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Introduction and Motivations 
 
Many species of social insects show a division of labour in colonial life. The workers 
show “behavioural flexibility, that is, they can “switch tasks in response to internal 
perturbations or external challenges” (Bonabeau et al. 1996), which are related to a 
stimulus or set of stimuli. An example for such a “task” workers of a colony have to fulfil 
is larval feeding, which has the associated stimulus larval demand (expressed e.g. through 
emissions of pheromones). 
The question how insects decide if they switch task or engage in task performance is 
addressed in the two reviewed paper. The first paper, (Bonabeau et al. 1996), elaborates 
on a simple model, which was introduced by several authors (Robinson 1987a; Robinson 
1987b; Calabi 1988 ; Robinson 1992). It describes the division of labour based on fixed 
response thresholds of individuals to the stimuli and can explain how the workers’ 
behavioural flexibility can account for the flexibility at the colony level and the “model 
can constitute the basic mechanism for a theory of the regulation of division of labour in 
insect societies” (FTM: Fixed Threshold Model) (Bonabeau et al. 1996, p.1566). The 
second paper, (Theraulaz et al. 1998), introduces learning and forgetting in the model 
based on a reinforcement process, which allows thresholds to vary in time (VTM: 
Variable Threshold Model). Thus, the VTM can account for the genesis of task allocation 
(that is: changing roles of individuals) and “robust task specialization within castes”, 
while the FTM assumes that individuals are differentiated and roles predetermined. 
 
Simulating the division of labour in insect societies can help to explain and thus better 
understand experimental observations. This report shall document how both models can 
be implemented in MATLAB and further focus on effects of parameter choices in the 
VTM. Different learning and forgetting rates are chosen to specify the turning point of 
the division and specification of labour. A minimal learning factor is implemented in the 
model to guarantee the division of labour. 
 



Description of the Models 

FTM 
When the stimulus intensity exceeds the worker's individual threshold concerning this 
task, the worker will start performing the task. Since thresholds are fixed and no learning 
is assumed, these models can only be used for approximation of short time-scales, when 
thresholds can be considered constant. In the paper of (Bonabeau et al. 1996), some 
experimental observations with Pheidole (a genus of ants), are quantitatively simulated 
with the FTM. 
Two cases are discussed in the paper, first FTM with one task and two distinct castes and 
second FTM with two tasks and two distinct castes. We limit our explanations here to the 
first case, since it is sufficient to clarify the basic principles of the FTM. The model can 
be denoted with formula (1) to (3) listed below. 
 
Formula (1) explains the probability that an individual of caste i starts performing the 
task (X refers to the state of the individual, with 0 corresponding to inactivity and 1 to 
performing the task). θi is the response threshold of caste i and s corresponds to the 
“magnitude of the task, that affects the probability of being exposed to it”. 
 

𝑃𝑖(𝑋 = 0 → 𝑋 = 1) =
𝑠2

𝑠2 + 𝜃𝑖2
 (1) 

 
Formula (2) describes p, the probability that an active individual of caste i stops 
performing a task and becomes inactive. p can be found experimentally, since 1/p is the 
“average time spent by an individual in task performance before giving up this task” 
(Bonabeau et al. 1996, p. 1567). 
 
𝑃𝑖(𝑋 = 1 → 𝑋 = 0) = 𝑝 (2) 
 
The last equation of the FTM (3) is describing the evolution of stimulus intensity s (in 
discrete time). Ni is the number of active individuals belonging to caste i, N is the total 
number of potentially active individuals in the colony, δ is the increase in stimulus 
intensity per unit time, and α is a scale factor measuring the efficiency of task 
performance, which is assumed to be identical for individuals of all castes. 
 
𝑠(𝑡 + 1) = 𝑠(𝑡) + 𝛿 −

𝛼
𝑁

(𝑁1 + 𝑁2) (3) 

 
 

VTM 
In the following section the set of equations constituting the VTM is introduced. For a 
more detailed explanation of the derivation of these formulas please refer to the original 
document. 
The first equation of the VTM (4) is similar to formula (1) of the FTM, however, the 



denotation is slightly different in order to account for different tasks and associated 
stimuli (j=1,..., m). 
 

𝛵θ𝑖𝑗 =
𝑠𝑗2

𝑠𝑗2 + 𝜃𝑖𝑗2
 (4) 

 
The threshold θij, referring to individual i and task j, is updated in a self-reinforcing way. 
“The more individual i performs task j, the lower θij, and vice versa” (Theraulaz et al. 
1998).These processes are denoted by the coefficients ξ(∆t) (learning) and φ(∆t) 
(forgetting), while ∆t refers to the time performing (learning) respectively not performing 
(forgetting) a task. ξ and φ are assumed to be identical for all tasks. 
The fraction of time spent by individual i in task j performance is described by xij and the 
dynamics of θij is restricted to an interval [θmin, θmax]. The average temporal dynamics of 
θij is then given by (5), of xij by (6), and of sij by (7): 
 
𝑑𝑖𝜃𝑖𝑗 = ��1 − 𝑥𝑖𝑗�𝜑 − 𝑥𝑖𝑗𝜉�𝛩�𝜃𝑖𝑗 − 𝜃𝑚𝑖𝑛�𝛩�𝜃𝑚𝑎𝑥 − 𝜃𝑖𝑗� (5) 
 

𝑑𝑖𝑥𝑖𝑗 = 𝑇θ𝑖𝑗�𝑠𝑗� �1 −�𝑥𝑖𝑘

𝑚

𝑘=1

� − 𝑝𝑥𝑖𝑗 + 𝜓(𝑖, 𝑗, 𝑘) (6) 

 

disij = δ −
α
N
�� xij

N

i=1

� (7) 

 
The last term of formula (5) is a step function, which is used in order to maintain θ within 
model boundaries (Θ(𝑦) = 0 if 𝑦 ≤ 0,Θ(𝑦) = 1 if 𝑦 > 0). The last term in formula (6) is 
a “centered gaussian stochastic process of variance σ2, uncorrelated in time, and 
uncorrelated among individuals and among tasks” (Theraulaz et al. 1998, p. 328).  
 

