst method will change the network structure. If there are two almost disjoint components in
the social network, they can easily evolve independent opinions and separate themselves from
each other. This can be seen in Figure 15b. Exactly the opposite is the case if the network is
heavily connected. In this case no opinion can seperate itself from the global network. As every
agent is only connected a small number of other agents, its opinion cannot change very strongly.
On the other hand, each of its neighbours is also connected to other neighbours that can hardly
change their opinion as well. Thus the opinion range in this giant community doesn't converge
into a small domain as Figure 15c demonstrates. The combination of these two behaviours can
lead to a very unstable system as one can see in Figure 15a.
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(a) Expected groups 1
2u
≈ 5 (b) Expected groups 1

2u
≈ 15

Figure 16: In�uence of φ = 0.458 in the combined model

For φ = 0.458 the results look well-behaved as pictured in Figure 16. Disjoint groups persist
once formed. Figure 16 also shows that the rule for the number of disjoint groups count(u) = 1

2u
applies to the combined model, which answers research question 2c. In Figure 16a the expected
number of groups is 5 which is also the value we observe. In Figure 16b we expect 15 groups and
count 14, which is o� by one. Generally, the lower u is chosen, the more opinion groups will be
formed and the convergence is much more stable as each little group may persist. It is only for
higher values of u that the behaviour is more dynamic. As well, with φ = 0.458 both Method 1

and 2 are selected with almost equal probability which is a good mixture of network and opinion
change. With a higher value for φ the model chooses Method 1 more often which leads to a very
chaotic behaviour examined in the next paragraph.

A mid-range φ provided nice results regarding convergence. A high value such as φ = 0.960
debases the convergence quality. Even compared to a low-range φ, choosing φ to be close to one
leads to a very bad convergence, as Figure 17 shows. Still the count(u) = 1

2u seems to hold.
One can guess that Figure 17a will lead to two or three and Figure 17b will lead to six opinion
groups. The reason for this can be found in the rare change of opinion in the whole system.
In opposition to a system with a low-range φ explained before, for a high-range φ Method 1 is
choosen very often. This leads to a highly dynamic network. But the agents in the system do not
change their opinion often as the probability for the second method is low. The system consists
of agents constantly changing their network but not interacting with each other.
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(a) Expected groups 1
2u
≈ 2 (b) Expected groups, 1

2u
≈ 5

Figure 17: In�uence of a high φ in the combined model for φ = 0.960

4. Summary and Outlook

To summarize, we have reproduced the discrete network-based model presented in paper [1] and
extended it with the ideas from the continuous model from paper [2]. While we were able to
replace the initial network structure with a small world structure and enhance the network-based
model with ontinuous values, further research into those areas is neccessary to fully understand
their impacts.

Apart from a few smaller issues we were mostly able to recreate the discrete network-based model
proposed in paper [1]. Our implementation produces simulation data that shows the same pat-
terns as the model from paper [1]. This allowed us to investigate the model further using several
modi�cations. We exchanged the random initial network with a more sophisticated small world
structure and combined the network approach with the continuous model proposed in paper [2].
While our discrete model seems to be working mostly correct a few uncertainties remain. Espe-
cially the lack of larger group sizes for φ = 0.458. With more time and computation power, we
could examine our discrete model more closely, primariliy running the simulation for the pro-
posed 10 000 times. In this way we could further assert the correctness of our implementation.
Furthermore, the behaviour for φ = 0.458 could be analysed more closely to determine the cause
of the group size limit we observed.

We did not �nd an in�uence when using a Watts and Strogatz graph instead of a random one.
The distribution of the opinion group sizes in the discrete network-based model showed no notable
di�erence. Likely this is partly due to the fact that the inital opinions are distributed randomly
and do not depend on the local structure. The opinion developement with the Watts and Strogatz
model could be analysed further especially at the beginning of the simulation. Moreover it would
be reasonable not to distribute the initial opinions randomly but take the underlying network
into account and form local clusters.
Another interesting parameter worth mentioning is k, the number of neighbours of an agent. In
our simulations we �xed the value at 4 as proposed in paper [1]. It is left to further examination
whether or not the network has an in�uence on achieving consensus for greater values of k.

The combined model was found to behave pretty much the same as the discrete and the contin-
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uous models in the studied characteristics regarding the �nal state of consensus. Di�erent initial
network structures did not change the overall behaviour of the combined model. The opinion
groups matched the already known formula count(u) = 1

2u from the continuous model. Neverthe-
less, achieving the consensus state is heavily dependent on the parameter φ. It greatly impacts
the in�uence of the network and limits agents to only converge towards connected agents instead
of the whole network as in the continuous model. Especially for a high opinion threshold u, for
which we expected a small amount of opinion groups, the system showed to be very unstable.
The social network of each agent seems to unexpectedly change the single opinion towards which
the whole system is converging (see Figure 14c). On the other hand the connected agents could
not seperate into di�erent opinion groups as seen in Figure 15c.
Combining the network structure with the continuous model revealed the unexpected e�ect of
oscillating opinions. Even though the system converged to a single opinion group, that very
opinion moved up and down over the whole opinion domain. We could only guess that this is
due the network structure as we could not observe this behaviour in any of our simulations of the
continuous model. Taking this into account, studying the instability of the system even further
would be a very interesting project. The combined model o�ers even more aspects to investi-
gate further. Method 1 chooses a new neighbour with a normal distributed probability. During
our research, the standard derivation std of that probability was �xed to 0.1. The in�uence of
a di�erent standard derivation on achieving consensus has not been studied. It would also be
possible to compare the discrete and the combined model in more detail. The code basis for this
has been provided in this project. OUTPUT 1-3 in the section of the combined model in the �le
generateGraphs.m (Listing 12 (Lines 891-1157)) generates graphs similar to the ones of the
discrete model and can be used as a starting point for further investigations.

Although a lot a reseach was done on opinion formation is seems that there are still a lot of
aspects that remain insu�cciently examined. To understand the complex phenomena of opinion
formation these will have to be investigated further.
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D. MATLAB®code

D.1. continuousModel.m

Listing 8: continuousModel.m

1 function [people, opinions, histogram] = ...

2 continuousModel(people,opinions,phi,u,mu,std,iter,clusters,cskip)

3 % The combined Model.

4 % INPUT

5 % people adjacency matrix representing the system

6 % opinions vector of the opinions of the agents

7 % phi probability factor for model

8 % u opinion threshold

9 % mu convergence parameter

10 % std standard derivation used in probability to find

11 % like-minded people

12 % iter number of iterations to perform

13 % clusters how many opinion clusters the histogram should contain (u0)

14 % cskip skip factor for the returned histogram with respect to

15 % the number of iterations

16 % OUTPUT

17 % people adjacency matrix after the simulation

18 % opinions opinion vector after the simulation

19 % histogram this is a ( clusters+1 x floor(iter/skip) ) matrix.

20 % the first #clusters rows contain the count of people

21 % holding an opinion in that cluster. the j-th column

22 % represents the state after (j-1)*cskip iterations.

23 % the last row contains the norm of the change in the

24 % clusterization process.

25

26 % Number of people in the system

27 n = length(opinions);

28

29 % histogram stores the count of poeple holding the opinion in each cluster

30 % and the norm in clusterization change.

31 histogram = zeros(clusters + 1,floor(iter/cskip));

32

33 % in order to find people with a similiar opinion, a sorted copy

34 % of the opinions is created with a link to the original person

35 % index: sorted_opinions = [ opinion , index ]

36 sorted_opinions = [opinions , (1:n)'];

37 sorted_opinions = sortrows(sorted_opinions);

38

39 old_hist = zeros(clusters,1);

40 % Main loop, iterating over t

41 for t=1:iter

42

43 % print progress

44 if exist('DEBUG')

45 if mod(t,50000) == 0

46 fprintf('%i/%i\n',t,iter);

47 end

48 end

49

50 % update histogram

51 if mod(t,cskip) == 0

52 h = hist(opinions,clusters)';

53 histogram(:,t/cskip) = [ h; norm(old_hist - h) ];

54 old_hist = h;
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55 end

56

57 % Select a person randomly

58 person = randi(n);

59

60 % Check if the person is still connected to someone

61 % Do nothing otherwise

62 deg = sum(people(person,:));

63 if deg == 0, continue; end

64

65 % Find all neighbours connected to that person

66 neighbours = find(people(person,:));

67

68 % Select a neighbour at random

69 j = randi(length(neighbours));

70 neighbour = neighbours(j);

71

72 % Chose method 1 or 2 with probability phi

73 if rand() <= phi

74 % METHOD 1

75 % Select at random one of the edges attached to person

76 % and move the other end of that edge to a another person.

77 % The new neighbour is choosen by a probability that is

78 % normally distributed according to the difference in

79 % opinion of the possibly new neighbour.

80

81 % figure out what opinion the new neighbour should have

82 neighbours_opinion = opinions(person) + std*randn();

83 % do not accept opinions out of range [0,1]

84 % try to find another person

85 acceptable = 0;

86 for i=1:100

87 if neighbours_opinion < 0 || neighbours_opinion > 1

88 neighbours_opinion = opinions(person) + std*randn();

89 else

90 acceptable = 1;

91 break;

92 end

93 end

94 % if that person has such an extreme opinion that it can't find

95 % anyone within range [0,1], the extrema is taken

96 if acceptable == 0

97 if neighbours_opinion < 0

98 neighbours_opinion = 0;

99 elseif neighbours_opinion > 1

100 neighbours_opinion = 1;

101 end

102 end;

103

104 % find the person with the closest opinion to

105 % neighbours_opinion

106 i = find(sorted_opinions(:,1) > neighbours_opinion, 1 , 'first');

107 if size(i,1) == 0

108 % no one has such a strong (-> 1) opinion.

