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1. Individual contributions 
All parts of the presented work have in principle been created in close collaboration. The items 
listed below merely represent areas that required some degree of specialization. 
 
Matthias Wyss 

• Organization and structuring of main market model including integration of CA 
• Concept and implementation of short selling 
• Construction of both market analysis toolkits and improvement of the output 
•  

Florian Müller-Reiter 
• The Cellular Automaton application, which includes: 

o Idea generation for the use of a Cellular Automaton in Finance 
o Development of a Cellular Automaton application to clustering in financial 

markets 
o Cellular Automaton code implementation 

2. Introduction and Motivations 
As students of Quantitative Finance we are used to rigorously examining partial equilibrium 
pricing models, which take the price process as exogenously given. Recent developments in 
financial markets as well as thereby arising new avenues in finance research have sparked our 
interest in broader modeling approaches. Conventional general equilibrium models in 
economics and finance rely on a “representative agent” merely in order to avoid computational 
complexity. However, we find this approach unsatisfactory and find methods for computational 
agent-based modeling of financial market equilibria highly appealing. An established approach 
is the so called “Genoa Artificial Stock Market” (Raberto, Cincotti, Focardi, & Marchesi, 
2001). This model has previously been implemented in MATLAB (Müllener & Walti, 2008), 
which we will refer to throughout the paper as the “old model”. This implementation manages 
to capture many of the key stylized facts observed in financial time-series such as heavy-tailed 
log return distributions and serially correlated volatility. Recent disruptions in financial markets 
across the world however have demonstrated unprecedented levels and persistence of volatility. 
Agents in financial markets have clearly shown signs of herding behavior. 
In an attempt to better capture these recent findings from the financial crisis, we propose an 
enhanced model which places a particular focus on the above mentioned new phenomena. To 
this end, we replace the existing model feature of simple opinion propagation by a more 
sophisticated approach using a cellular automaton. Furthermore, to address the recent debate 
regarding short selling, our implementation adds this feature to the model by allowing agents to 
sell more assets than they currently own. 
To better evaluate the impact of the model innovations when comparing them to the old model, 
we have extended the model’s analysis as well as the visualized output with particular focus on 
volatility and agent clustering. Overall, it is our goal to propose a new model better adapted to 
empirical financial time-series from the recent crisis while still capturing the key stylized facts. 
Furthermore, it should eliminate some of the known shortcomings of the old model. 
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3. Description of the Model 
The theoretical model that is used as a foundation for our work is the above mentioned Genoa 
market model laid out in the work of Raberto, Cincotti, Focardi, & Marchesi, 2001 and 
described in detail by Müllener & Walti, 2008. We do not repeat these explanations here.  
 
The use of a cellular automaton as an agent-clustering-model is motivated by the limitations of  
sophisticated financial mathematics. These limitations are encountered when simulating 
complex human behaviour. One might assume that traditional mathematics should enable 
scientists to accurately model stock markets. However, the extent of the financial crisis and the 
involved shortcomings in many implementations of quantitative models suggest the exploration 
of new modelling methods.  As traditional mathematical modelling aspires to reduce problems 
under examination to a set of numerical functions, it proves to be flawed  when it comes to 
modelling complex systems that have an internal dependence structure and feedback 
mechanisms. As the interaction of human beings can surely be considered as one of the most 
complex systems, cellular automata are a natural choice as these are well suited to model such 
complex behaviour, as analysed in Wolfram, 2002. In this book, it is laid out how random 
structures can emerge from a set of  deterministic rules in a cellular automaton (such as 
“Rule30”). Chapter 8 in this book then points to a possible simple and direct application of 
cellular automata in financial markets via the use of such a random structure. “Buy” and “sell” 
attributes could directly be assigned to any cell (i.e. agent) of the automaton according to this 
random structure. In what we have developed however, we do not rely on a pre-defined rule 
such as “Rule30”, but have used a set of rules that proves suitable to model herding behaviour 
(i.e clustering) and restrict the application of the cellular automaton to this clustering feature, 
rather than imposing it as the only determinant of agents behaviour. In order to model agent 
clustering in this way, we define a binary matrix, in which each entry represents a single agent 
of our financial market model. Any agent can either be a member of a cluster (state “1”) or not 
(state “0”). Members of any cluster will then always act in concert to simulate herding. 

4. Implementation 
In order to maintain comparability of the old versus our new model, we have adopted the same 
code for the “old model” as proposed by Müllener & Walti, 2008. Hence, we will omit a 
detailed description of that part of the code and instead refer the reader to this source. In the 
following, we will give a broad overview of the code structure and description of the enhanced 
model features. The second sub-section gives a detailed description of the cellular automaton 
implementation while the third sub-section is devoted to the improved market analysis and 
comparison toolkit. 
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4.1. The agent-based financial market model 
At the heart of the financial market model is the function “market.m”, which simulates the 
agent-based financial markets and incorporates 7 sub-functions (cf. Figure 16, Appendix). For 
this function, the user can specify inputs to run either the “old” or the “new” market with any 
combination of the following model features activated: 

• trading 
• historic volatility 
• opinion propagation (two versions) 
• short selling 

Furthermore, the user specifies the model size (number of agents) and simulation period (time-
steps), as well as whether to show summary statistic plots together with the outputs. 
The outputs provided by the function are the full time-series over the simulation period of: 

• trade volume 
• daily volatility 
• number of agents in clusters 
• number of agents engaging in short selling 
• price process 

In contrast to the old code, the market model was incorporated within a function including 
these outputs to ease the market analysis and comparison described in the last sub-section.  
 
While the first part of the market function is concerned with the model features activation and 
parameter/agent initialization, the core is the main loop over all time steps. In the old model, 
the feature of opinion propagation has to be run in every loop while in our new code structure, 
with the implementation of the cellular automaton (CA), this mechanism only needs to be run 
once before the main loop. Then, the cluster information is extracted piecewise in every time 
loop from the CA dynamics by passing this information to the function “opinion.m”. This 
drastically reduces the computational complexity, leading to 2-3 times faster calculations of the 
entire model when this feature is considered. 
The main loop also includes the historic volatility feature, while price formation (depending on 
the supply and demand function) as well as the trading function are outside of this loop. 
The last part of the code is devoted to the new detailed analysis of the model’s outputs with 
particular focus on volatility and clusters. 
 