Implementation in Matlab 

FTM 
1. Initialization 
At first, the parameter values are defined in the code (analogue Bonabeau et al. 1996). 

 
clear all 
 
%initial state 
Theta_1=8; %Threshold caste 1 
Theta_2=1; %Threshold caste 2 
delta=1; %increase of stimulus per unit time 
alpha=3; %a scale factor measuring the efficiency of task performance 
N100=100;N1000=1000; %Population sizes 
t_sim=1000; %simulation time 



p=0.2; %probability that active individual becomes inactive again 
 

2. Reproduction figure 1 in Bonabeau et al., 1996 
The first figure in REF Bonabeau et al. 1996 (further referred to as Bonabeau_figure1) 
illustrates exemplarily the notion of response curves (P1 and P2) with different response 
thresholds for majors (T1) and minors (T2), for stimulus intensities between 0.1 and 100 
(sti=[0.1:0.1:100]). A logarithmic scale was chosen for displaying as a figure. 
%Illustration of the notion of repose curves with different thresholds 
%for minors and majors, Figure 1 (FTM, Bonabeau et al., 1996) 
sti=[0.1:0.1:100]; %stimulus intensity 
T1=8; T2=1; %Thresholds for caste 1 and 2 
P1=sti.^2./(sti.^2+T1^2); %Probability for task performance caste 1 
P2=sti.^2./(sti.^2+T2^2); %Probability for task performance caste 2 
figure; 
semilogx(sti,P1);hold on,semilogx(sti,P2,'r'),grid on 
xlabel('Stimuli s'),ylabel('Probability P'),legend('Major','Minor') 
title('Probability of engaging in task performance in response to simu-
lus') 
 

3. Reproduction figure 2 in Bonabeau et al., 1996 
With the formula set of the FTM, the “number of acts” per major (a name of a caste) can 
be calculated as a function of the share of the majors on total population. Figure 2 in 
Bonabeau (1996) (further referred to as Bonabeau_figure2) compares simulated results 
for two population sizes (N100=100 and N1000=1000) with experimental results shown 
in Wilson (1984). 

The function “Number of acts” is implemented in a separate file Nr_acts_np.m: 
 
function [N_k]=Nr_acts_np(k,N,delta,Theta_1,Theta_2,alpha,t_sim,p); 
 
%---------------------------------------------------------------------- 
%This program calculates the number of acts per major during simulation 
%as a function of the giving fraction of majors. 
%Input parameters: 
%k: Fraction of majors [0,1] 
%N: Total number of potentially active individuals 
%Theta_1: Initial threshold for the majors 
%Theta_2: Initial threshold for the minors 
%alpha: Scale factor measuring the efficiency of task performance 
%t_sim: Simulation time 
%p: Probability that an active individual gives up task performance and 
%becomes inactive 
%Output parameters: 
%N_k: Number of acts per major during simulation for certain k 
%---------------------------------------------------------------------- 
 
 
for i=1:length(k) %Simulation loop 
    N1(1)=0;N2(1)=0;s(1)=0;P1(1)=0;P2(1)=0; 
    for t=1:t_sim %Time loop 
        s(t+1)=s(t)+delta-alpha*(N1(t)+N2(t))/N; 



        P1(t+1)=s(t+1)^2/(s(t+1)^2+Theta_1^2); 
        P2(t+1)=s(t+1)^2/(s(t+1)^2+Theta_2^2); 
        qq=0;pp=0; 
        for aa=1:k(i)*N %Agent loop 1 
            agenta1(aa)=rand(1); 
            if agenta1(aa)<P1(t+1) 
                qq=qq+1; 
            end 
        end 
        for bb=1:(1-k(i))*N %Agent loop 2 
            agenta2(bb)=rand(1); 
            if agenta2(bb)<P2(t+1) 
                pp=pp+1; 
            end 
        end 
        N1(t+1)=qq;N2(t+1)=pp; %saving act counts in vectors 
    end 
    N_k(i)=sum(N1)/(k(i)*N)*p; %Number of acts for each k 
end 
 

With the Simulation loop, different shares of majors on total populations (k) are 
considered. In the Time loop, s, P1 and P2 are calculated in discrete time steps. P1 and 
P2 relate to the probabilities of engaging in task performance for caste 1 and 2 
(respectively majors and minors). The Agent loop 1 is counting acts of individuals of 
caste 1 (qq), while Agent loop 2 is counting those of caste 2 (pp). For each individual 
of a caste – that is for each loop 1:k(i)*N respectively 1:(1-k(i))*N – we pick a 
random number between 0 and 1 (rand(1)), and we only count an additional act of the 
caste, if this random number is below P1 respectively P2, which were calculated in the 
Time loop before. The Time loop closes with saving the “act counts” in vectors N1 (for 
caste 1) respectively N2 for caste 2, as starting values for the next time loop and for 
subsequent analysis. The Simulation loop ends with calculating number of acts per 
major during simulation for each k. The first term relates to the number of acts of majors 
during simulation per number of total majors in population (sum(N1)/(k(i)*N)) and the 
second term accounts for the probability to give up a task (p). The second term can be 
understood as dividing the number of acts by the average time spent by an individual in 
task performance (1/p), and thus considers that the task performance stops after a certain 
amount of time. In this way the acts, which were performed by the same individual in 1/p 
time steps and which were counted repeatedly during the simulation, are subtracted. 