109 % Take the person with the strongest opinion

110 new_neighbour = sorted_opinions(end,2);

111 elseif i == 1

112 % there is no person with a lower opinion, so the person

113 % at index i is the new neighbour

114 new_neighbour = sorted_opinions(i,2);

115 else
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116 % the person at index i-1 might be closer to the opinion

117 diff_n1 = neighbours_opinion - sorted_opinions(i,1);

118 diff_n2 = neighbours_opinion - sorted_opinions(i-1,1);

119 if abs(diff_n1) < abs(diff_n2)

120 new_neighbour = sorted_opinions(i,2);

121 else

122 new_neighbour = sorted_opinions(i-1,2);

123 end

124 end

125

126 % Connect person and new_neighbour

127 % Disconnect person and old_neighbour

128 if person ~= new_neighbour

129 people(person,new_neighbour) = 1;

130 people(new_neighbour,person) = 1;

131 people(person,neighbour) = 0;

132 people(neighbour,person) = 0;

133 end

134 else

135 % METHOD 2

136 % Pick a random neighbour of person. If their opinion

137 % differ by more than the opinion threshold u, do nothing.

138 % Else, converge the two opinions according to the

139 % convergence parameter mu.

140

141 diff = opinions(neighbour) - opinions(person);

142 if( abs( diff ) <= u )

143 % update opinion vector

144 opinions(person) = opinions(person) + mu*diff;

145 opinions(neighbour) = opinions(neighbour) + mu*(-diff);

146 % pass update to sorted vector

147 altPerson = sorted_opinions(:,2) == person;

148 altNeighbour = sorted_opinions(:,2) == neighbour;

149 sorted_opinions(altPerson,1) = opinions(person);

150 sorted_opinions(altNeighbour,1) = opinions(neighbour);

151 sorted_opinions = sortrows( sorted_opinions );

152 end

153 end

154

155 end

156

157 end

D.2. createRandomSocialGraph.m

Listing 9: createRandomSocialGraph.m

1 function [ M ] = createRandomSocialGraph( n, k )

2 %createRandomSocialGraphs

3 % Create a random sparse adjacency matrix of size (n,n).

4 % k specifies the average degree of each node.

5 % n : Number of people

6 % k : Number of people known to each person

7

8 if nargin < 2, error('Insufficient input arguments.'); end

9

10

11 % Density = peopleKnown / people;

12 density = k / n;
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13

14 % Generate a random symmetric matrix with given density

15 M = sprandsym(n, density);

16

17 % Set all nonzero entries to 1

18 nz = find(M);

19 M(nz) = 1;

20

21 end

D.3. createWattsAndStrogatzModel.m

Listing 10: createWattsAndStrogatzModel.m

1 function [ A ] = createWattsAndStrogatzModel( n, k, beta )

2 % watts and strogatz model

3 % Create a sparse matrix A representing a undirected graph in the Watts

4 % and Strogatz model

5 % see: http://en.wikipedia.org/wiki/Watts_and_Strogatz_model

6 %

7 % Input: n number of nodes

8 % k mean degree k

9 % beta interpolation parameter between ER graph and regular

10 % ring lattice (0 <= beta <= 1)

11 % beta = 0 : regular ring lattice

12 % beta = 1 : ER graph

13 % Output: A sparse matrix

14 %

15 % the parameters must satisfy n >> k >> ln(n) >> 1

16

17 % Use default values if no input is given

18 if nargin < 2

19 k = 20;

20 beta = 0.5;

21 end

22

23 % error handling

24 if (mod(k, 2) == 1)

25 error('The mean degree k must be divisable by 2.');

26 end

27 k2 = k/2;

28 if (k >= n) % number of neighbours greater than number of nodes

29 error('The desired number of neighbours is greater that the number of nodes.');

30 end

31

32 % create sparse nxn matrix A representing regular ring lattice (step 1 wikipedia)

33 % - row_index holds [1,1,2,2,3,3,... ] always k copies of a number (here 2)

34 % - col_index holds blocks of of neighbour numbers (modulo n)

35 % e.g [8,2, 1,3, 2,4, 3,5, ...]

36 col_index = zeros(k*n, 1);

37 for i=1:n

38 index = ((i-1)*k+1):(i*k);

39 lower = (i-k2-1):(i-2);

40 upper = (i):(i+k2-1);

41 col_index( index ) = mod([lower, upper], n) + ones(1, k);

42 end

43 row_index = reshape(repmat(1:n, k, 1), k*n, 1);

44 A = sparse(row_index, col_index, ones(n*k, 1), n, n, n*k);

45
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46 % For every node (row in the matrix) take every edge (n_i, n_j) with i < j

47 % and rewire it with probability beta. I.e. we replace (n_i, n_j) with

48 % (n_i, n_r). (step 2 wikipedia)

49 for i=1:n

50 neighbours = find(A(i,:));

51 for j=neighbours

52 if (i < j) && (rand < beta)

53 r = i;

54 % choose until candidate found that avoid loops and link duplication

55 while ( (r == i) || (full(A(i,r)) == 1) )

56 r = randi(n); % choose random integer number

57 end

58 A(i,j) = 0; A(j,i) = 0; % reset edge

59 A(i,r) = 1; A(r,i) = 1; % new edge

60 end

61 end

62 end

63

64 % consistency check

65 if (nnz(A) ~= k*n)

66 error(['The number of edges must be k*n/2 and therefore the number'...

67 'of nonzero elements n*k']);

68 end

69

70 end

D.4. generateContinuousOpinions.m

Listing 11: generateContinuousOpinions.m

1 function opinions = generateContinuousOpinions( n )

2 %generateContinuousOpinions

3 % Generate a random opinion vector of length n with continuous

4 % opinions in the range [0,1].

5 opinions = rand(n,1);

6 end

D.5. generateGraphs.m

Listing 12: generateGraphs.m

1 % Generate graphs for project report

2

3 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4 % GRAPHS FOR THE NETWORK-BASED MODEL

5

6 %% OUTPUT 1a - Model correctness - Random

7 % Equivalent figure to "Figure 2" in paper 1

8 % Used to compare discrete model against model from paper 1

9

10 clear all;

11 close all;

12 clc;

13

14 % Set parameters

15 n = 3200;

16 k = 4;
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17 gamma = 10;

18 average_iterations = 50;

19 iter = 20000000;

20 figureFolder = '../documentation/figures/';

21

22

23 fprintf('Random\n');

24

25 % Generate values

26 phi = 0.04;

27 fprintf('Part 1: phi = %1.3f\n', phi);

28 dist1 = runModel(n,'random',k,gamma,phi,iter,average_iterations);

29

30 phi = 0.458;

31 fprintf('Part 2: phi = %1.3f\n', phi);

32 dist2 = runModel(n,'random',k,gamma,phi,iter,average_iterations);

33

34 phi = 0.96;

35 fprintf('Part 3: phi = %1.3f\n', phi);

36 dist3 = runModel(n,'random',k,gamma,phi,iter,average_iterations);

37

38 % Plot graphic

39 subplot('Position',[.1 .1+1.6/3 .8 .8/3])

40 loglog(0:n-1,dist1./(n/gamma),'o')

41 xlim([0 3200])

42 ylim([10^(-5.5) 0.2])

43 set(gca,'XTickLabel',{})

44 set(gca,'YTick',[0.00001 0.0001 0.001 0.01 0.1])

45 set(gca,'YTickLabel',' |1E-4| |0.01| ')

46 ylabel('\bf P(s)')

47 string = '$\textbf{(a)} \qquad \phi = 0.04$';

48 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

49 'fontsize',14,'units','norm')

50

51 subplot('Position',[.1 .1+.8/3 .8 .8/3])

52 loglog(0:n-1,dist2./(n/gamma),'o')

53 xlim([0 3200])

54 ylim([10^(-9) 0.2])

55 set(gca,'XTickLabel',{})

56 set(gca,'YTick',[0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1])

57 set(gca,'YTickLabel','1E-8| |1E-6| |1E-4| |0.01|')

58 ylabel('\bf P(s)')

59 string = '$\textbf{(b)} \qquad \phi = 0.458$';

60 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

61 'fontsize',14,'units','norm')

62

63 subplot('Position',[.1 .1 .8 .8/3])

64 loglog(0:n-1,dist3./(n/gamma),'o')

65 xlim([0 3200])

66 ylim([10^(-6) 0.2])

67 set(gca,'YTick',[0.000001 0.00001 0.0001 0.001 0.01 0.1])

68 set(gca,'YTickLabel','1E-6| |1E-4| |0.01| ')

69 set(gca,'XTickLabel',{'1','10','100','1000'})

70 xlabel('\bf s')

71 ylabel('\bf P(s)')

72 string = '$\textbf{(c)} \qquad \phi = 0.96$';

73 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

74 'fontsize',14,'units','norm')

75

76 % Save files

77 filename = [figureFolder,'discrete_model_random'];
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78 print('-dpng', [filename,'.png']);

79 print('-depsc2', [filename,'.eps']);

80

81

82 %% OUTPUT 1b - Small world

83 % Equivalent to OUTPUT 1a, except that

84 % we use the small world system as the initial graph structure

85

86 clear all;

87 close all;

88 clc;

89

90 % Set parameters

91 n = 3200;

92 k = 4;

93 gamma = 10;

94 average_iterations = 20;

95 iter = 10000000;

96 figureFolder = '../documentation/figures/';

97

98 fprintf('Small world\n');

99

100 % Generate values

101 phi = 0.04;

102 fprintf('Part 1: phi = %1.3f\n', phi);

103 dist1 = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations);