As already mentioned, the original model described by Raberto, Cincotti, Focardi, & Marchesi, 
2001 limits the selling agents to sell between 0% and 100% of their current asset holdings, the 
percentage being determined by a random draw from a uniform distribution. To make the 
model more realistic, we extended this model to allow for short selling. Instead of a uniform 
random draw, we determine the fraction/multiple of current asset holdings to be sold by a 
normal random draw with the same mean as before: 0.5. Hence, there is a positive probability 
that an agent is selling more than 100% of his current asset holdings, i.e. short selling. To avoid 
a negative percentage (i.e. sellers becoming buyers), we take the absolute value of this quantity, 
which then of course adds more weight on the right-hand side of the distribution. This creates 
the intended characteristic of over-weighting the possibility of short selling. 
In order to keep the model symmetric, whenever the short selling feature is activated, we need 
to allow for credit-financed buying, the economic analogon of short selling. This is 
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implemented by drawing from a normal distribution with mean 0.5 to determine the “buy 
cash”. This enables buyers to spend more cash than they currently have on their account, which 
happens with a positive probability. Again, to avoid buyers to become sellers, we take the 
absolute value of this amount resulting in the same left skewed distribution described above. 
 
Since a main point of analysis focuses on clusters and their induced volatility, the output of the 
market model was extended to include these features in a separate graph. To maintain 
comparability, we kept the summary plots of price, returns, probability plot and density plot. 
 

4.2. The Cellular Automaton 
The appendix shows the code for the cellular automaton. In lines 10-21 the automaton 
parameters are set. All key parameters are explained below: 
 
Probabilistic Parameters: 

•  “pini” defines the probability for each agent to be in a cluster at initialization of the 
automaton or at re-initialization after a cluster-burst 

• “pd” is a probability used to curb the de-clustering effect of neighboring cells at cluster 
edges 

•  “pn” defines the level of background noise 
•  “pdest” defines the probability of clusters being destroyed, given a certain cluster size 

is achieved 
Cluster density limits: 

•  “densl” defines the local maximum allowed cluster density per area 
•  “densg” defines the global maximum allowed cluster density per area 

Redundant parameters: 
•  “p” could be used to curb the chances of an agent to remain in a cluster, but we set this 

parameter to 1 and it therefore does not impact the model  
•  “pr” could be used to curb the clustering effect of neighboring agents through the 

below rules but we set this parameter to 1 and it therefore does not impact the model 
Lines 27-29 initialize the output matrix of the automaton function and initialize the automaton 
grid with a frame such that all agents, including all edge agents have a complete neighborhood. 
All agents are then randomly assigned an initial state (cluster or non-cluster, i.e. 1 or 0) 
according to the pini parameter. 
 
Lines 34-39 define vectors of row and column indices used in the following neighborhood 
definitions. For example "up" contains all those indices of rows that can contain an "up-
neighbor" of any agent. 
 
In the time loop, the agent cluster simulation takes place. First, the agent grid is cut into 9 
equally sized squares and local maximum cluster size conditions are given according to densl. 
Each local area is set back to a random initial condition if the local cluster-burst conditions are 
met (lines 57 – 89). 
Lines 93 – 104 define matrices that store the information of whether or not a neighbor is 
currently in a cluster for the first order Moore-neighborhood (that is for all eight cells 
surrounding the agent cell). Exact neighbor locations are specified by use of the letters “a” to 
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“h”. Thus from “aga” to “agh” the information from the upper left neighbor to the lower right 
neighbor are stored. “ag” contains the information about the state of each agent itself. For 
example aga=Cells(up, left) shifts the entire agent matrix up by one step and left by one step. 
As a result, aga is a matrix of the same size as the actual agent matrix that stores, for any agent, 
the current state of its upper left neighbor. 
 
Lines 108 – 121 define the actual automaton clustering rules. Lines 108 – 113 give conditions 
that will cause any agent to be a cluster member at the first step in the automaton rules. In 
particular, any agent will be a cluster member at this stage, if the agent already is in a cluster or 
any adjacent pair of its first order von Neumann-neighborhood (that is of the four cells 
orthogonally surrounding it) is already in a cluster. For clustering, it is sufficient that any of the 
below four conditions is met, irrespective of the state of other neighbors, as long as the de-
clustering rules do not override this. The below graph serves as an illustration: Grey cells 
represent current cluster members. All four states (individually) of the first order von 
Neumann-neighborhood shown cause an agent to become a cluster member at this stage. 
 

  b       b       b       b   
d Agent e   d Agent e   d Agent e   d Agent e 
  g       g       g       g   

Figure 1: Clustering conditions 
 
Furthermore an agent can become a cluster member purely by chance (at very low probability) 
according to the parameter pn. 
Lines 114-121 give conditions that can cause a current cluster member to de-cluster: if such 
four adjacent Moore-neighborhood agents are in a cluster, that they leave a straight line of three 
non-cluster-Moore-neighbors, the agent might de-cluster. For de-clustering, it is necessary that 
all eight Moore-neighbors are in these exact states. This is intended to identify cluster members 
at the outer boundaries of a cluster and potentially let them de-cluster. Already mature clusters 
will hence be curbed. The below graph illustrates this. Grey cells again represent current cluster 
members. All four states (individually) of the Moore-neighborhood shown can cause an agent 
to de-cluster. 
 

a b c   a b c   a b c   a b c 
d Agent e   d Agent e   d Agent e   d Agent e 
f g h   f g h   f g h   f g h 

Figure 2: De-clustering conditions 
 
Finally, after the automaton has updated all agents’ states according to the above rules a global 
maximum condition for cluster size is given. The if-statement starting in line 125 initiates the 
possibility of a global cluster burst from a cluster-size defined by densg. If a global burst 
occurs, all agents are set back to a random initial condition according to pini. This loop runs 
over all time steps in the simulation. 
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4.3. The market analysis toolkit 
As it is a main goal of this paper to compare and contrast the new enhanced model to the old 
model implemented by Müllener & Walti, 2008, we implemented an extended market analysis 
toolkit for this purpose. 
The script “MarketsAnalysis.m” is designed to conduct a “ceteris paribus” analysis of the two 
models’ stability over model size (i.e. number of agents). It allows for a direct comparison of 
output results produced by both models over a number of diffent model sizes. Usually, these 
are looped in decreasing order (e.g. 400 to 80 agents in steps of 40), while all other model 
parameters can be specified by the user and are then kept constant. The output produced within 
the loop plots the volatility process of the new model against the old model’s. When all agent 
loops are completed, the effect of changing model size is visualized in a volatility surface for 
both the new and the old model. “MarketsAnalysis.m” was used extensively in section 5.4. 
Stability Analysis over Model Size. 
An equally useful toolkit to conduct a “ceteris paribus” analysis of the stability of model 
features is the script “Trajectories.m”. In a similar fashion to the script described above, it 
produces multiple runs of both the old and the new model, where the user can specify all input 
and all model parameters, which are then kept constant. The output produced in the loop 
focuses on volatility and clustering, these are plotted for every “trajectory” over time for both 
the new and the old model. Finally all price trajectories are plotted for both models. This script 
file was used for all simulations conducted in section 5.3. Stability Analysis over Model 
Features. 
 