 

Bonabeau_figure2 can then be reproduced by referring to this function. The input 
parameters used in the function are defined in the initialization section and retrieved by 
the sequence of their appearance in the related function term. 

 
k=[0.1:0.1:1]; %Fraction of majors 
 
[N_k100]=Nr_acts_np(k,N100,delta,Theta_1,Theta_2,alpha,t_sim,p); 
[N_k1000]=Nr_acts_np(k,N1000,delta,Theta_1,Theta_2,alpha,t_sim,p); 
 



figure; 
plot(k,N_k100),hold on, plot(k,N_k1000,'r'),xlabel('Fraction of ma-
jors'),ylabel('Number of acts'), 
title('Number of acts per major during simulation'),grid 
on,legend('simulation N=100','simulation N=1000'); 
 

4. Reproduction figure 3 in Bonabeau et al., 1996 
In Bonabeau_figure3, the time evolution of the number of majors engaged in task 
performance is shown with the rate of demand increase being multiplied by 2 at t=500 
(delta = 1 → delta = 2). The fraction of majors is fixed and is equal to 0.2 (k =0.2). 
The code implemented in Matlab reads as follows: 

 
clear k %Delete k from previous simulation 
%Set simulation parameters,  
k=0.2;  
t_sim=1000;N=N100; 
s(1)=0;  
delta=1; 
 
 
for t=1:t_sim %Time loop 
    if t>499 
        delta=2; %change delta beginning t=500 
    end 
        P1(t)=s(t)^2/(s(t)^2+Theta_1^2);  
        P2(t)=s(t)^2/(s(t)^2+Theta_2^2); 
        qq=0;pp=0; 
        for aa=1:k*N %Agent loop 1 
            agenta1(aa)=rand(1); 
            if agenta1(aa)<P1(t) 
                qq=qq+1; 
            end 
        end 
        for bb=1:(1-k)*N %Agent loop 2 
            agenta2(bb)=rand(1); 
            if agenta2(bb)<P2(t) 
                pp=pp+1; 
            end 
        end 
        N1(t)=qq;N2(t)=pp; %saving act counts in vectors 
        s(t+1)=s(t)+delta-alpha*(N1(t)+N2(t))/N; %Evolution of stimulus 
        %intensity with time 
end 
 
for t=1:t_sim %simulation loop, sum of acts by majors 
       if t<1/p 
            sp1(t)=sum(N1(1:t)); 
       else 
            sp1(t)=sum(N1(t-(1/p)+1:t)); 
       end 
end 
 
figure; 



plot([1:t_sim],sp1(1:t_sim)),hold on,plot([500 500],[0 10],'r--
'),text(500,8,'increase of demand') 
xlabel('Time steps'),ylabel('Number of majors'),title('Number of majors 
involved in task performance'),grid on 
 

The Time loop initially defines the moment in simulation, when delta is multiplied by 
two, then – concordant with reproduction of Bonabeau_figure 2, P1 and P2 are defined 
and the agent loops are implemented.  

Subsequently, in the code the simulation loop is defined. The individuals which were 
active in the last 1/p time steps are still involved in task performance and are counted in 
this loop. For the time t<1/p, the active individuals are counted from the first time step 
of the simulation respectively. For the time t>1/p, they are counted for the last 1/p time 
steps.  

 
5. Reproduction figure 4 in Bonabeau et al., 1996 
In Bonabeau_figure4 the number of acts per major during simulation is calculated as 
function of fraction of majors in the population for different values of z, which is the 
fraction of the square of threshold from caste 1 and the square of threshold from caste 2 
(Theta_1^2/Theta_2^2). This is implemented by varying Theta_1 and keeping Theta_2 
as 1 (from previous definition) and using the function Nr_acts_np.m defined when 
reproducing Bonabeau_figure2. 
 
Theta_1=[2 3 5 8 10]; 
delta=1; 
k=[0.1:0.1:1]; %Fraction of majors 
[N_z1]=Nr_acts_np(k,N100,delta,Theta_1(1),Theta_2,alpha,t_sim,p); 
[N_z2]=Nr_acts_np(k,N100,delta,Theta_1(4),Theta_2,alpha,t_sim,p); 
[N_z3]=Nr_acts_np(k,N100,delta,Theta_1(5),Theta_2,alpha,t_sim,p); 
  
figure; 
plot(k,N_z1),hold on,plot(k,N_z2,'r'),plot(k,N_z3,'g'), 
xlabel('Fraction of majors'),ylabel('Number of acts'),title('Number of 
acts per major during simulation') 
legend('z=4','z=64','z=100') 
 
 

VTM 
1. Initialization 
At first, the parameter values are defined in the code (analogue Theraulaz et al. 1998). 
Some are identically from the FTM introduced before, some are new. 