104

105 phi = 0.458;

106 fprintf('Part 2: phi = %1.3f\n', phi);

107 dist2 = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations);

108

109 phi = 0.96;

110 fprintf('Part 3: phi = %1.3f\n', phi);

111 dist3 = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations);

112

113 % Plot graphic

114 subplot('Position',[.1 .1+1.6/3 .8 .8/3])

115 loglog(0:n-1,dist1./(n/gamma),'o')

116 xlim([0 3200])

117 ylim([10^(-5.5) 0.2])

118 set(gca,'YTick',[0.00001 0.0001 0.001 0.01 0.1])

119 set(gca,'YTickLabel',' |1E-4| |0.01| ')

120 set(gca,'XTickLabel',{})

121 ylabel('\bf P(s)')

122 string = '$\textbf{(a)} \qquad \phi = 0.04$';

123 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

124 'fontsize',14,'units','norm')

125

126 subplot('Position',[.1 .1+.8/3 .8 .8/3])

127 loglog(0:n-1,dist2./(n/gamma),'o')

128 xlim([0 3200])

129 ylim([10^(-9) 0.2])

130 set(gca,'XTickLabel',{})

131 set(gca,'YTick',[0.00000001 0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.1])

132 set(gca,'YTickLabel','1E-8| |1E-6| |1E-4| |0.01|')

133 ylabel('\bf P(s)')

134 string = '$\textbf{(b)} \qquad \phi = 0.458$';

135 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

136 'fontsize',14,'units','norm')

137

138 subplot('Position',[.1 .1 .8 .8/3])
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139 loglog(0:n-1,dist3./(n/gamma),'o')

140 xlim([0 3200])

141 ylim([10^(-6) 0.2])

142 set(gca,'YTick',[0.000001 0.00001 0.0001 0.001 0.01 0.1])

143 set(gca,'YTickLabel','1E-6| |1E-4| |0.01| ')

144 set(gca,'XTickLabel',{'1','10','100','1000'})

145 xlabel('\bf s')

146 ylabel('\bf P(s)')

147 string = '$\textbf{(c)} \qquad \phi = 0.96$';

148 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

149 'fontsize',14,'units','norm')

150

151 % Save files

152 filename = [figureFolder,'discrete_model_ws'];

153 print('-dpng', [filename,'.png']);

154 print('-depsc2', [filename,'.eps']);

155 save([figureFolder,'discrete_model_ws_phi_004.mat']);

156

157 %% OUTPUT 2a - Convergence / Neccessary iterations for consensus - Random

158

159 clear all;

160 close all;

161 clc;

162

163 % Set parameters

164 n = 3200;

165 k = 4;

166 gamma = 10;

167 average_iterations = 1;

168 iter = 0;

169 max_iterations = 100*10^6;

170 threshold = 0;

171 figureFolder = '../documentation/figures/';

172

173

174 % Generate values

175 phi = 0.04;

176 d_it = 10^6;

177 fprintf('Part 1: phi = %1.3f\n', phi);

178 [~,~,~,diffs1] = runModel(n,'random',k,gamma,phi,iter,average_iterations,...

179 max_iterations,threshold,d_it);

180 phi = 0.458;

181 d_it = 10000;

182 fprintf('Part 2: phi = %1.3f\n', phi);

183 [~,~,~,diffs2] = runModel(n,'random',k,gamma,phi,iter,average_iterations,...

184 max_iterations,threshold,d_it);

185 phi = 0.96;

186 d_it = 10000;

187 fprintf('Part 3: phi = %1.3f\n', phi);

188 [~,~,~,diffs3] = runModel(n,'random',k,gamma,phi,iter,average_iterations,...

189 max_iterations,threshold,d_it);

190

191 % Plot graphic & save files

192 plot(diffs1(1,2:end),diffs1(2,2:end),'-')

193 xlabel('{\bf iterations}','fontsize',12);

194 ylabel('{\bf normed difference to last step}','fontsize',12);

195

196 filename = [figureFolder,'discrete_model_diff_random_004'];

197 print('-dpng', [filename,'.png']);

198 print('-depsc2', [filename,'.eps']);

199
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200 plot(diffs2(1,2:end),diffs2(2,2:end),'-')

201 xlabel('{\bf iterations}','fontsize',12);

202 ylabel('{\bf normed difference to last step}','fontsize',12);

203

204 filename = [figureFolder,'discrete_model_diff_random_0458'];

205 print('-dpng', [filename,'.png']);

206 print('-depsc2', [filename,'.eps']);

207

208 plot(diffs3(1,2:end),diffs3(2,2:end),'-')

209 xlabel('{\bf iterations}','fontsize',12);

210 ylabel('{\bf normed difference to last step}','fontsize',12);

211

212 filename = [figureFolder,'discrete_model_diff_random_096'];

213 print('-dpng', [filename,'.png']);

214 print('-depsc2', [filename,'.eps']);

215

216

217 %% OUTPUT 2b - Convergence / Neccessary iterations for consensus - Random

218

219 clear all;

220 close all;

221 clc;

222

223 % Set parameters

224 n = 3200;

225 k = 4;

226 gamma = 10;

227 average_iterations = 1;

228 iter = 0;

229 max_iterations = 100*10^6;

230 threshold = 0;

231 figureFolder = '../documentation/figures/';

232

233

234 % Generate values

235 phi = 0.04;

236 d_it = 10^6;

237 fprintf('Part 1: phi = %1.3f\n', phi);

238 [~,~,~,diffs1] = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations,...

239 max_iterations,threshold,d_it);

240 phi = 0.458;

241 d_it = 10000;

242 fprintf('Part 2: phi = %1.3f\n', phi);

243 [~,~,~,diffs2] = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations,...

244 max_iterations,threshold,d_it);

245 phi = 0.96;

246 d_it = 10000;

247 fprintf('Part 3: phi = %1.3f\n', phi);

248 [~,~,~,diffs3] = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations,...

249 max_iterations,threshold,d_it);

250

251 % Plot graphic & save files

252 plot(diffs1(1,2:end),diffs1(2,2:end),'-')

253 xlabel('{\bf iterations}','fontsize',12);

254 ylabel('{\bf normed difference to last step}','fontsize',12);

255

256 filename = [figureFolder,'discrete_model_diff_ws_004'];

257 print('-dpng', [filename,'.png']);

258 print('-depsc2', [filename,'.eps']);

259

260 plot(diffs2(1,2:end),diffs2(2,2:end),'-')
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261 xlabel('{\bf iterations}','fontsize',12);

262 ylabel('{\bf normed difference to last step}','fontsize',12);

263

264 filename = [figureFolder,'discrete_model_diff_ws_0458'];

265 print('-dpng', [filename,'.png']);

266 print('-depsc2', [filename,'.eps']);

267

268 plot(diffs3(1,2:end),diffs3(2,2:end),'-')

269 xlabel('{\bf iterations}','fontsize',12);

270 ylabel('{\bf normed difference to last step}','fontsize',12);

271

272 filename = [figureFolder,'discrete_model_diff_ws_096'];

273 print('-dpng', [filename,'.png']);

274 print('-depsc2', [filename,'.eps']);

275

276

277 %% OUTPUT 3a - Opinion developement graphs - Random

278 clear all;

279 close all;

280 clc;

281

282 % Set parameters

283 n = 3200;

284 k = 4;

285 gamma = 10;

286 iter = 0;

287 average_iterations = 1;

288 max_iterations = 20000000;

289 threshold = 0;

290 figureFolder = '../documentation/figures/';

291

292 fprintf('Random\n');

293

294

295 % Generate values

296 phi = 0.04;

297 d_it = 10^5;

298 fprintf('Part 1: phi = %1.3f\n', phi);

299 [~,ops1,~] = runModel(n,'random',k,gamma,phi,iter,average_iterations,...

300 max_iterations,threshold,d_it);

301 phi = 0.458;

302 d_it = 1000;

303 fprintf('Part 2: phi = %1.3f\n', phi);

304 [~,ops2,~] = runModel(n,'random',k,gamma,phi,iter,average_iterations,...

305 max_iterations,threshold,d_it);

306 phi = 0.96;

307 d_it = 1000;

308 fprintf('Part 3: phi = %1.3f\n', phi);

309 [~,ops3,~] = runModel(n,'random',k,gamma,phi,iter,average_iterations,...