5. Simulation Results and Discussion 
5.1. Empirical Data vs. Model Simulation 

As a first view on our model, we would like to compare the simulation results with both 
empirical data from the financial crisis and the old model. For the purpose of comparison, we 
run our model as well as the old model over 4 years (i.e. 1000 trading days) with 200 agents, 
including all model features. As an example of empirical data from the financial sector, we take 
a time-series of log returns for JP Morgan Chase over the period from 1.1.2006 to 31.12.2009 
(Figure 3.a). Figure 3.b shows a sample run from the new model while Figure 3.c shows a 
sample run from the old model. 
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Figure 3: a. Empirical data b. sample trajectory from new model c. sample trajectory from old model 
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The figures indicate that the new model better captures the characteristics from the empirical 
data than the old model. In particular, one can see that the new model has the ability to produce 
clusters of large log returns (in periods 600 to 800) as it has appeared during the financial crisis 
in fall 2008, while the old model seems to be better suited to model single spikes only. 
However, the old model has been able to reproduce other well-known stylized facts which we 
have tested in our model as well. 

5.2. Analyzing stylized facts 
As Müllener & Walti, 2008 have shown, the old model was able to capture heavy-tailed log 
return distributions as well as serially correlated volatility to some degree. To ease comparison, 
we employ the same testing toolkit for our model. Figure 4: Summary Statistics of a Simulation 
run (new model) shows the price dynamics of a single run, the respective log returns, a 
probability plot to test normality of the time-series as well as the density of log returns. 
 

 
Figure 4: Summary Statistics of a Simulation run (new model). 
 
All four graphs show similar results with respect to these features, in particular the probability 
plot indicates a clear deviation from the normal assumption, as it is usually observed in 
empirical data. To verify this, we have conducted a Jarque-Bera test at the 99.9% significance 
level with the null hypothesis that the sample be drawn from a normal distribution. For the 
sample run plotted, the null hypothesis is rejected. 
 
Furthermore, our new financial markets model produces output showing the relationship 
between volatility and clusters, as this is the major change over the old model. 
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Figure 5: Agents in Clusters vs. Volatility 
 
As we can see in Figure 5, the new model allows for serially correlated clusters which in turn 
have a clear impact on the volatility level. Obviously, since all the figures above only show 
single sample runs from the new model, further analysis on the stability of such results is 
required. 

5.3. Stability Analysis over Model Features 
In the following, we extend the comparison of our new model and the old model to the stability 
of results over model features. We conduct ten runs of each model over 2 years (i.e. 500 trading 
days) with 200 agents, testing the impact of the model features “short sales” and “opinion 
propagation”. The first stability analysis is conducted in both models using all 
features.

 
Figure 6: Ten price paths of the new model (top) vs. old model (bottom) 
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As can be observed in Figure 6, the price paths created in the new model clearly show heavier 
fluctuations compared to the old model. This finding is stable over ten runs. However, we are 
even more interested in the second moment of the return distribution (i.e. volatility) and its 
dependence on the number of cluster members. In Figure 7, we plot for the same ten runs as in 
Figure 6 the respective volatilities and cluster sizes for both the new and the old model. 
Consistent with the previous observation, the new model has the ability to produce serially 
dependent clusters, which is not the case in the old model. This in turn reflects in overall higher 
and more serially correlated volatility. Comparing the two models over the ten runs, we see that 
the new model produces extreme scenarios with longer phases of extraordinary volatility more 
frequently. Additionally, in the old model clusters are non-persistent spikes while the clusters 
in the new model tend to build up to large bubbles which then burst abruptly. This arises from 
the different approach to the modeling of opinion propagation, where we have introduced a 
cellular automaton. 

 
Figure 7: Overview of both models including all features 
 
To filter the effect of opinion propagation, we run both the old and the new model without this 
feature. Again, we conduct ten runs of each model in the same setting as above (500 trading 
days with 200 agents), including the additional feature “short sales” only. 
As opposed to the previous runs in the full models, the price paths in the two models are 
indistinguishable (cf. Figure 8). When we plot the volatilities in both models without opinion 
propagation (and hence without any clusters) in Figure 9, we have the same observation that the 
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two models cannot be told apart. Not in a single run do we observe an extreme event with high 
volatility.  

 

 
Figure 8: Ten price paths of the new model (top) vs. old model (bottom) without the opinion propagation 
feature 
 

 
Figure 9: Overview of both models without the opinion propagation feature 
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Thus far, the effect of allowing for short sales is not obvious. To single out the effect of this 
feature, we run the same analysis as above with short sale restrictions (i.e. just like in the old 
model) but all other model features activated.  

 

 
Figure 10: Ten price paths of the new model (top) vs. old model (bottom) without the short selling feature 
 
From the price paths, one can easily see that not only the new model produces much more 
extreme price fluctuations than the old model (cf. Figure 10) but also much more extreme price 
fluctuations than in Figure 6, where short selling was allowed. This is reflected in the volatility 
plot (cf. Figure 11), where we see more frequent and much more severe market scenarios. 
Opposing general sentiment, this implies that the short selling restrictions can create stronger 
market disruptions while allowing for short selling results in smoothed volatility and stronger 
mean reversion. This is due to the known model feature of mean reversion (cf. Raberto, 
Cincotti, Focardi, & Marchesi, 2001) which is enhanced through the short selling in extreme 
market situations. For example, when a price bubble emerges, many agents would like to sell 
large quantities at these elevated prices, exceeding their current holdings, which is only 
possible when short selling is allowed. Therefore, agents who sell short counteract bubbles at 
earlier stages. 
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Figure 11: Overview of both models without the short selling feature 
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5.4. Stability Analysis over Model Size 
In all above experiments, we have kept the model size (i.e. number of agents) constant at the 
level of 200 agents where Müllener & Walti, 2008 have tested their model. Additionally, we 
have analyzed the stability of the new versus the old model over the model size. We have 
conducted sample runs starting from a large model (400 agents), decreasing in steps of 40 
agents to a very small model (80 agents). To obtain a broader view, we have increased the time 
period analyzed to four years (i.e. 1000 trading days). Furthermore, to maintain comparability 
to the old model, we have excluded short selling, which is a feature unique to the new model. 