 
Clear all 
 
%Definition of the input parameters  
delta=1; % Increase in stimulus intensity per unit time 
N=5; %Number of individuals 



m=2; %Number of tasks 
alpha=3; %Scale factor measuring the efficiency of task performance 
xi=10; % learning factor 
p=0.2; Probability that an active individual gives up task performance 
%and becomes inactive 
phi=1 % forgetting factor 
sigma=0.1; % Variance for a gaussian stochastic process 
theta0=500*ones(N,m); %Initial response thresholds, same for all 
individuals and all tasks 
x0=0.1*ones(N,m); % Initial values for fraction of time spent in task 
%perfomance, same for all individuals and all tasks 
theta_max=1000;theta_min=0; %Restriction for thresholds 
s0=0*ones(1,m); %Initial stimuli 
 
2. Reproduction figure 1a) in Theraulaz et al., 1998 
A program is written, which calculates the thresholds and fraction of time spent by an 
individual for task performance as time series. It is saved as threshold.m and describes 
a function, relating to formulas (4)-(7) in this report (formulas 1,4,5,7 in Theraulaz et al. 
1998): 
 
function [theta1 theta2 x1 x2]=threshold (del-
ta,N,m,alpha,p,xi,phi,sigma,theta0,x0,s0,theta_max,theta_min); 
 
%---------------------------------------------------------------------- 
%This programm calculates the Thresholds and fraction of time spent by 
an 
%individual for task performance as time series. 
%Input parameters: 
%delta: Increse in stimulus intensity per unit time 
%N: Number of individuals 
%m: Number of tasks 
%alpha: Scale factor measuring the efficiency of task performance 
%p: Probability that an active individual gives up task performance and 
%becomes inactive 
%xi: learning factor 
%phi: forgetting factor 
%sigma: Variance for a gaussian stochastic process 
%theta0: Initial thresholds 
%x0: Initial values for x 
%s0: Initial stimuli 
%theta_max,theta_min: Restriction for thresholds 
%---------------------------------------------------------------------- 
 
theta=theta0;s=s0;x=x0; 
  
for t=1:3000 % time loop 
     
    for i=1:N %agent loop, boundary definition formula 4 in Theraulaz 
et al. 1998 
     
        for j=1:m % task loop 
         
            if (theta(i,j)-theta_min)>0 



            faktor_min(i,j)=1; 
            else faktor_min(i,j)=0; 
            end 
            if (theta_max-theta(i,j))>0 
            faktor_max(i,j)=1; 
            else faktor_max(i,j)=0; 
            end 
        end 
    end 
%formula 4 Theraulaz et al. 1998 
delta_theta=((1-x)*phi-x*xi).*faktor_min.*faktor_max; 
  
%formula 1 Theraulaz et al. 1998 
s_temp=ones(N,1)*s; 
T=s_temp.^2./(s_temp.^2+theta.^2); 
  
%formula 5, Theraulaz et al. 1998 
    for i=1:N  
        sum_xi(i)=sum(x(i,:)); %"active time of individual i" 
    end 
sum_xij=sum_xi'*ones(1,m); 
delta_x=T.*(1-sum_xij)-p*x+randn(N,m)*sigma; 
  
%formula 7, Theraulaz et al. 1998 
    for j=1:m 
        sum_xj(j)=sum(x(:,j)); %"time spent on fulfilling task j of all 
individuals" 
    end 
  
delta_s=delta-alpha/N*sum_xj; 
  
%definition of starting values for next round 
x=delta_x+x; 
theta=delta_theta+theta; 
s=s+delta_s; 
  
%definition of output parameters 
theta1(:,t)=theta(:,1); 
theta2(:,t)=theta(:,2); 
x1(:,t)=x(:,1); 
x2(:,t)=x(:,2); 
  
end 
 
The time loop defines the simulation time and includes the agent loop and task 
loop, which implement the boundary conditions of the thresholds (the step function in 
formula (5) in this report). It follows, still within the time loop, the implementation of the 
formulas for delta_theta (response threshold dynamics, corresponding to formula (5) 
in this report), T (probability for task performance, corresponding to formula (4) in this 
report), delta_x (dynamics of time spent in task perfomance, corresponding to formula 
(6) in this report) and delta_s (dynamics of stimuli intensity, corresponding to formula 
(5) in this report). In order to define T stimuli intensity s_temp is calculated, which is the 
stimuli intensity at a specific time. For calculating delta_x, another agent loop is 



implemented in order to calculate the “active time” of the individual (sum_xi(i)). 
Another task loop is implemented to calculate “time spent from all individuals for 
fulfilling a task” (sum_xj(j)), which is necessary to determine delta_s. 
Output parameters are theta1(:,t), which is the thresholds for task 1 (for all individu-
als at each time step), theta2(:,t), which is the thresholds for task 2 (for all individuals 
at each time step), x1(:,t), which is the fraction of time spent in performance of task 1 
and x2(:,t), which is the fraction of time spent in performance of task 2. The matrices x 
and theta have N rows and 3000 columns. By defining theta1 and 2 and x1 and 2 
we extract the necessary information for generating the figure 1a) and figure 1b). 
 