310 max_iterations,threshold,d_it);

311

312 % Plot graphic & save files

313 pcolor(ops1);

314 shading flat;

315 xlabel('{\bf x10^5 iterations}','fontsize',12);

316 ylabel('{\bf opinions}','fontsize',12);

317 set(gca,'YTickLabel',{})

318

319 filename = [figureFolder,'discrete_opinion_developement_random_004'];

320 print('-dpng', [filename,'.png']);

321 print('-depsc2', [filename,'.eps']);
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322

323

324

325 pcolor(ops2);

326 shading flat;

327 xlabel('{\bf x10^3 iterations}','fontsize',12);

328 ylabel('{\bf opinions}','fontsize',12);

329 set(gca,'YTickLabel',{})

330

331 filename = [figureFolder,'discrete_opinion_developement_random_0458'];

332 print('-dpng', [filename,'.png']);

333 print('-depsc2', [filename,'.eps']);

334

335

336

337 pcolor(ops3);

338 shading flat;

339 xlabel('{\bf x10^3 iterations}','fontsize',12);

340 ylabel('{\bf opinions}','fontsize',12);

341 set(gca,'YTickLabel',{})

342

343 filename = [figureFolder,'discrete_opinion_developement_random_096'];

344 print('-dpng', [filename,'.png']);

345 print('-depsc2', [filename,'.eps']);

346

347

348 surf(ops1);

349 shading interp;

350 axis tight

351 xlabel('{\bf x10^5 iterations}','fontsize',12);

352 ylabel('{\bf opinions}','fontsize',12);

353 zlabel('{\bf group sizes}','fontsize',12);

354 set(gca,'YTickLabel',{})

355

356 filename = [figureFolder,'discrete_opinion_developement_random_3d_004'];

357 print('-dpng', [filename,'.png']);

358 print('-depsc2', [filename,'.eps']);

359

360

361 surf(ops2);

362 shading interp;

363 axis tight

364 xlabel('{\bf x10^3 iterations}','fontsize',12);

365 ylabel('{\bf opinions}','fontsize',12);

366 zlabel('{\bf group sizes}','fontsize',12);

367 set(gca,'YTickLabel',{})

368

369 filename = [figureFolder,'discrete_opinion_developement_random_3d_0458'];

370 print('-dpng', [filename,'.png']);

371 print('-depsc2', [filename,'.eps']);

372

373

374 surf(ops3);

375 shading interp;

376 axis tight

377 xlabel('{\bf x10^3 iterations}','fontsize',12);

378 ylabel('{\bf opinions}','fontsize',12);

379 zlabel('{\bf group sizes}','fontsize',12);

380 set(gca,'YTickLabel',{})

381

382 filename = [figureFolder,'discrete_opinion_developement_random_3d_096'];
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383 print('-dpng', [filename,'.png']);

384 print('-depsc2', [filename,'.eps']);

385

386

387 %% OUTPUT 3b - Opinion developement graphs - Small world

388

389 clear all;

390 close all;

391 clc;

392

393 % Set parameters

394 n = 3200;

395 k = 4;

396 gamma = 10;

397 iter = 0;

398 average_iterations = 1;

399 max_iterations = 20000000;

400 threshold = 0;

401 figureFolder = '../documentation/figures/';

402

403 fprintf('Small world\n');

404

405 % Generate values

406 phi = 0.04;

407 d_it = 10^5;

408 fprintf('Part 1: phi = %1.3f\n', phi);

409 [~,ops1,~] = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations,...

410 max_iterations,threshold,d_it);

411 phi = 0.458;

412 d_it = 1000;

413 fprintf('Part 2: phi = %1.3f\n', phi);

414 [~,ops2,~] = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations,...

415 max_iterations,threshold,d_it);

416 phi = 0.96;

417 d_it = 1000;

418 fprintf('Part 3: phi = %1.3f\n', phi);

419 [~,ops3,~] = runModel(n,'watts_strogatz',k,gamma,phi,iter,average_iterations,...

420 max_iterations,threshold,d_it);

421

422 % Plot graphic & save files

423 pcolor(ops1);

424 shading flat;

425 xlabel('{\bf x10^5 iterations}','fontsize',12);

426 ylabel('{\bf opinions}','fontsize',12);

427 set(gca,'YTickLabel',{})

428 title('\bf Opinion distribution over time. $\phi = 0.04$'....

429 ,'interpreter','latex','fontsize',12);

430

431 filename = [figureFolder,'discrete_opinion_developement_ws_004'];

432 print('-dpng', [filename,'.png']);

433 print('-depsc2', [filename,'.eps']);

434

435

436

437 pcolor(ops2);

438 shading flat;

439 xlabel('{\bf x10^3 iterations}','fontsize',12);

440 ylabel('{\bf opinions}','fontsize',12);

441 set(gca,'YTickLabel',{})

442 title('\bf Opinion distribution over time. $\phi = 0.458$'....

443 ,'interpreter','latex','fontsize',12);
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444

445 filename = [figureFolder,'discrete_opinion_developement_ws_0458'];

446 print('-dpng', [filename,'.png']);

447 print('-depsc2', [filename,'.eps']);

448

449

450

451 pcolor(ops3);

452 shading flat;

453 xlabel('{\bf x10^3 iterations}','fontsize',12);

454 ylabel('{\bf opinions}','fontsize',12);

455 set(gca,'YTickLabel',{})

456 title('\bf Opinion distribution over time. $\phi = 0.96$'....

457 ,'interpreter','latex','fontsize',12);

458

459 filename = [figureFolder,'discrete_opinion_developement_ws_096'];

460 print('-dpng', [filename,'.png']);

461 print('-depsc2', [filename,'.eps']);

462

463

464 surf(ops1);

465 shading interp;

466 axis tight

467 xlabel('{\bf x10^5 iterations}','fontsize',12);

468 ylabel('{\bf opinions}','fontsize',12);

469 zlabel('{\bf group sizes}','fontsize',12);

470 set(gca,'YTickLabel',{})

471 title('\bf Opinion distribution over time. $\phi = 0.04$'....

472 ,'interpreter','latex','fontsize',12);

473

474 filename = [figureFolder,'discrete_opinion_developement_ws_3d_004'];

475 print('-dpng', [filename,'.png']);

476 print('-depsc2', [filename,'.eps']);

477

478

479 surf(ops2);

480 shading interp;

481 axis tight

482 xlabel('{\bf x10^3 iterations}','fontsize',12);

483 ylabel('{\bf opinions}','fontsize',12);

484 zlabel('{\bf group sizes}','fontsize',12);

485 set(gca,'YTickLabel',{})

486 title('\bf Opinion distribution over time. $\phi = 0.458$'....

487 ,'interpreter','latex','fontsize',12);

488

489 filename = [figureFolder,'discrete_opinion_developement_ws_3d_0458'];

490 print('-dpng', [filename,'.png']);

491 print('-depsc2', [filename,'.eps']);

492

493

494 surf(ops3);

495 shading interp;

496 axis tight

497 xlabel('{\bf x10^3 iterations}','fontsize',12);

498 ylabel('{\bf opinions}','fontsize',12);

499 zlabel('{\bf group sizes}','fontsize',12);

500 set(gca,'YTickLabel',{})

501 title('\bf Opinion distribution over time. $\phi = 0.96$'....

502 ,'interpreter','latex','fontsize',12);

503

504 filename = [figureFolder,'discrete_opinion_developement_ws_3d_096'];
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505 print('-dpng', [filename,'.png']);

506 print('-depsc2', [filename,'.eps']);

507

508

509 %% OUTPUT 4 - examine dependency on beta (parameter in Watts and Strogatz)

510 % Generated graphs examine the dependency on beta of the group size

511 % distribution. For that several graphs equivalent to the one of Figure 2

512 % in paper [1] are generated with different betas.

513

514 % reset

515 clear all;

516 close all;

517 clc;

518 if (matlabpool('size') ~= 0) % closes open workers

519 matlabpool close force;

520 end

521

522 % Set values

523 n = 3200;

524 k = 4;

525 gamma = 10;

526 average_iterations = 10;

527 iter = 20000000;

528 max_iterations = 500000;

529 threshold = 0.05;

530 d_it = 10000;

531

532 % The simulation is run for the following values (betas).

533 betas = 0:0.5:1;

534

535 % folder to save the figures

536 figureFolder = '../documentation/figures/';

537

538 % flag to turn the parallel toolbox on or off

539 parallel = false;

540

541 fprintf('Small world\n\n');

542

543 % Setup matlabpool workers to run job in parallel if demanded.

544 % (default configuration is used for matlabpool)

545 if parallel

546 matlabpool open;

547 end

548

549 for i = 1:size(betas,2)

550 fprintf('beta: %0.2f\n', betas(i));

551

552 % running simulation for several phi's

553 phi = 0.04;

554 fprintf('Part 1: phi = %1.3f\n', phi)

555 tic; dist1(:,i) = runModel(n,'watts_strogatz',k,gamma,phi,iter,...

556 average_iterations,max_iterations,threshold,d_it,betas(i)); toc;

557

558 phi = 0.458;

559 fprintf('Part 2: phi = %1.3f\n', phi)

560 tic; dist2(:,i) = runModel(n,'watts_strogatz',k,gamma,phi,iter,...

561 average_iterations,max_iterations,threshold,d_it,betas(i)); toc;

562

563 phi = 0.96;

564 fprintf('Part 3: phi = %1.3f\n', phi)

565 tic; dist3(:,i) = runModel(n,'watts_strogatz',k,gamma,phi,iter,...
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566 average_iterations,max_iterations,threshold,d_it,betas(i)); toc;

567

568 % plotting

569 subplot(3,1,1)

570

571 subplot('Position',[.1 .1+1.6/3 .8 .8/3])

572 loglog(1:n,dist1(:,i)./(n/gamma),'o')

573 xlim([0 3200])

574 set(gca,'XTickLabel',{})

575 set(gca,'YTickLabel',' |0.01|0.1| ')

576 ylabel('P(s)')

577 string = '$\textbf{(a)} \qquad \phi = 0.04$';

578 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

579 'fontsize',14,'units','norm')

580

581 subplot('Position',[.1 .1+.8/3 .8 .8/3])

582 loglog(1:n,dist2(:,i)./(n/gamma),'o')

583 xlim([0 3200])

584 set(gca,'XTickLabel',{})

585 set(gca,'YTickLabel',' |0.01|0.1| ')

586 ylabel('P(s)')

587 string = '$\textbf{(b)} \qquad \phi = 0.458$';

588 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

589 'fontsize',14,'units','norm')

590

591 subplot('Position',[.1 .1 .8 .8/3])

592 loglog(1:n,dist3(:,i)./(n/gamma),'o')

593 xlim([0 3200])

594 set(gca,'XTickLabel',{'1','10','100','1000'})

595 set(gca,'YTickLabel',' |0.01|0.1| ')

596 xlabel('s')

597 ylabel('P(s)')

598 string = '$\textbf{(c)} \qquad \phi = 0.96$';

599 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

600 'fontsize',14,'units','norm')

601

602 % saving the figures in different formats

603 filename = [figureFolder,'discrete_model_ws_k4_beta_', sprintf('%.2f',betas(i))];

604 print('-dpng', [filename,'.png']);

605 print('-depsc2', [filename,'.eps']);

606 saveas(gcf, [filename, '.fig']);

607

608 fprintf('\n');

609

610 end

611

612 % saving all the variables used for plotting in a file

613 save([figureFolder,'discrete_model_ws_k4_beta_05.mat']);

614

615 % close matlabpool workers if job was run in parallel

616 if parallel

617 matlabpool close;

618 end

619

620 %% OUTPUT 5 - examine dependency on beta and speed of convergence

621 % Generated graphs examine the dependency on beta on the speed of

622 % convergence. For that the number of iterations require to fall below

623 % the specified threshold are calculated for several betas and all the

624 % three values for phi.