 
Figure 12: Size Sensitivity Analysis of both models without short selling 
 
We can observe in Figure 12, as one would expect from the previous analysis in section 5.3, 
that the new model has produced one extreme event within the nine loops over four years. 
However, there seems to be no correlation between model size and the probability of an 
extreme event as this has happened in the sample run with 280 agents. In the old model 
however, we verify the findings of Raberto, Cincotti, Focardi, & Marchesi, 2001 that volatility 
is sensitive to model size. This clear relationship can be seen in both Figure 14 and in Figure 
15, in which we see that volatility decreases with increasing model size. In Figure 14, we see 
the same sample runs as a surface of volatility dynamics with respect to the number of agents, 
where the agent loops are ordered from many agents to few agents. In the new model, to ease 
visualization, we have excluded the extreme event in the sample run with 280 agents when 
displaying the volatility surface (cf. Figure 13). This close-up view on volatility levels in 
relatively calm markets allows us to identify a smaller volatility peak, which again occurs 
arbitrarily in the middle of the agent loops, again suggesting independence of model size. More 
detailed and computationally intensive analysis would be required to further strengthen this 
hypothesis. 
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Figure 13: Volatility Surface w.r.t. Agents in the new model without short selling 

 
Figure 14: Volatility Surface w.r.t. Agents in the old model without short selling 
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Figure 15: Average Market Volatility w.r.t. Agents of the two models without short selling 

6. Summary and Outlook 
To address some of the shortcomings of the Genoa market model implemented by Müllener & 
Walti, 2008, we have introduced short selling as an additional model feature and replaced the 
opinion propagation mechanism by a cellular automaton. When simulating using this new 
agent-based financial market model we find a better representation of real world data from the 
recent financial crisis. In particular, the new model better captures the autocorrelation 
characteristics of volatility as it can be observed in empirical data. This is due to the new 
modelling of agent clusters via the above mentioned cellular automaton. Furthermore, the new 
model also produces non-normal (i.e. heavy-tailed) distributions. The recent severe disruptions 
in the financial markets over the past three years justify this high frequency of extreme 
scenarios in our model. 
In light of the recent debate regarding short selling, we present another noteworthy finding 
within our model: deregulating the market (i.e. removing short selling restrictions) leads to a 
smoothing of volatility when including all model features. This is due to the fact that short 
selling counteracts both the emergence of bubbles and therefore also bubble-burst induced 
crashes. This is in stark contrast to Müllener & Walti, 2008 (p. 18) who conjecture that short 
selling would contribute to “undesirable” market volatility. 
Moreover, the above findings are stable over multiple simulation runs as well as with respect to 
model size. The stability of volatility overcomes the old model’s weakness of volatility 
dependence on model size. However, this is only a conjecture and requires further analysis 
which proves to be highly resource intensive. A detailed investigation of this phenomenon 
could be addressed in future research. 
Another interesting direction for further projects would be the modeling of heterogeneous 
agents (e.g. both reversal and momentum traders) as well as the extension of the model to more 
sophisticated financial products such as derivatives. 
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Figure 16: Overview of the Code Structure 
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market.m 
 
function [tradeVolume,vola1d,Cluster,shortsale,price]= 
market(version,trade,histVola,opinionProp,short,T,agents,p) 
  
% This function simulatates an agent-based financial market 
% INPUTS are: 'new' or 'old' market model (as a string); activate (1) or 
% deactivate (0) the model features: trading, historic volatility, opinion 
% propagation and shortselling; number of timeperiods T to be simulated and 
% number of agents in the model; finally 0 or 1 for graphical plots 
% sample inputs are: market('new',1,1,1,1,500,400,1); 
  
% OUTPUTS are: trading Volume in the market, the daily volatility, the 
% number of agents in clusters, number of shortsales and the price proces 
  
tic 
  
%% Model Features 
TRADING = trade; 
HISTORICAL_VOLATILITY = histVola; 
OPINION_PROPAGATION_CLUSTERS = opinionProp; 
SHORTSELLING=short; 
PLOTS=p; 
if strcmp(version,'new')  
    NEWMARKET=1;  
    else NEWMARKET=0; 
end; 
  
%% Parameter Initialisation 
  
global agent; 
global t; 
global globalBuyProb; 
global clusterPairProbability; 
global clusterActivateProbability; 
global activatedClusterSize; 
global clusters; 
global buySigmaK; 
global sellSigmaK; 
global timeSteps; 
global N; 
global stockPrice; 
     
timeSteps = T; 
N = agents; 
PercentageDone = 0; 
% set global market parameters 
stockPrice = ones(timeSteps,1); 
activatedClusterSize = zeros(timeSteps,1); 
clusters = zeros(N,1); % maximum number of possible clusters: N/2 
clusterPairProbability = 0.0001; 
clusterActivateProbability = 0.2; 
tradeVolume = zeros(timeSteps,1); 
vola1d=zeros(timeSteps,1); 
shortsale=zeros(timeSteps,1); 



Page 23 of 40 

% set global agent parameters 
globalBuyProb = .5; 
sellMu = 1.01; 
sellSigmaK = 3.5; 
buyMu = 1.01; 
buySigmaK = 3.5; 
shortSigma = 0.2; 
  
% initializing the agents individual parameters 
for n = 1:N 
agent(n).cash = 1000; 
agent(n).assets = 1000; 
agent(n).volatSigma = 0.02; 
agent(n).volatTimeInt = 50; 
agent(n).buyProb = globalBuyProb; 
agent(n).isBuyer = 0; 
agent(n).isSeller = 0; 
agent(n).buyCash = 0; 
agent(n).buyQuant = 0; 
agent(n).buyUpperLimit = 0; 
agent(n).sellQuant = 0; 
agent(n).sellLowerLimit = inf; 
agent(n).cluster = 0; % if member of cluster: [clusternumber] | else: [0] 
end 
  
% running the cellular automaton if opinion propagatian is activated in the 
% new model 
if (OPINION_PROPAGATION_CLUSTERS && NEWMARKET==1) 
Cells=automaton2(N,timeSteps,PLOTS); 
end 
  