The first figure in Theraulaz et al. 1998 (further referred to as Theraulaz_figure1a) shows 
the dynamics of response thresholds for 5 individuals (N=5) and two tasks (m=2), with 
same initial thresholds for all individuals and tasks (theta0=500*ones(N,m)) It is 
reproduced by using the following code: 
 
for i=1:10000 
%reference to function 
[theta1 theta2 x1 x2]=threshold (del-
ta,N,m,alpha,p,xi,phi,sigma,theta0,x0,s0,theta_max,theta_min); 
 
if (theta1>-100) & (theta2>-100) %stop criterion 
    break;  
end 
end 
  
zeichen1={'--b.','--g.','--r.','--y.','--k.'}; 
zeichen2={'--b+','--g+','--r+','--y+','--k+'}; 
  
%figure 1a) Theraulaz et al. 1998 
figure; 
for i=1:N 
    plot(theta1(i,:),zeichen1{i},'MarkerSize',3),hold on 
    plot(theta2(i,:),zeichen2{i},'MarkerSize',3),hold on 
end 
le-
gend('theta11','theta12','theta21','theta22','theta31','theta32','theta
41','theta42','theta51','theta52') 
xlabel('Time'),ylabel('Theta'),title('Theta with 5 individuals and 2 
tasks'),grid on 
 
The stop criterion for the calculation of the thresholds (theta1, theta2) is defined in 
order to avoid illogical results, which could occur due to the random process in the 
formula for delta_x (fractions of time spent in task performance, see 
threshold.m).  
 
3. Reproduction figure 1b) in Theraulaz et al., 1998 
For reproducing Theraulaz_figure1b), the same function as introduced for 
Theraulaz_figure1a) is referred to, the initial values remain unchanged and the stop 
criterion is active. Only the plot instruction is changed, since here the dynamics of the 



fraction of time spent by individual i in performing task 1 (x1) and task 2 (x2) shall be 
illustrated: 
 
%figure 2b) Theraulaz et al. 1998 
figure; 
for i=1:N 
    plot(x1(i,:),zeichen1{i},'MarkerSize',3),hold on 
    plot(x2(i,:),zeichen2{i},'MarkerSize',3),hold on 
end 
le-
gend('theta11','theta21','theta31','theta41','theta51','theta12','theta
22','theta32','theta42','theta52') 
xlabel('Time'),ylabel('x'),title('Fraction of time spent in task per-
formance'),grid on 
 
 
4. Reproduction figure 1c) in Theraulaz et al., 1998 
Also for the reproduction of Theraulaz_figure1c) the proceeding is similar to 1a) and 1b). 
This figure is identical to Theraulaz_figure1a) despite the fact that “the initial distribution 
of thresholds is uniform over [θmin =1 and θmax.=1000]” (Theraulaz et al. 1998). This 
implies that theta0 is newly defined and the calculation needs to be implemented again. 
 
%figure 2c) Theraulaz et al. 1998 
%Definition of the initial threshold (as defined in paper) 
theta0=[150 50;900 350;450 170;880 200;650 800];  
  
for i=1:10000 
[theta1 theta2 x1 x2]=threshold (del-
ta,N,m,alpha,p,xi,phi,sigma,theta0,x0,s0,theta_max,theta_min); 
if (theta1>-100) & (theta2>-100)  
    break; end 
end 
  
figure; 
for i=1:N 
    plot(theta1(i,:),zeichen1{i},'MarkerSize',3),hold on 
    plot(theta2(i,:),zeichen2{i},'MarkerSize',3),hold on 
end 
le-
gend('theta11','theta12','theta21','theta22','theta31','theta32','theta
41','theta42','theta51','theta52') 
xlabel('Time'),ylabel('Theta'),title('Theta with different initial val-
ues'),grid on 
 
 

Adaptation 
The VTM model is further tested with choosing different values for the parameters that 
are stating the learning and forgetting rate (ξ and φ). We reproduce figures 1a) and 1c) – 
that is the dynamics of response thresholds for initially identical thresholds and for 
initially differentiated thresholds – for various ξ and φ, while their sum stays constant (ξ 



+ φ=11). 
We then define a “minimal learning factor”, which guarantees a division of labour and 
thus assures that some individuals stay active. This implies that their individual 
thresholds are low enough that activity can possibly be observed. . 
 
We graphically and statistically show turning points for both cases, that is, for which 
values a division of labour occurs and for which values no specification is observed in the 
simulation.  
 
The code to show graphically the effects of varying phi and xi (ξ(10:-1:5) and φ(1:1:6)) 
reads as follows: 
 
%Definition of the initial values 
step=1; %time step 
delta=1;N=5;m=2;alpha=3;xi=10;p=0.2;Phi=[1:step:6];sigma=0.1;theta0=500
*ones(N,m);x0=0.1*ones(N,m);theta_max=1000;theta_min=0;s0=0*ones(1,m); 
  
for ite=1:length(Phi)%iteration of phi 
    phi=Phi(ite); 
    theta0=500*ones(N,m); %because theta0 is newly defined for second 
figure 
for i=1:10000 
[theta1 theta2 x1 x2]=threshold 
(delta,N,m,alpha,p,xi,phi,sigma,theta0,x0,s0,theta_max,theta_min); 
if (theta1>-100) & (theta2>-100) 
    break; end 
end 
  
  
zeichen1={'--b.','--g.','--r.','--y.','--k.'}; 
zeichen2={'--b+','--g+','--r+','--y+','--k+'}; 
  