625

626 % reset
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627 clear all;

628 close all;

629 clc;

630 if (matlabpool('size') ~= 0) % closes open workers

631 matlabpool close force;

632 end

633

634 % Set values

635 n = 3200;

636 k = 4;

637 gamma = 10;

638 average_iterations = 10;

639 iter = 0;

640 max_iterations = 20000000;

641 threshold = 0.02;

642 d_it = 500;

643

644 % The simulation is run for the following values (betas).

645 betas = 0.0:0.5:1;

646

647 % folder to save the figures

648 figureFolder = '../documentation/figures/';

649

650

651 % flag to turn the parallel toolbox on or off

652 parallel = true;

653

654 fprintf('Small world\n\n');

655

656 % Setup matlabpool workers to run job in parallel if demanded.

657 % (default configuration is used for matlabpool)

658 if parallel

659 matlabpool open;

660 end

661

662 iterations_1 = zeros(size(betas,2),1);

663 iterations_2 = zeros(size(betas,2),1);

664 iterations_3 = zeros(size(betas,2),1);

665

666

667 parfor i = 1:size(betas,2)

668

669 fprintf('beta: %0.2f\n', betas(i));

670

671 phi = 0.04;

672 fprintf('Part 1: phi = %1.3f\n', phi)

673 tic; [~,~,iterations_1(i),~] = runModel(n,'watts_strogatz',k,gamma,phi,...

674 iter,average_iterations,max_iterations,threshold,d_it,betas(i)); toc;

675 phi = 0.458;

676 fprintf('Part 2: phi = %1.3f\n', phi)

677 tic; [~,~,iterations_2(i),~] = runModel(n,'watts_strogatz',k,gamma,phi,...

678 iter,average_iterations,max_iterations,threshold,d_it,betas(i)); toc;

679 phi = 0.96;

680 fprintf('Part 3: phi = %1.3f\n', phi)

681 tic; [~,~,iterations_3(i),~] = runModel(n,'watts_strogatz',k,gamma,phi,...

682 iter,average_iterations,max_iterations,threshold,d_it,betas(i)); toc;

683

684 fprintf('\n');

685 end

686

687 % plotting
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688 plot(betas, [iterations_1, iterations_2, iterations_3]);

689 xlabel('{\bf \beta}','fontsize',12);

690 ylabel('{\bf number of iterations}','fontsize',12);

691 legend('\phi = 0.04', '\phi = 0.458', '\phi = 0.96');

692

693 % saving the figures in different formats

694 filename = [figureFolder,'discrete_model_ws_k4_number_iterations'];

695 print('-dpng', [filename,'.png']);

696 print('-depsc2', [filename,'.eps']);

697 saveas(gcf, [filename, '.fig']);

698

699 % saving all the variables used for plotting in a file

700 save([figureFolder,'discrete_model_ws_k4_number_iterations_all.mat']);

701

702 % close matlabpool workers if job was run in parallel

703 if parallel

704 matlabpool close

705 end

706

707 %% OUTPUT 6 - examine dependency on beta and speed of convergence

708 % Generated graphs examine the dependency on beta on the speed of

709 % convergence. For that the number of iterations require to fall below

710 % the specified threshold are calculated for several betas and phi = 0.04

711

712 % reset

713 clear all;

714 close all;

715 clc;

716 if (matlabpool('size') ~= 0) % closes open workers

717 matlabpool close force;

718 end

719

720 % Set values

721 n = 3200;

722 k = 4;

723 gamma = 10;

724 average_iterations = 1;

725 iter = 0;

726 max_iterations = 20000000;

727 threshold = 0.01;

728 d_it = 500;

729

730 % The simulation is run for the following values (betas).

731 betas = linspace(0,1,16);

732

733 % folder to save the figures

734 figureFolder = '../documentation/figures/';

735

736

737 % flag to turn the parallel toolbox on or off

738 parallel = true;

739

740 fprintf('Small world\n\n');

741

742 % Setup matlabpool workers to run job in parallel if demanded.

743 % (default configuration is used for matlabpool)

744 if parallel

745 matlabpool open;

746 end

747

748 iterations = zeros(size(betas,2),1);
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749

750 parfor i = 1:size(betas,2)

751

752 fprintf('beta: %0.2f\n', betas(i));

753

754 phi = 0.04;

755 % fprintf('phi = %1.3f\n', phi)

756 tic; [~,~,iterations(i),~] = runModel(n,'watts_strogatz',k,gamma,phi,...

757 iter,average_iterations,max_iterations,threshold,d_it,betas(i)); toc;

758

759 fprintf('\n');

760 end

761

762 % plotting

763 plot(betas,iterations);

764 xlabel('{\bf \beta}','fontsize',12);

765 ylabel('{\bf number of iterations}','fontsize',12);

766 legend('\phi = 0.04');

767

768 % saving the figures in different formats

769 filename = [figureFolder,'discrete_model_ws_k4_number_iterations'];

770 print('-dpng', [filename,'.png']);

771 print('-depsc2', [filename,'.eps']);

772 saveas(gcf, [filename, '.fig']);

773

774 % saving all the variables used for plotting in a file

775 save([figureFolder,'discrete_model_ws_k4_number_iterations_all.mat']);

776

777 % close matlabpool workers if job was run in parallel

778 if parallel

779 matlabpool close

780 end

781

782 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

783 % GRAPHS FOR THE CONTINUOUS MODEL

784

785 %% OUTPUT 1

786 % Equivalent to Fig 1 in paper 2

787

788 % reset

789 clear all; close all; clc;

790 figure_handle = figure;

791

792 % setup the combined model to simulate the continuous model

793 graph = 'complete';

794 k = 0;

795 phi = 0;

796 std = 0;

797

798 % set parameters according to paper 2

799 n=3200;

800 % Paper: n = 500000;

801 % This requires to much space as the combined model allocates space

802 % for a complete graph which is n^2 space

803 u = 0.35;

804 mu = 0.001;

805 clusters = 1000; % u_0 = 0.001, clusters = 1/u_0

806 iterations = 400*n;

807 cskip = 400;

808

809 iterations = 80000; mu = 0.3; clusters = 100; cskip = 300;
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810

811 % simulate

812 [histogram] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations);

813

814 % graph

815 pcolor( histogram(1:end-1,:) );

816 shading flat;

817 title( 'Opinion distribution over time' );

818 ylabel( 'Opinion' );

819 xlabel( 't/N' );

820

821 % save results

822 figureFolder = '../documentation/figures/';

823 filename = [figureFolder,'continuous_model'];

824 print('-dpng', [filename,'.png']);

825 print('-depsc2', [filename,'.eps']);

826 saveas(figure_handle, [filename, '.fig']);

827

828 %% OUTPUT 2

829 % Examine the 1/2u behaviour

830

831 % reset

832 clear all; close all; clc;

833 parallel = false;

834

835 % setup the combined model to simulate the continuous model

836 graph = 'complete';

837 k = 0;

838 phi = 0;

839 std = 0;

840

841 % set parameters for the continuous model

842 iterations = 80000;

843 mu = 0.3;

844 clusters = 100;

845 cskip = 250;

846 n = 3200;

847

848 % define the expected opinion clusters depending on u;

849 expected_clusters = [

850 1/(2*0.3); % minimum u to achieve consensus according to paper 2

851 2;

852 5;

853 8;

854 15 ];

855 expected_clusters(:,2) = 1./( 2 * expected_clusters(:,1) );

856

857 % initialize parallel computation

858 if parallel

859 matlabpool open

860 end

861

862 parfor i = 1:size(expected_clusters,1)

863 % simulate

864 e = expected_clusters(i,1);

865 u = expected_clusters(i,2);

866 [histogram] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations);

867 % graph

868 figure_handle = figure;

869 pcolor( histogram(1:end-1,:) );

870 shading flat;
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871 title( sprintf('Opinion distribution over time. u = %2.2f',u) );

872 ylabel( 'Opinion' );

873 xlabel( 't/N' );

874

875 % save results

876 figureFolder = '../documentation/figures/';

877 filename = [figureFolder, sprintf('continuous_model_u_%2.2f',e) ];

878 print('-dpng', [filename,'.png']);

879 print('-depsc2', [filename,'.eps']);

880 saveas(figure_handle, [filename, '.fig']);

881 end

882

883 % cleanup

884 if parallel

885 matlabpool close

886 end

887

888 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

889 % GRAPHS FOR THE COMBINED MODEL

890

891 %% OUTPUT 1

892 % Generate a figure equivalent to the discrete model.