%% Main Loop 
for t = 1:timeSteps 
     
     
%% Opinion Propagation in the old model 
if OPINION_PROPAGATION_CLUSTERS && NEWMARKET==0 
opinion_prop() 
end 
  
%% Opinions Propagation in the new model 
if OPINION_PROPAGATION_CLUSTERS && NEWMARKET==1 
    % passing the CA output to the opinion function, which returns a vector 
    % of reset buy probabilites for all agents 
    [buyProb,activatedClusterSize(t)]=opinion(Cells(:,:,t)); 
    for n = 1:length(buyProb) 
        agent(n).buyProb=buyProb(n); 
    end 
end 
  
  
for n = 1:N 
  
%% Agent is Buyer or Seller during this time-step? 
if rand(1)<agent(n).buyProb %randomly choosing buyers 
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agent(n).isSeller = 0; 
agent(n).isBuyer = 1; 
% buyCash update: if short-selling is activated, then exceedance of current 
% cash account is allowed (credit buying); else short-selling constraint 
if SHORTSELLING 
agent(n).buyCash = abs(normrnd(0.5,shortSigma))*agent(n).cash; 
else agent(n).buyCash = rand(1)*agent(n).cash; 
end 
else %rest are sellers 
agent(n).isSeller = 1; 
agent(n).isBuyer = 0; 
% sellQuant update: if short-selling is activated, then exceedance of 
% current asset level is allowed; else short-selling constraint 
if SHORTSELLING 
agent(n).sellQuant = round(abs(normrnd(0.5,shortSigma))*agent(n).assets); 
else agent(n).sellQuant = round(rand(1)*agent(n).assets);  
end 
% counting incidenct of short-selling 
if agent(n).sellQuant>agent(n).assets 
    shortsale(t)=shortsale(t)+1; 
end 
end 
  
%% Historial Volatility 
if HISTORICAL_VOLATILITY 
hist_volat(n) 
end 
  
%% Agent buy or sell parameters 
if (agent(n).isBuyer == 1) 
agent(n).buyUpperLimit = stockPrice(t)*(normrnd(buyMu,agent(n).volatSigma)); 
agent(n).buyQuant = round(agent(n).buyCash/agent(n).buyUpperLimit); 
else 
agent(n).sellLowerLimit = 
stockPrice(t)/abs(normrnd(sellMu,agent(n).volatSigma)); 
end 
  
end 
  
%% New Market Price 
stockPrice(t+1) = price_formation(stockPrice(t)); 
  
%% Trading 
if TRADING 
tradeVolume(t)=trading(); 
end 
  
if PLOTS 
if PercentageDone ~= round(100*(t/timeSteps)) 
PercentageDone = round(100*(t/timeSteps)) 
end 
end 
end 
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% Calculate 10d-averaged daily Volatility 
voladays=10; %number of days to average the volatility 
stockPriceReturnLog = log(stockPrice(2:end))-log(stockPrice(1:end-1)); 
%calculating log price returns 
  
% calculation of the daily volatility 
for i=1:(timeSteps-(voladays-1)) 
    vola1d(i+voladays-1)=std(stockPriceReturnLog(i:(i+voladays-
1)))/sqrt(voladays); 
end 
  
price=stockPrice(2:end); % the stock price process 
Cluster=activatedClusterSize; % the cluster size process 
  
%% PLOT THE DATA 
if PLOTS 
% plot options 
figure('Name','Financial Market Summary') 
hold on 
% Stock price process 
subplot(2,2,1) 
plot(price) 
title('Price Dynamics') 
xlabel('Time') 
ylabel('Price') 
% Log return of the Stock price 
subplot(2,2,2) 
plot(100*stockPriceReturnLog) 
title('Price Log Returns') 
xlabel('Time') 
ylabel('Log Returns in %') 
% Probplot of the log price return 
subplot(2,2,3) 
probplot(stockPriceReturnLog) 
% Estimate of the PDF 
subplot(2,2,4) 
ksdensity(stockPriceReturnLog) 
title('Density of Log-Returns') 
xlabel('Data') 
ylabel('Frequency') 
hold off 
  
% Plot Clusters vs. Volatility 
figure('Name','Agents in Clusters and Volatility') 
AX=plotyy(voladays:timeSteps,activatedClusterSize(voladays:timeSteps),volada
ys:timeSteps,100*vola1d(voladays:timeSteps)); 
set(get(AX(1),'Ylabel'),'String','Agents in Clusters')  
set(get(AX(2),'Ylabel'),'String','Volatility in %')  
xlabel('Time') 
  
end 
toc 
end 
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opinion_prop.m 
 
function [] = opinion_prop() 
% This function forms clusters amongst agents by resetting their buy 
% probabilites to obtain "sure buyers" and "sure sellers". 
% NOTE: This is the opinion propagation mechanism for the OLD model only 
  
global agent 
global N 
global t 
global globalBuyProb 
global clusterPairProbability 
global clusterActivateProbability 
global activatedClusterSize 
global clusters 
  
%% Pairing: defining which agents belong to a cluster 
  
% Reset last buyProb at first (changed for activated clusters) 
agent(N).buyProb = globalBuyProb; 
  
for i = 1:N-1 
% Reset all buyProb to globalBuyProb (changed for activated clusters) 
agent(i).buyProb = globalBuyProb; 
for j = i+1:N 
% form pair with Pa 
if rand(1)<clusterPairProbability && ... 
((agent(i).cluster~=agent(j).cluster ) || agent(i).cluster==0) 
% form pair: 
% if i agent is member of cluster: 
% set j agent (and all his cluster members) 
% to i cluster (and free j cluster) 
if agent(i).cluster~=0 
if agent(j).cluster~=0 
clusters(agent(j).cluster)=0; 
clusterToChange = agent(j).cluster; 
for k = 1:N 
if agent(k).cluster==clusterToChange 
agent(k).cluster=agent(i).cluster; 
end 
end 
end 
agent(j).cluster=agent(i).cluster; 
% elseif j agent is member of cluster (and i is not): 
% set i agent to j cluster 
elseif agent(j).cluster~=0 
agent(i).cluster = agent(j).cluster; 
% else 
% form new cluster and reserve slot in cluster-arr 
else 
k = 1; 
while clusters(k)~=0; k=k+1; end 
%if k ~= 1; keyboard; end 
clusters(k)=1; 
agent(i).cluster = k; 
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agent(j).cluster = k; 
end 
end 
end 
end 
  