%figure 1a) Theraulaz et al. 1998, reproduced with different phi 
figure(1); 
for i=1:N 
    subplot(2,3,ite),plot(theta1(i,:),zeichen1{i},'MarkerSize',3),hold 
on 
    subplot(2,3,ite),plot(theta2(i,:),zeichen2{i},'MarkerSize',3),hold 
on 
end 
xlabel('Time'),ylabel('Theta'),title(['Theta with 5 individuals and 2 
tasks with phi=',num2str(Phi(ite))]),grid on 
 
%figure 2c) Theraulaz et al. 1998 
%Definition of the initial thresholds 
theta0=[150 50;900 350;450 170;880 200;650 800]; 
  
%Fixed thresholds with different initial thresholds 
for i=1:10000 
[theta1 theta2 x1 x2]=threshold (del-
ta,N,m,alpha,p,xi,phi,sigma,theta0,x0,s0,theta_max,theta_min); 
if (theta1>-100) & (theta2>-100)  
    break; end 
end 



  
figure(2); 
for i=1:N 
    subplot(2,3,ite),plot(theta1(i,:),zeichen1{i},'MarkerSize',3),hold 
on 
    subplot(2,3,ite),plot(theta2(i,:),zeichen2{i},'MarkerSize',3),hold 
on 
end 
%le-
gend('theta11','theta12','theta21','theta22','theta31','theta32','theta
41','theta42','theta51','theta52') 
xlabel('Time'),ylabel('Theta'),title(['Theta with different initial 
values with phi=' num2str(Phi(ite))]),grid on 
  
xi=xi-step; 
end 
fig-
ure(1);subplot(2,3,6),legend('theta11','theta12','theta21','theta22','t
heta31','theta32','theta41','theta42','theta51','theta52') 
fig-
ure(2);subplot(2,3,6),legend('theta11','theta12','theta21','theta22','t
heta31','theta32','theta41','theta42','theta51','theta52') 
 
 
A second program, implemented in order to do statistics to find the “minimal learning 
factor”, calculates the number of the performed tasks with a smaller time step of phi and 
xi (ξ(10.6:-0.2:5), φ(0.4:0.2:6)) again for two cases: One with identical initial thresholds 
for all individuals (similar Theraulaz_figure1a) and the other with different initial 
thresholds (similar Theraulaz_figure1b). The time step of phi is defined as 0.2 and the 
thresholds smaller 0.5 are counted as tendency for task performance. The minimal 
learning factor is defined as xi2 in the program and initially set as 0. After running this 
program, one can find the minimal learning factor, which guarantees that at least one 
individual has a low threshold and is ready for task performance. It can then be set 
manually by replacing 0. Implicitly this also sets a “maximum forgetting rate” the 
forgetting rate (since they are coupled by a constant sum).  
We have to note that with a phi smaller than 0.4, we have to wait for a very long time to 
get a logical result. Therefore, our test starts with 0.4 as minimal value of phi. 
 
clear all 
%For statistics with different learning and forgetting rates. 
%Learning+Forgetting=11! 
  
%Definition of the initial values 
step=0.2; 
delta=1;N=5;m=2;alpha=3;p=0.2; 
xi2=0; %Minimal learning factor, initially set as 0, can be varied 
manually  
Phi=[0.4:step:6]; %Forgetting rate 
xi =11-Phi(1); %learning rate 
sigma=0.1;theta0=500*ones(N,m);x0=0.1*ones(N,m);theta_max=1000;theta_mi
n=0;s0=0*ones(1,m); 
  
%Identical initial threshold for all the agents and tasks 



 
for ite=1:length(Phi) 
    phi=Phi(ite); 
    if phi>11- xi2 %stop function for phi (using minimal learning 
factor) cannot be bigger than 11-xi2 
 
        break; 
    end 
    theta0=500*ones(N,m); 
for i=1:10000 
[theta1 theta2 x1 x2]=threshold (delta,N,m,alpha,p, 
xi,phi,sigma,theta0,x0,s0,theta_max,theta_min); 
if (theta1>-100) & (theta2>-100) 
    break; end 
end 
 
%count final thresholds below 0.5 (indicates task performance)  
I1=length(find(theta1(:,3000)<0.5));I2=length(find(theta2(:,3000)<0.5))
;  
I(ite)=I1+I2; 
 
%figure 2c) Theraulaz et al. 1998 
%Different initial threshold for all the agents and tasks 
%Definition of the initial thresholds 
theta0=[150 50;900 350;450 170;880 200;650 800]; 
  
for i=1:10000 
[theta1 theta2 x1 x2]=threshold 
(delta,N,m,alpha,p,xi,phi,sigma,theta0,x0,s0,theta_max,theta_min); 
if (theta1>-100) & (theta2>-100) 
    break; end 
end 
 
%count final thresholds below 0.5 (indicates task performance)  
I1=length(find(theta1(:,3000)<0.5));I2=length(find(theta2(:,3000)<0.5))
; 
II(ite)=I1+I2; 
  
xi = xi -step; %set xi for next round 
  
end 
 
 
In order to generate a table showing the number of individuals involved in task 
performance with varying phi for the two cases (identical and different initial thresholds), 
the variables I and II in the code are displayed. 