893

894 % reset

895 clear all; close all; clc;

896 parallel = false;

897 figure_handle = figure;

898

899 % configure the model

900 iterations = 1000000;

901 average_iterations = 10;

902 n = 3200;

903 k = 4;

904 clusters = 320;

905 cskip = 100;

906 graph = 'random';

907 Phi = [ 0.04, 0.458, 0.96];

908 std = 0.1;

909 u = 0.3;

910 mu = 0.3;

911

912 % Generate values

913 dist = zeros(n,average_iterations);

914

915 phi = Phi(1);

916 fprintf('Part 1: phi = %1.3f\n', phi);

917 for i=1:average_iterations

918 fprintf('Average %i/%i\n',i,average_iterations);

919 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations);

920 end

921 dist1 = sum(dist,2)./average_iterations;

922

923 phi = Phi(2);

924 fprintf('Part 2: phi = %1.3f\n', phi);

925 for i=1:average_iterations

926 fprintf('Average %i/%i\n',i,average_iterations);

927 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations);

928 end

929 dist2 = sum(dist,2)./average_iterations;

930

931 phi = Phi(3);
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932 fprintf('Part 3: phi = %1.3f\n', phi);

933 for i=1:average_iterations

934 fprintf('Average %i/%i\n',i,average_iterations);

935 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations);

936 end

937 dist3 = sum(dist,2)./average_iterations;

938

939 % Plot graphic

940 subplot('Position',[.1 .1+1.6/3 .8 .8/3])

941 loglog(1:n,dist1./(clusters),'o')

942 xlim([0 3200])

943 ylim([10^(-5.5) 0.2])

944 set(gca,'XTickLabel',{})

945 ylabel('P(s)')

946 string = '$\textbf{(a)} \qquad \phi = 0.04$';

947 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

948 'fontsize',14,'units','norm')

949

950 subplot('Position',[.1 .1+.8/3 .8 .8/3])

951 loglog(1:n,dist2./(clusters),'o')

952 xlim([0 3200])

953 ylim([10^(-9) 0.2])

954 set(gca,'XTickLabel',{})

955 %set(gca,'YTickLabel',' |0.01|0.1| ')

956 ylabel('P(s)')

957 string = '$\textbf{(b)} \qquad \phi = 0.458$';

958 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

959 'fontsize',14,'units','norm')

960

961 subplot('Position',[.1 .1 .8 .8/3])

962 loglog(1:n,dist3./(clusters),'o')

963 xlim([0 3200])

964 ylim([10^(-6) 0.2])

965 set(gca,'XTickLabel',{'1','10','100','1000'})

966 xlabel('s')

967 ylabel('P(s)')

968 string = '$\textbf{(c)} \qquad \phi = 0.96$';

969 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

970 'fontsize',14,'units','norm')

971

972 % save results

973 figureFolder = '../documentation/figures/';

974 filename = [figureFolder, 'combined_model_random' ];

975 print('-dpng', [filename,'.png']);

976 print('-depsc2', [filename,'.eps']);

977 saveas(figure_handle, [filename, '.fig']);

978

979 %% OUTPUT 2

980 % Same as output 1, but for watts and strogatz graph beta=0.25

981

982 % reset

983 clear all; close all; clc;

984 parallel = false;

985 figure_handle = figure;

986

987 % configure the model

988 iterations = 1000000;

989 average_iterations = 10;

990 n = 3200;

991 k = 4;

992 clusters = 320;
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993 cskip = 100;

994 graph = 'watts_strogatz';

995 Phi = [ 0.04, 0.458, 0.96];

996 std = 0.1;

997 u = 0.3;

998 mu = 0.3;

999

1000 beta = 0.25;

1001

1002 % Generate values

1003 dist = zeros(n,average_iterations);

1004

1005 phi = Phi(1);

1006 fprintf('Part 1: phi = %1.3f\n', phi);

1007 for i=1:average_iterations

1008 fprintf('Average %i/%i\n',i,average_iterations);

1009 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1010 end

1011 dist1 = sum(dist,2)./average_iterations;

1012

1013 phi = Phi(2);

1014 fprintf('Part 2: phi = %1.3f\n', phi);

1015 for i=1:average_iterations

1016 fprintf('Average %i/%i\n',i,average_iterations);

1017 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1018 end

1019 dist2 = sum(dist,2)./average_iterations;

1020

1021 phi = Phi(3);

1022 fprintf('Part 3: phi = %1.3f\n', phi);

1023 for i=1:average_iterations

1024 fprintf('Average %i/%i\n',i,average_iterations);

1025 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1026 end

1027 dist3 = sum(dist,2)./average_iterations;

1028

1029 % Plot graphic

1030 subplot('Position',[.1 .1+1.6/3 .8 .8/3])

1031 loglog(1:n,dist1./(clusters),'o')

1032 xlim([0 3200])

1033 ylim([10^(-5.5) 0.2])

1034 set(gca,'XTickLabel',{})

1035 ylabel('P(s)')

1036 string = '$\textbf{(a)} \qquad \phi = 0.04$';

1037 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

1038 'fontsize',14,'units','norm')

1039

1040 subplot('Position',[.1 .1+.8/3 .8 .8/3])

1041 loglog(1:n,dist2./(clusters),'o')

1042 xlim([0 3200])

1043 ylim([10^(-9) 0.2])

1044 set(gca,'XTickLabel',{})

1045 %set(gca,'YTickLabel',' |0.01|0.1| ')

1046 ylabel('P(s)')

1047 string = '$\textbf{(b)} \qquad \phi = 0.458$';

1048 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

1049 'fontsize',14,'units','norm')

1050

1051 subplot('Position',[.1 .1 .8 .8/3])

1052 loglog(1:n,dist3./(clusters),'o')

1053 xlim([0 3200])
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1054 ylim([10^(-6) 0.2])

1055 set(gca,'XTickLabel',{'1','10','100','1000'})

1056 xlabel('s')

1057 ylabel('P(s)')

1058 string = '$\textbf{(c)} \qquad \phi = 0.96$';

1059 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

1060 'fontsize',14,'units','norm')

1061

1062 % save results

1063 figureFolder = '../documentation/figures/';

1064 filename = [figureFolder, 'combined_model_watts_strogatz_beta_025' ];

1065 print('-dpng', [filename,'.png']);

1066 print('-depsc2', [filename,'.eps']);

1067 saveas(figure_handle, [filename, '.fig']);

1068

1069 %% OUTPUT 3

1070 % Same as output 1, but for watts and strogatz graph beta=0.5

1071

1072 % reset

1073 clear all; close all; clc;

1074 parallel = false;

1075 figure_handle = figure;

1076

1077 % configure the model

1078 iterations = 1000000;

1079 average_iterations = 10;

1080 n = 3200;

1081 k = 4;

1082 clusters = 320;

1083 cskip = 100;

1084 graph = 'watts_strogatz';

1085 Phi = [ 0.04, 0.458, 0.96];

1086 std = 0.1;

1087 u = 0.3;

1088 mu = 0.3;

1089

1090 beta = 0.5;

1091

1092 % Generate values

1093 dist = zeros(n,average_iterations);

1094

1095 phi = Phi(1);

1096 fprintf('Part 1: phi = %1.3f\n', phi);

1097 for i=1:average_iterations

1098 fprintf('Average %i/%i\n',i,average_iterations);

1099 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1100 end

1101 dist1 = sum(dist,2)./average_iterations;

1102

1103 phi = Phi(2);

1104 fprintf('Part 2: phi = %1.3f\n', phi);

1105 for i=1:average_iterations

1106 fprintf('Average %i/%i\n',i,average_iterations);

1107 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1108 end

1109 dist2 = sum(dist,2)./average_iterations;

1110

1111 phi = Phi(3);

1112 fprintf('Part 3: phi = %1.3f\n', phi);

1113 for i=1:average_iterations

1114 fprintf('Average %i/%i\n',i,average_iterations);
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1115 [tmp dist(:,i)] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1116 end

1117 dist3 = sum(dist,2)./average_iterations;

1118

1119 % Plot graphic

1120 subplot('Position',[.1 .1+1.6/3 .8 .8/3])

1121 loglog(1:n,dist1./(clusters),'o')

1122 xlim([0 3200])

1123 ylim([10^(-5.5) 0.2])

1124 set(gca,'XTickLabel',{})

1125 ylabel('P(s)')

1126 string = '$\textbf{(a)} \qquad \phi = 0.04$';

1127 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

1128 'fontsize',14,'units','norm')

1129

1130 subplot('Position',[.1 .1+.8/3 .8 .8/3])

1131 loglog(1:n,dist2./(clusters),'o')

1132 xlim([0 3200])

1133 ylim([10^(-9) 0.2])

1134 set(gca,'XTickLabel',{})

1135 %set(gca,'YTickLabel',' |0.01|0.1| ')

1136 ylabel('P(s)')

1137 string = '$\textbf{(b)} \qquad \phi = 0.458$';

1138 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

1139 'fontsize',14,'units','norm')

1140

1141 subplot('Position',[.1 .1 .8 .8/3])

1142 loglog(1:n,dist3./(clusters),'o')

1143 xlim([0 3200])

1144 ylim([10^(-6) 0.2])

1145 set(gca,'XTickLabel',{'1','10','100','1000'})

1146 xlabel('s')

1147 ylabel('P(s)')

1148 string = '$\textbf{(c)} \qquad \phi = 0.96$';

1149 text('string',string,'position',[0.7 0.8],'interpreter','latex',...