%% Cluster activation: activate a single cluster of agents 
if rand(1)<clusterActivateProbability 
% find nonzero clusters 
activeClusters = find(clusters); 
% random draw of a cluster (first element after randperm) 
randElemNum = randperm(length(activeClusters)); 
%activeClusters = randperm(activeClusters); 
% activate the cluster 
if ~isempty(activeClusters) 
if rand(1)<0.5 
buyProb = 0; 
else 
buyProb = 1; 
end 
tempSum = 0; 
for k = 1:N 
if agent(k).cluster == activeClusters(randElemNum(1)); 
agent(k).buyProb = buyProb; 
agent(k).cluster = 0; % leave cluster 
tempSum = tempSum + 1; 
end 
end 
activatedClusterSize(t) = tempSum; 
if activatedClusterSize > 0.95*N 
%keyboard % Too big a cluster was activated 
end 
clusters(activeClusters(randElemNum(1)))=0; % free cluster 
end 
end 
  
end 
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opinion.m 
 
function [buyProb,sum]=opinion(Cells) 
% identifying clusters in Cellular Automaton output and randomly resetting  
% buy Probability of agents in that cluster 
  
% INPUT: a n-by-n matrix coming from the CA output with 
% n*n=N, the total number of agents in the market model 
  
% OUTPUT: a vector of length N with buy probabilites for all agents 
/buyProb) as 
% well as the number of agents in clusters (sum)  
  
% number of agents in the model 
N=length(Cells)^2; 
  
% indentifying the clusters in the CA 
% output and counting the number of clusters  
[Cluster,numb]=bwlabel(Cells); 
  
buyProb=ones(N,1)/2; 
sum=0; 
% extracting each cluster of agents and its sizes 
for i=1:numb     
    %returning the vector of cluster members 
    a = find(Cluster==i); 
    size=length(a); 
    sum=sum+size; 
               % randomly allocating buyers/sellers 
               if rand(1)<0.5 
                    buy=0; 
                    else buy=1; 
               end 
               for k=1:size 
                   buyProb(a(k))=buy; 
               end 
end 
end 
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hist_volat.m 
 
function [] = hist_volat(n) 
% This function resets the nth agent's historic volatility 
% INPUT: agent number 
% 
% OUTPUT: none 
% 
  
global agent 
global t 
global stockPrice 
global buySigmaK 
global sellSigmaK 
  
%calculate volatSigma 
if t==1 
agent(n).volatSigma = 0; 
else 
if t < agent(n).volatTimeInt 
stockPricesRecent = stockPrice(1:t); 
logPriceReturn = log( stockPricesRecent(2:end)./stockPricesRecent(1:end-1) 
); 
else 
stockPricesRecent = stockPrice(t-agent(n).volatTimeInt+1:t); 
logPriceReturn = log( stockPricesRecent(2:end)./stockPricesRecent(1:end-1) 
); 
end 
if (agent(n).isBuyer == 1) 
agent(n).volatSigma = buySigmaK * std(logPriceReturn); 
else 
agent(n).volatSigma = sellSigmaK * std(logPriceReturn); 
end 
end 
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Automaton2.m 
 
function[ClusterDynamics]=automaton2(agents,periods,plot) 
  
%This function uses a stochastic cellular automaton to model cluster 
%building amongst all agents over the specified time horizon 
  
tic 
  
%Parameter SetUp:  
 
Lines 10 - 21: 
 
pini=0.15;                
p=1;                      
pr=1;                    
pd=0.6;                   
pn=0.0003;                
pdest=0.1;                
  
N=round(sqrt(agents));    
T=periods;                
  
densl=0.85;               
densg=0.25;               
  
PLOTS=plot; 
  
% Initialisations 
 
Lines 27 - 29: 
 
ClusterDynamics=zeros(N,N,T); 
Cells=zeros(N+2,N+2); 
Cells(2:N+1,2:N+1)=(rand(N,N)<pini); 
  
  
% Row/column indices set up 
 
Lines 34 - 39: 
  
up=(1:N); 
down=(3:N+2); 
center_rows=(2:N+1); 
left=(1:N); 
right=(3:N+2); 
center_cols=(2:N+1); 
  
if PLOTS 
figure('Name','Agent Cluster Dynamics') 
subplot(1,2,1) 
imagesc(Cells(center_rows,center_cols)) 
colormap(gray) 
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title('Initial state') 
drawnow; 
end 
  
  
for i=1:T 
  
Lines 57 – 89: 
 
% Local Cluster Limitations 
  
 % Three upper squares: 
  
      if sum(sum(Cells(2:round(N/3)+1,2:round(N/3)+1)))> ((N/3)^2)*densl && 
rand()<pdest 
 Cells(2:round(N/3)+1,2:round(N/3)+1)=rand(round(N/3),round(N/3))<pini; 
      end; 
      if sum(sum(Cells(2:round(N/3)+1,round(N/3)+2:round(N/3)*2)+1))> 
((N/3)^2)*densl && rand()<pdest 
 
Cells(2:round(N/3)+1,round(N/3)+2:round(N/3)*2+1)=rand(round(N/3),round(N/3)
)<pini; 
      end; 
      if sum(sum(Cells(2:round(N/3)+1,round(N/3)*2+2:round(N/3)*3+1)))> 
((N/3)^2)*densl && rand()<pdest 
 
Cells(2:round(N/3)+1,round(N/3)*2+2:round(N/3)*3+1)=rand(round(N/3),round(N/
3))<pini; 
      end; 
       
 % Three middle squares: 
       
      if sum(sum(Cells(round(N/3)+2:round(N/3)*2+1,2:round(N/3)+1)))> 
((N/3)^2)*densl && rand()<pdest 
 
Cells(round(N/3)+2:round(N/3)*2+1,2:round(N/3)+1)=rand(round(N/3),round(N/3)
)<pini; 
      end;    
      if 
sum(sum(Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)+2:round(N/3)*2+1)))> 
((N/3)^2)*densl && rand()<pdest 
 
Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)+2:round(N/3)*2+1)=rand(round(N/
3),round(N/3))<pini; 
      end; 
      if 
sum(sum(Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)*2+2:round(N/3)*3+1)))> 
((N/3)^2)*densl && rand()<pdest 
 
Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)*2+2:round(N/3)*3+1)=rand(round(
N/3),round(N/3))<pini; 
      end; 
       
 % Three lower squares:     
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       if sum(sum(Cells(round(N/3)*2+2:round(N/3)*3+1,2:round(N/3)+1)))> 
((N/3)^2)*densl && rand()<pdest 
 