Simulation Results and Discussion 

FTM 
1. Reproduction figure 1 in Bonabeau et al., 1996 
 



 
Figure 1: Bonabeau_figure1, reproduction 

in Matlab 

 
Figure 2: Bonabeau_figure1, copy from 

Bonabeau et al. 1996 
 
Bonabeau_figure1 graphically shows that the probability to perform a task is rising with 
rising stimuli and that – due to their higher threshold – majors have lower response 
probabilities for similar stimuli than minors. For very high stimuli the response threshold 
θ becomes less important and probabilities for task performance both tend towards 100% 
task performance. The reproduction in Matlab (Figure 1) and the original graph in 
Bonabeau et al. 1996 (Figure 2) show similar results. 
 
2. Reproduction figure 2 in Bonabeau et al., 1996 
 

 
Figure 3: Bonabeau_figure2, reproduction 

in Matlab 

 
Figure 4: Bonabeau_figure2, copy from 

Bonabeau et al. 1996  
 
In Bonabeau_figure2 (Figure 4), simulation results for numbers of acts of majors with 
different shares of majors in population are compared with experimental observations 
with two ant species. The graph shows that with increasing share of majors in population, 
the more active they are in task performance. This is due to the fact that fewer minors 
with lower response thresholds are available to fulfil tasks, which would reduce stimuli 
intensity. Therefore stimuli intensity is more likely to reach the higher threshold of 
majors which increases the probability of task performance and thus highlights the 
behavioural flexibility of workers in the ant colony. 
A high qualitative overlap can be seen, independent of population size assumed in the 



simulation (N=10 and N=100 show similar patterns). Compared to our reproduction in 
Matlab, shown in Figure 3, the same pattern can be observed; however, the very small 
population size (N=10) results here in a “illogical” sharp bent for high fraction of majors. 
Possibly the authors also used higher population sizes for this simulations, because with 
population sizes N=100 and N=1000 we receive a similar pattern. 
 
3. Reproduction figure 3 in Bonabeau et al., 1996 
 

 
Figure 5: Bonabeau_figure3, reproduction 

in Matlab  

 
Figure 6: Bonabeau_figure3, copy from 

Bonabeau et al. 1996  
 
The next figure in Bonabeau et al. 1996 further accentuates behavioural flexibility of the 
colony by showing how the number of majors involved in task performance increases 
when the demand is suddenly rising by a factor of 2. “most minors are already involved 
in task performance before this change, so that the involvement of majors is required to 
maintain the demand at a low enough level” (Bonabeau et al. 1996, p. 1567). The pattern 
of our reproduction in Matlab (Figure 5) is similar to the one in the original paper (Figure 
6), however, scales vary by about a factor two. The reason for that is unclear.  
 
 
4. Reproduction figure 4 in Bonabeau et al., 1996 
 



 
Figure 7: Bonabeau_figure4, reproduction 

in Matlab  

 
Figure 8: Bonabeau_figure4, copy from 

Bonabeau et al. 1996  
 
Bonabeau_figure4 (Figure 8) shows variation in the shape of the curve as seen in 
Bonabeau_figure2 (Figure 4), if the ratio of the thresholds of both castes 
(Theta_1^2/Theta_2^2) is changed. “The transition becomes more abrupt [with 
increasing ratio], and the point at which this transition takes place decreases and seems to 
converge towards a limit (around 0.5)” (Bonabeau et al. 1996, p. 1567/8). With lower 
ratios, more majors are active in task performance, which can be understood from the 
convergence of Theta_1 (threshold majors) towards Theta_2 (threshold minors), which 
implies a convergence of activities of both castes. 
Again, our simulation in Matlab (Figure 7) and the one from the original paper show 
similar patterns, however, the fluctuation is lower in our simulation (possibly due to 
longer time steps in our simulation than in the original paper).  
 
 

VTM 
1. Reproduction figure 1a) in Theraulaz et al., 1998 
 

 
Figure 9: Theraulaz_figure1a), 

reproduction in Matlab  

 
Figure 10: Theraulaz_figure1a), copy from 

Theraulaz et al. 1998  
 



Theraulaz_figure1a) shows the dynamics of response thresholds θij (Figure 10). In 
Theraulaz et al. (1998) it states: “A low value of θij, indicates that individual i is highly 
sensitive to task j-associated stimuli and is therefore a specialist of task j. Individuals 3, 4 
and 5 are task 1 specialists, and individuals 1 and 2 are task 2 specialists”. The figure 
highlights, that even though all individuals are starting with the same thresholds for both 
tasks, after a sufficient amount of time a division of labor occurs, only induced by the 
stochastic term in formula (6). 

Our simulation results (Figure 9) shows similar patterns to the original figure in the 
paper. 

 

2. Reproduction figure 1b) in Theraulaz et al., 1998 
 

 
Figure 11: Theraulaz_figure1b), 

reproduction in Matlab  

 
Figure 12: Theraulaz_figure1b), copy from 

Theraulaz et al. 1998  
 

In Theraulaz_figure1b) same input parameters are used in order to calculate the dynamics 
of the fraction of time spent of individuals in task performance, which is expressed as xij, 
when i is referring to the individual and j to the task (Figure 12). In the caption of this 
figure it is further stated in Theraulaz et al. 1998: “When xij is close to 1, individual i 
spends most of its time performing task j. Individuals 3, 4 and 5, who all perform mostly 
task 1, are less active (xi1 ≈ 0.05, xi2 ≈ 0.05) than individuals 1 and 2, who perform mostly 
task 2 (xi1 ≈ 0.55, xi2 ≈ 0.8)”. Our simulation (Figure 11) shows a considerably higher 
variation and no clustering, the reason will be the definition of the stochastic term. 