1150 'fontsize',14,'units','norm')

1151

1152 % save results

1153 figureFolder = '../documentation/figures/';

1154 filename = [figureFolder, 'combined_model_watts_strogatz_beta_050' ];

1155 print('-dpng', [filename,'.png']);

1156 print('-depsc2', [filename,'.eps']);

1157 saveas(figure_handle, [filename, '.fig']);

1158

1159

1160 %% OUTPUT 4

1161 % Examine the 1/2u behaviour in the combined model for a random graph

1162

1163 % reset

1164 clear all; close all; clc;

1165

1166 % configure the model

1167 iterations = 1000000;

1168 average_iterations = 10;

1169 n = 3200;

1170 k = 4;

1171 clusters = 320;

1172 cskip = 100;

1173 graph = 'random';

1174 Phi = [ 0.04, 0.458, 0.96];

1175 std = 0.1;
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1176 u = 0.3;

1177 mu = 0.3;

1178

1179 % define the expected opinion clusters depending on u;

1180 expected_clusters = [

1181 1/(2*0.3); % minimum u to achieve consensus according to paper 2

1182 2;

1183 5;

1184 8;

1185 15 ];

1186 expected_clusters(:,2) = 1./( 2 * expected_clusters(:,1) );

1187

1188 for avg=1:average_iterations

1189

1190 for phi=Phi

1191

1192 for i = 1:size(expected_clusters,1)

1193 % simulate

1194 e = expected_clusters(i,1);

1195 u = expected_clusters(i,2);

1196 fprintf('Iteration %i/%i, phi=%1.3f, e=%2.2f\n',avg,average_iterations,phi,e);

1197 [histogram] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations);

1198 % graph

1199 figure_handle = figure;

1200 pcolor( histogram(1:end-1,:) );

1201 shading flat;

1202 title( sprintf('Opinion distribution over time. u = %2.2f',u) );

1203 ylabel( 'Opinion' );

1204 xlabel( 't/N' );

1205

1206 % save results

1207 figureFolder = '../documentation/figures/';

1208 filename = [figureFolder, sprintf('combined_model_random_u_%2.2f_phi_%1.3f_i_%i',e,phi,avg)];

1209 print('-dpng', [filename,'.png']);

1210 print('-depsc2', [filename,'.eps']);

1211 saveas(figure_handle, [filename, '.fig']);

1212 close(figure_handle);

1213 end

1214

1215 end

1216

1217 end

1218

1219 %% OUTPUT 5

1220 % Examine the 1/2u behaviour in the combined model for

1221 % watts strogatz, beta = 0.25

1222

1223 % reset

1224 clear all; close all; clc;

1225

1226 % configure the model

1227 iterations = 1000000;

1228 average_iterations = 10;

1229 n = 3200;

1230 k = 4;

1231 clusters = 320;

1232 cskip = 100;

1233 graph = 'watts_strogatz';

1234 Phi = [ 0.04, 0.458, 0.96];

1235 std = 0.1;

1236 u = 0.3;
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1237 mu = 0.3;

1238

1239 beta = 0.25;

1240

1241 % define the expected opinion clusters depending on u;

1242 expected_clusters = [

1243 1/(2*0.3); % minimum u to achieve consensus according to paper 2

1244 2;

1245 5;

1246 8;

1247 15 ];

1248 expected_clusters(:,2) = 1./( 2 * expected_clusters(:,1) );

1249

1250 for avg=1:average_iterations

1251

1252 for phi=Phi

1253

1254 for i = 1:size(expected_clusters,1)

1255 % simulate

1256 e = expected_clusters(i,1);

1257 u = expected_clusters(i,2);

1258 fprintf('Iteration %i/%i, phi=%1.3f, e=%2.2f\n',avg,average_iterations,phi,e);

1259 [histogram] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1260 % graph

1261 figure_handle = figure;

1262 pcolor( histogram(1:end-1,:) );

1263 shading flat;

1264 title( sprintf('Opinion distribution over time. u = %2.2f',u) );

1265 ylabel( 'Opinion' );

1266 xlabel( 't/N' );

1267

1268 % save results

1269 figureFolder = '../documentation/figures/';

1270 filename = [figureFolder, ...

1271 sprintf('combined_model_watts_strogatz_025_u_%2.2f_phi_%1.3f_i_%i',e,phi,avg) ];

1272 print('-dpng', [filename,'.png']);

1273 print('-depsc2', [filename,'.eps']);

1274 saveas(figure_handle, [filename, '.fig']);

1275 close(figure_handle);

1276 end

1277

1278 end

1279

1280 end

1281

1282 %% OUTPUT 6

1283 % Examine the 1/2u behaviour in the combined model for

1284 % watts strogatz, beta = 0.5

1285

1286 % reset

1287 clear all; close all; clc;

1288

1289 % configure the model

1290 iterations = 1000000;

1291 average_iterations = 10;

1292 n = 3200;

1293 k = 4;

1294 clusters = 320;

1295 cskip = 100;

1296 graph = 'watts_strogatz';

1297 Phi = [ 0.04, 0.458, 0.96];
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1298 std = 0.1;

1299 u = 0.3;

1300 mu = 0.3;

1301

1302 beta = 0.5;

1303

1304 % define the expected opinion clusters depending on u;

1305 expected_clusters = [

1306 1/(2*0.3); % minimum u to achieve consensus according to paper 2

1307 2;

1308 5;

1309 8;

1310 15 ];

1311 expected_clusters(:,2) = 1./( 2 * expected_clusters(:,1) );

1312

1313 for avg=1:average_iterations

1314

1315 for phi=Phi

1316

1317 for i = 1:size(expected_clusters,1)

1318 % simulate

1319 e = expected_clusters(i,1);

1320 u = expected_clusters(i,2);

1321 fprintf('Iteration %i/%i, phi=%1.3f, e=%2.2f\n',avg,average_iterations,phi,e);

1322 [histogram] = runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta);

1323 % graph

1324 figure_handle = figure;

1325 pcolor( histogram(1:end-1,:) );

1326 shading flat;

1327 title( sprintf('Opinion distribution over time. u = %2.2f',u) );

1328 ylabel( 'Opinion' );

1329 xlabel( 't/N' );

1330

1331 % save results

1332 figureFolder = '../documentation/figures/';

1333 filename = [figureFolder, ...

1334 sprintf('combined_model_watts_strogatz_050_u_%2.2f_phi_%1.3f_i_%i',e,phi,avg) ];

1335 print('-dpng', [filename,'.png']);

1336 print('-depsc2', [filename,'.eps']);

1337 saveas(figure_handle, [filename, '.fig']);

1338 close(figure_handle);

1339 end

1340

1341 end

1342

1343 end

D.6. generateOpinions.m

Listing 13: generateOpinions.m

1 function opinions = generateOpinions( n, factor )

2 %generateOpinions

3 % Generate a random opinion vector of length n.

4 % Factor can be used to specify the proportion of opinions in relation to

5 % n, where number_of_opinions = n / factor.

6

7 if nargin < 2, factor = 10; end

8
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9 % Calculate the requested amount of opinions

10 count = n/factor;

11

12 % Generate the pseudorandom opinions

13 opinions = zeros(n,1);

14

15 for i = 1:n

16 opinions(i) = randi(count);

17 end

18

19 end

D.7. model.m

Listing 14: model.m

1 function [people, opinions] = model(people,opinions,phi,iter)

2 %model

3 % Model our system with given input parameters.

4 %

5 % At each step we select one person randomly.

6 % Then we use METHOD 1 with probability phi or METHOD 2 otherwise,

7 % to change the opinion or neighbourhood of the selected person.

8 %

9 % METHOD 1

10 % Select at random one of the edges attached to the selected person

11 % and move the other end of that edge to a vertex chosen

12 % randomly from the set off all vertices having the same

13 % opinion as the selected person.

14 %

15 % METHOD 2

16 % Pick a random neighbour of the selected person and set the opinion

17 % of the person to that of the selected neighbour.

18 %

19 % INPUT

20 % people Adjacency matrix representing the system

21 %

22 % opinions Vector of the agents opinions

23 %

24 % phi Probability factor for model

25 %

26 % iter Number of iterations to perform

27 %

28 % OUTPUT

29 % people Adjecency matrix after the model has been run

30 %

31 % opinions Opinions after the model has been run

32

33

34 if nargin < 4, error('Insufficient input arguments.'); end

35

36

37 % Number of people in the system

38 n = length(opinions);

39

40

41 % Main loop

42 for t=1:iter

43 % Select a person randomly
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44 person = randi(n);

45

46

47 % Check if the person is still connected to someone

48 % Do nothing otherwise

49 deg = nnz(people(person,:));

50 if deg == 0, continue; end

51

52

53 % Find all neighbours connected to person

54 neighbours = find(people(person,:));

55

56 % And select a neighbour at random

57 j = randi(length(neighbours));

58 neighbour = neighbours(j);

59

60 if neighbour == person

61 continue;

62 end

63

64 % Chose method 1 or 2 with probability phi

65 if rand() <= phi

66 % METHOD 1

67

68 % Find all people with the same opinion as person

69 opinion_group = find(opinions == opinions(person));

70

71 % Select one of the people with the same opinion at random

72 j = randi(length(opinion_group));

73 new_neighbour = opinion_group(j);

74

75 % Connect person and new_neighbour

76 % Disconnect person and old_neighbour

77 if person ~= new_neighbour

78 people(person,new_neighbour) = 1;

79 people(new_neighbour,person) = 1;

80 people(person,neighbour) = 0;

81 people(neighbour,person) = 0;

82 end

83 else

84 % METHOD 2

85

86 % Adopt opinion of neighbour

87 opinions(person) = opinions(neighbour);

88 end

89 end

90

91 end

D.8. runContinousModel.m

Listing 15: runContinuousModel.m

1 function [histogram groups_distribution] = ...