Cells(round(N/3)*2+2:round(N/3)*3+1,2:round(N/3)+1)=rand(round(N/3),round(N/
3))<pini; 
      end;    
      if 
sum(sum(Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)+2:round(N/3)*2+1)))> 
((N/3)^2)*densl && rand()<pdest 
 
Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)+2:round(N/3)*2+1)=rand(round(
N/3),round(N/3))<pini; 
      end; 
      if 
sum(sum(Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)*2+2:round(N/3)*3+1)))
> ((N/3)^2)*densl && rand()<pdest 
 
Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)*2+2:round(N/3)*3+1)=rand(roun
d(N/3),round(N/3))<pini; 
      end;                   
       
  
Lines 93 – 104: 
 
%Neighbourhood information storage      
  
  aga=Cells(up,left); 
  agb=Cells(up,center_cols); 
  agc=Cells(up,right); 
   
  agd=Cells(center_rows,left); 
  age=Cells(center_rows,right); 
   
  agf=Cells(down,left); 
  agg=Cells(down,center_cols); 
  agh=Cells(down,right); 
   
  ag=Cells(center_rows,center_cols); 
   
% Automaton clustering rules 
 
Lines 108 – 113: 
      
  Cells(center_rows,center_cols)=  max((((ag==1)&rand(N,N)<p|... 
                                  (agb==1) & (agd==1) & rand(N,N)<pr|... 
                                  (age==1) & (agg==1) & rand(N,N)<pr|...    
                                  (agd==1) & (agg==1) & rand(N,N)<pr|... 
                                  (agb==1) & (age==1) & rand(N,N)<pr|... 
                                   rand(N,N)<pn)...       
Lines 114 - 121: 
   
                                 -((ag==1) & (aga==1) & (agb==1) & (agd==1) 
& (agf==1)&... 



Page 33 of 40 

                                  (agg==1) & (agc==0) & (age==0) & (agh==0) 
& rand(N,N)<pd)... 
                                 -((ag==1) & (agb==1) & (agc==1) & (age==1) 
& (agh==1)&...     
                                  (agg==1) & (aga==0) & (agd==0) & (agf==0) 
& rand(N,N)<pd)... 
                                 -((ag==1) & (agd==1) & (aga==1) & (agb==1) 
& (agc==1)&...     
                                  (age==1) & (agf==0) & (agg==0) & (agh==0) 
& rand(N,N)<pd)... 
                                 -((ag==1) & (agd==1) & (agf==1) & (agg==1) 
& (agh==1)&...      
                                  (age==1) & (aga==0) & (agb==0) & (agc==0) 
& rand(N,N)<pd)), zeros(N,N)); 
                
% Global Cluster Limitations 
  
Line 125: 
 
 if (sum(sum(Cells)) > (N*N)*densg) && rand()<pdest 
  Cells(center_rows,center_cols)=(rand(N,N)<pini); 
   
 end; 
  
  
  
 Cells2=Cells(center_rows,center_cols); 
       
  ClusterDynamics(:,:,i)=Cells2; 
   
 if PLOTS  
  subplot(1,2,2) 
  imagesc(Cells2) 
  colormap(gray) 
  title('Dynamics over time') 
  drawnow; 
 end 
  
  
end 
  
toc 
end 
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price_formation.m 
 
function [p] = price_formation(marketPriceLast) 
% this function balances supply and demand to determine the current market 
% price from the previous market prices 
  
% INPUT: the price in period t-1 
  
% OUTPUT: the price in period t 
  
  
%% Price Formation 
pLower = 0; 
pUpper = 10*marketPriceLast; 
  
% check whether demand f(pLower)>g(pLower) supply AND f(pUpper)<g(pUpper) at 
beginning 
% exit with old price if not 
[f1,g1] = supply_demand(pLower); 
[f2,g2] = supply_demand(pUpper); 
if f1<=g1 
p = 0; 
elseif f2>=g2 
p = 10 * marketPriceLast; 
else 
pTest = (pUpper+pLower)/2; 
[f,g] = supply_demand(pTest); 
while((pUpper-pLower)>marketPriceLast/1000 && f~=g) 
pTest = (pUpper+pLower)/2; 
[f,g] = supply_demand(pTest); 
if f>g 
pLower=pTest; 
else 
pUpper=pTest; 
end 
end 
p = pTest; 
end 
end 
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supply_demand.m 
 
function [f,g] = supply_demand(p) 
  
%This function determines the supply and demand for a given market price 
  
% INPUT: the current market price p 
  
% OUTPUT: the aggregate demand and aggregate supply in the market model 
  
global agent 
global N 
  
%% Supply/Demand values for given price p 
f = 0; 
g = 0; 
for n = 1:N 
  
%% Buy orders if agent is buyer and reservation price >= marketprice 
if (agent(n).buyUpperLimit>=p)&&(agent(n).isBuyer) 
f = f + agent(n).buyQuant; 
  
%% Sell orders if agent is seller and reservation price <= marketprice 
elseif (agent(n).sellLowerLimit<=p)&&(agent(n).isSeller) 
g = g + agent(n).sellQuant; 
  
end 
  
end 
  
end 
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trading.m 
 
function [Volume] = trading() 
% This function is simulating the trading mechanism 
% INPUT: none required 
% 
% OUTPUT: the volume of trades conducted in this period 
% 
  
global agent 
global t 
global N 
global stockPrice 
  
% lower bound of stocks to trade 
[f,g] = supply_demand(stockPrice(t+1)); 
Volume = min(f,g); 
tradedSell(t) = 0; 
tradedBuy(t) = 0; 
for n = 1:N 
    if agent(n).isSeller == 1 
        if stockPrice(t+1)>=agent(n).sellLowerLimit && tradedSell(t)<Volume 
        % This seller sells 
        numAssetsToSell = min(agent(n).sellQuant, Volume-tradedSell(t)); 
        agent(n).assets = agent(n).assets-numAssetsToSell; 
        tradedSell(t) = tradedSell(t) + numAssetsToSell; 
        agent(n).cash = agent(n).cash + (numAssetsToSell * stockPrice(t+1)); 
        end 
    else 
        if stockPrice(t+1)<=agent(n).buyUpperLimit && tradedBuy(t)<Volume 
        % This buyer buys 
        numAssetsToBuy = min(agent(n).buyQuant, Volume-tradedBuy(t)); 
        agent(n).assets = agent(n).assets+numAssetsToBuy; 
        tradedBuy(t) = tradedBuy(t) + numAssetsToBuy; 
        totalBuyPrice = numAssetsToBuy * stockPrice(t+1); 
        agent(n).cash = agent(n).cash - totalBuyPrice; 
        end 
    end 
end 
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MarketsAnalysis.m 
 