 

3. Reproduction figure 1c) in Theraulaz et al., 1998 
 



 
Figure 13: Theraulaz_figure1c), 

reproduction in Matlab 

 
Figure 14: Theraulaz_figure1c), copy from 

Theraulaz et al. 1998 

 

Theraulaz_figure1c) (Figure 13) is similar to Theraulaz_figure1a) (Figure 10), except that 
here the initial values for the response thresholds are different for all individuals and for 
all tasks. As for similar initial values, a division of labour is observed, but low initial 
values of an individual for a specific task make it more likely that this individual 
becomes specialist of this task (that is, that this thresholds tends towards 0). The caption 
of this figure in Theraulaz et al. 1998 further reads: “Individuals 1, 3 and 5 are task 1 
specialists, and individuals 1, 2 and 4 are task 2 specialists (individual l is a specialist of 
both tasks)”. In reality it can be interpreted that the genotypic characteristic of an 
individual can predispose it to perform certain tasks. Our reproduction (Figure 13) is 
similar, however, the predestination is less pronounced, as for individual 2, despite the 
lower initial threshold for task 2 it becomes a task 1 specialist. 

 

Adaptation 
We graphically (ξ(10:-1:5), φ(1:1:6)) and statistically(ξ(10.6:-0.2:5), φ(0.4:0.2:6)) show 
the resulting thresholds for all individuals and all tasks with different learning and 
forgetting rates, for similar initial thresholds (similar Theraulaz_figure1a), see Figure 15) 
and for initially distributed thresholds (similar Theraulaz_figure1c), see Figure 16). 

 

 



 
Figure 15: Theraulaz_figure1a) (similar initial thresholds), reproduction in Matlab, with 
varying phi (forgetting rate) and xi (learning rate) 
 



 
Figure 16: Theraulaz_figure1c) (different initial thresholds), reproduction in Matlab, 
with varying phi (forgetting rate) and xi (learning rate) 
 

Figure 15 shows that the turning point for the division of labour happens at about phi=3 
for the case with identical initial thresholds. With a higher forgetting rate the response 
thresholds of the individuals tend for all tasks to a maximum level; i.e. they stop task 
performance. It is also interesting to see that the turning point comes later for the case 
with different initial thresholds (see Figure 16) and that here individuals with smaller 
initial thresholds are more likely to become active in task performance. 

Table 1 shows the resulting thresholds with a variation of phi in smaller steps. The 
turning point for the case with identical initial thresholds appears at phi=2.8, while it 
doesn't appear for the case with different initial thresholds until phi=4.2. 
The minimal learning factor therefore needs to be set as xi= 8.2 for the case with identical 
initial thresholds (and xi= 6.8 for different initial thresholds), in order to guarantee 
division of labour (respectively that at least one individual stays active in task 
performance).  



Table 1: Response thresholds with varying forgetting rates phi 

φ Threshold 
(identical phi0) 

Threshold 
(different phi0) 

φ Threshold 
(identical phi0) 

Threshold 
(different 

phi0) 
0.4 6 6 0.6 7 7 
0.8 6 6 1.0 5 6 
1.2 5 5 1.4 8 5 
1.6 5 5 1.8 5 5 
2.0 5 3 2.2 4 2 
2.4 4 3 2.6 2 2 
2.8 1 1 3.0 0 1 
3.2 0 1 3.4 0 1 
3.6 0 1 3.8 0 1 
4.0 0 1 4.2 0 1 
4.4 0 0 4.6 0 0 
4.8 0 0 5.0 0 0 
5.2 0 0 5.4 0 0 
5.6 0 0 5.8 0 0 
6.0 0 0    
 
 
 

Summary and Outlook 
With reproducing some key figures of the FTM and VTM model, we showed how the 
simple model (FTM) can be refined in order to account for learning and forgetting, and 
therewith for the genesis of task-allocation and within-caste specialization. We further 
proofed that our simulations in Matlab have similar patterns, but that the definition of the 
stochastic term, which was implemented differently in our model than in the original 
paper, influences the fluctuations in the model. 
 
With our adaptations regarding the learning and forgetting factor, we showed that the 
model behavior, respectively the occurrence of division of labour, depends on the 
parameter definitions, e.g. the learning and forgetting factors. We showed that in order to 
observe a division of labor, respectively in order to see at least one individual performing 
a task, the “minimal learning factor” is 8.2 for the case of identical initial thresholds, and 
6.8 for the case of different initial thresholds (with learning and forgetting factors coupled 
by their sum being always 11). Possible reasons for this observation are: 

- We see a limitation of the model (artifact): It cannot account for extreme values 



(which could be present in nature). In this case, it would be necessary to 
implement a term in the model, which allows for specialization even though 
forgetting rates are high and learning rates are low.  

- We reproduce a natural pattern: there is a minimal learning factor, otherwise the 
population is “too stupid”/absent-minded to develop division of labor. It is 
questionable, though, that this would result in a general “strike” of all individuals 
in the colony, as we observe with the trend towards high response thresholds 
(which can be translated as refusing to perform the task) 

 
It would be necessary to cross-check with reality, which reason is more likely. 
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