2 runContinuousModel(n,graph,k,phi,u,mu,std,clusters,cskip,iterations,beta)

3 % Setup and Run the Combined Model

4 % INPUT

5 % n number of people in the system

6 % graph type of social graph to use. valid input:
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7 % 'random', 'watts_strogatz', 'complete'

8 % k average number of connections per person

9 % phi probability factor for model

10 % u opinion threshold

11 % mu convergence parameter

12 % std standard derivation to find new friends by opinion

13 % clusters number of opinion clusters to observe

14 % cskip skip factor for the returned histogram with respect to

15 % the number of iterations

16 % iterations number of iterations

17 % beta watts strogatz parameter

18 % OUTPUT

19 % histogram histogram according to the continuousModel function

20 % groups_distribution

21 % vector where the i-th component is the amount of

22 % of opinion groups of that size in the simulated system

23

24 % global DEBUG;

25

26 % input cosmetics

27 if nargin < 1, warning('Using defaults!'), n = 3200; end

28 if nargin < 2, graph = 'watts_strogatz'; end

29 if nargin < 3, k = 2; end

30 if nargin < 4, phi = 0.4; end

31 if nargin < 5, u = 0.04; end

32 if nargin < 6, mu = 0.3; end

33 if nargin < 7, std = 0.1; end

34 if nargin < 8, clusters = 100; end

35 if nargin < 9, cskip = 300; end

36 if nargin < 10, iterations = 1000000; end

37 if nargin < 11, beta = 0.25; end

38

39 % graph and opinion initialization

40 if strcmp(graph,'random')

41 people = createRandomSocialGraph(n,k);

42 elseif strcmp(graph,'watts_strogatz')

43 people = createWattsAndStrogatzModel(n,k,beta);

44 elseif strcmp(graph,'complete')

45 people = ones(n,n);

46 else

47 error('Unknown Social Graph');

48 end

49 opinions = generateContinuousOpinions(n);

50

51 % run the simulation with the specified parameters

52 [people, opinions, histogram] = ...

53 continuousModel(people,opinions,phi,u,mu,std,iterations,clusters,cskip);

54

55 % Overview of group sizes (how many groups of each size exist)

56 % partition the continuous opinions into #clusters opinion groups,

57 % get the distribution

58 opinion_distribution = hist(histogram(1:end-1,end),clusters);

59 % evaluate how many groups have the same size

60 groups_distribution = hist(opinion_distribution,1:n)';

61

62 % generate graphs only if the caller doesn't use the data

63 if nargout > 0

64 return

65 end

66

67 % plot the change of opinions over time

63



68 subplot(2,2,1);

69 pcolor(histogram(1:end-1,:));

70 shading flat;

71 title('Opinion distribution over time');

72

73 % plot the normed change in #cskip iterations over time

74 subplot(2,2,3);

75 plot(histogram(end,:));

76 ylim([0 30]);

77 title('Normed change during the iterations');

78

79 % plot the opinion distribution at the end

80 subplot(2,2,2);

81 hist(opinions,clusters);

82 title('Opinion distribution at the end');

83

84 % group size distribution

85 subplot(2,2,4);

86 loglog(groups_distribution,'o');

87 title('Group size distribution');

88

89 % 3D plot of the histogram. This is plotted in a new window

90 set(0,'CurrentFigure',figure)

91 surf(histogram(1:end-1,:));

92 shading interp;

93 colormap('Hot');

94

95 end

D.9. runModel.m

Listing 16: runModel.m

1 function [mean_distribution opinion_dist mean_number_iterations step_differences]...

2 = runModel(n,graph,k,gamma,phi,...

3 iterations, average_iterations,...

4 max_iterations, threshold, d_it, beta)

5 %runModel

6 % Simulate a number of steps of the model with the supplied parameters

7 % to compute the opinion group size distribution, i.e. how many opinion

8 % groups of sizes 1,...,n exist at the end of the simulation.

9 %

10 % We optionally average over several iterations.

11 % If iterations=0 is supplied, the function will run the simulation in

12 % steps of 10000 iterations and terminate as soon as the normed difference

13 % between the last two distributions reaches a certain threshold.

14 % In this case the opinion distributions are also aggregated in betweeen

15 % runs and returned in opinion_dist.

16 %

17 % INPUT

18 % n Number of agents in the system

19 %

20 % graph Use random network ('random')

21 % or small world ('watts_strogatz')?

22 %

23 % k Average number of connections per person

24 %

25 % gamma Ratio of the number of opinions to the number of people

26 % gamma = (number of people) / (number of opinions)
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27 %

28 % phi Probability factor with which to choose

29 % the method to be used in each iteration

30 %

31 % iterations Number of iterations to perform with the simulation

32 % If 0, the function will terminat, when a certain

33 % threshhold for the normed difference between

34 % computation steps is reached

35 %

36 % average_iterations Number of times the whole model will be run

37 % The results will be averaged over these runs

38 % OPTIONAL

39 % max_iterations Maximum number of iterations to perform when

40 % iterations=0

41 %

42 % threshold Which normed difference between steps has to be

43 % reached before stopping?

44 %

45 % d_it Number of iterations performed between checks if

46 % there are significant changes.

47 %

48 % beta The parameter beta from the Watts and Strogatz

49 % model.

50 %

51 % OUTPUT

52 %

53 % mean_distribution Averaged opinion group size distribution

54 %

55 % opinion_dist Opinion distributions at every thousand iteration

56 % steps. Only calculated if iterations=0.

57 %

58 % mean_number_iterations

59 % Average number of iterations required to fall below

60 % the given threshold.

61 %

62 % step_differences Matrix with the number of iterations performed so far

63 % in the first row and the respective difference

64 % since the last step (d_it iterations) in the second

65 %

66

67 if nargin < 7, error('Insufficient input arguments.'); end

68 if nargin < 8, max_iterations = 200000; end

69 if nargin < 9, threshold = 0.05; end

70 if nargin < 10, d_it = 10000; end

71 if nargin < 11, beta = 0.25; end

72

73 % If the number of iterations is not specified, we will try to guess

74 % when to stop iterating, by observing whether the model still

75 % changes significantly over several iterations (secified by d_it).

76 if iterations == 0

77

78 % Distributions for comparison

79 dist_old = zeros();

80 dist_new = zeros();

81

82 % Matrix to aggregate the opinion distributions

83 opinion_dist = zeros(n/gamma,1);

84

85 % Number of iterations required to fall below the threshold

86 number_iterations = zeros(average_iterations, 1);

87 else
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88 number_iterations = iterations;

89 if nargout > 1, error('Too many output arguments.'); end

90 end

91

92

93 % Opinion group distributions for all iterations, will be averaged

94 distribution = zeros(average_iterations,n);

95

96

97

98 % Compute 'average_iterations' computations

99 for i=1:average_iterations

100 % Print progress (if more than one run)

101 if (average_iterations > 1)

102 fprintf('Progress %3.2f%%\n', ((i-1)/average_iterations)*100)

103 end

104

105 % Model initialization

106 if strcmp(graph,'random')

107 people = createRandomSocialGraph(n,k);

108 elseif strcmp(graph,'watts_strogatz')

109 people = createWattsAndStrogatzModel(n,k,beta);

110 else

111 error('Unknown graph structure');

112 end

113

114 opinions = generateOpinions(n,gamma);

115

116 if iterations ~= 0

117 % CONSTANT NUMBER OF ITERATIONS

118 % Run model for 'iterations' steps

119 [~, opinions] = model(people,opinions,phi,iterations);

120

121 % Compute the opinion distribution with the histogram function 'hist'

122 % There are (n/gamma) opinions, so we want to bin the values

123 % into (n/gamma) groups

124 % We pass a vector with the exact binning points to be used

125 opinion_distribution = hist(opinions,1:(n/gamma));

126

127 % Compute the opinion group size distribution

128 group_distribution = hist(opinion_distribution,1:n);

129 else

130 % VARIABLE NUMBER OF ITERATIONS

131 % Run the model in steps of 'd_it' iterations

132 % and check the difference after each step

133 for j=1:(max_iterations/d_it)

134 % Continue to run the simulation with the specified parameters

135 [people, opinions] = model(people,opinions,phi,d_it);

136

137

138 % Compute the opinion distribution with the histogram function 'hist'

139 % There are (n/gamma) opinions, so we want to bin the values

140 % into (n/gamma) groups

141 % We pass a vector with the exact binning points to be used

142 opinion_distribution = hist(opinions,1:(n/gamma));

143

144 % Add the momentary opinion distribution

145 % Only computed for one computation (i.e. the last averaging step)

146 if (i==average_iterations)

147 opinion_dist(:,j) = opinion_distribution';

148 end
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149

150 % Compute the opinion group size distribution

151 group_distribution = hist(opinion_distribution,1:n);

152

153

154 % Compute the normed difference between the last steps

155 dist_old = dist_new;

156 dist_new = group_distribution;

157 diff = norm(dist_new-dist_old)/norm(dist_new);

158

159 % Add the normed difference between the last steps

160 % Only computed for one computation (i.e. the last averaging step)

161 if (i==average_iterations)

162 step_differences(1,j) = j*d_it;

163 step_differences(2,j) = diff;

164 end

165

166 % Abort if threshhold is reached

167 if (diff <= threshold)

168 break;

169 end

170 end

171 fprintf('Iterations performed: %d\n',j*d_it);

172 number_iterations(i) = j*d_it;

173 end

174

175 % Add final group size distribution to distribution matrix

176 distribution(i,:) = group_distribution;

177

178 end

179

180 if (average_iterations > 1)

181 fprintf('Progress 100%%\n')

182 end

183

184 % Compute the mean values for the distribution and number of iterations

185 % if averaging requested

186 if average_iterations > 1

187 mean_distribution = mean(distribution);

188 %mean_number_iterations = mean(number_iterations);

189 else

190 mean_distribution = distribution;

191 %mean_number_iterations = number_iterations;

192 end

193 end
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