% To systematically compare the new model (CA opinions) with the old market 
and to interpret results 
% The analysis is conducted over different model sizes (i.e. number of 
agents) 
  
clear all 
close all 
clc 
tic 
  
% Enabling Features of the Markets 
trading = 1;   %trading 
historicVola = 1;   %historic vola 
opinionPropagation = 1;   %opinion prop 
short = 1; %allows shortselling 
  
% simulation periods 
T=500; 
% number of agents 
start = 400; 
finish = 80; 
steps = -40; 
loops = (finish-start)/steps+1; 
irrel = 0; 
threshold = 50; % non-plotting values 
  
% initializing output variables 
volume=zeros(T,loops); 
vola=zeros(T,loops); 
clusters=zeros(T,loops); 
shortsales=zeros(T,loops); 
price=zeros(T,loops); 
volume2=zeros(T,loops); 
vola2=zeros(T,loops); 
clusters2=zeros(T,loops); 
shortsales2=zeros(T,loops); 
price2=zeros(T,loops); 
voladays=10; 
  
%Main Loop  
figure('Name','new versus old model') 
for d=start:steps:finish 
    i=(d-start)/steps+1; 
    % running both models with d number of agents 
[volume(:,i),vola(:,i),clusters(:,i),shortsales(:,i),price(:,i)]=market('new
',trading,historicVola,opinionPropagation,short,T,d,0); 
[volume2(:,i),vola2(:,i),clusters2(:,i),shortsales2(:,i),price2(:,i)]=market
('old',trading,historicVola,opinionPropagation,short,T,d,0); 
%plotting volatility outputs 
Amax=max(max(vola)); 
Bmax=max(max(vola2)); 
scale=max(Amax,Bmax)*100*1.2; 
subplot(1,2,1) 
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title('new model') 
hold on 
plot(vola(voladays:T,:)*100) 
axis([voladays,T,0,scale]) 
s{i} = sprintf('Agents %i', d);    
legend(s) 
xlabel('Time') 
ylabel('Daily volatility in %') 
  
subplot(1,2,2) 
title('old model') 
hold on 
plot(vola2(voladays:T,:)*100) 
axis([voladays,T,0,scale]) 
legend(s) 
xlabel('Time') 
% counting the non-plotting values 
if d<threshold 
    irrel=irrel+1; 
end 
pause(0.05) 
end 
  
legend(s) 
hold off 
  
% creating a volatility surface with the new model data 
figure('Name','Volatility Surface: new model') 
surf(vola(voladays:T,1:loops-irrel)*100,'DisplayName','Volatility Surface') 
title('Volatility Surface w.r.t. Agents: new model') 
xlabel('Agent-Loop') 
ylabel('Time') 
zlabel('Daily volatility in %') 
  
% creating a volatility surface with the old model data 
figure('Name','Volatility Surface: old model') 
surf(vola2(voladays:T,1:loops-irrel)*100,'DisplayName','Volatility Surface') 
title('Volatility Surface w.r.t. Agents: old model') 
xlabel('Agent-Loop') 
ylabel('Time') 
zlabel('Daily volatility in %') 
  
% displaying the average volatility in the two markets 
figure('Name','Average Market Volatility') 
plot(start:steps:finish,nanmean(vola)*100,start:steps:finish,nanmean(vola2)*
100) 
title('Average Market Volatility w.r.t. Agents of the two models') 
legend('new model','old model'); 
xlabel('Agents') 
ylabel('Daily volatility in %') 
  
toc 
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Trajectories.m 
 
% To systematically compare the new model (CA opinions) with the old market 
and to interpret results 
% The analysis is conducted to test the stability of the models over 
multiple runs 
  
clear all 
close all 
clc 
tic 
  
% Enabling Features of the Markets 
trading = 1;   %trading 
historicVola = 1;   %historic vola 
opinionPropagation = 1;   %opinion prop 
short = 1; %allows shortselling 
  
T = 1000;  %simulation periods 
agents=200; %number of agents 
loops=10; %specify the number of runs 
  
% initializing output variables 
volume=zeros(T,loops); 
vola=zeros(T,loops); 
clusters=zeros(T,loops); 
shortsale=zeros(T,loops); 
price=ones(T,loops); 
volume2=zeros(T,loops); 
vola2=zeros(T,loops); 
clusters2=zeros(T,loops); 
shortsales2=zeros(T,loops); 
price2=zeros(T,loops); 
voladays=10; 
  
%Main Loop  
figure('Name','new versus old model') 
for i=1:loops 
        % running both models in each loop 
    
[volume(:,i),vola(:,i),clusters(:,i),shortsale(:,i),price(:,i)]=market('new'
,trading,historicVola,opinionPropagation,short,T,agents,0); 
    
[volume2(:,i),vola2(:,i),clusters2(:,i),shortsales2(:,i),price2(:,i)]=market
('old',trading,historicVola,opinionPropagation,short,T,agents,0); 
%plotting volatility outputs 
Amax=max(max(vola)); 
Bmax=max(max(vola2)); 
scale=max(Amax,Bmax)*100*1.2; 
s{i} = sprintf('Loop %i', i); 
subplot(2,2,1) 
title('new model vola') 
hold on 
plot(vola(voladays:T,:)*100) 
axis([voladays,T,0,scale]) 
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legend(s) 
xlabel('Time') 
ylabel('Daily volatility in %') 
  
subplot(2,2,2) 
title('old model vola') 
hold on 
plot(vola2(voladays:T,:)*100) 
axis([voladays,T,0,scale]) 
legend(s) 
xlabel('Time') 
ylabel('Daily volatility in %') 
%plotting cluster outputs 
subplot(2,2,3) 
title('new model clusters') 
hold on 
plot(clusters(voladays:T,:)) 
xlabel('Time') 
ylabel('Cluster Members') 
  
subplot(2,2,4) 
title('old model clusters') 
hold on 
plot(clusters2(voladays:T,:)) 
xlabel('Time') 
ylabel('Cluster Members') 
pause(0.05) 
  
end 
hold off 
  
% plotting the price paths in both models 
figure('Name','Price Trajectories new model') 
plot(price(1:T-1,:)); 
xlabel('Time') 
ylabel('Price Dynamics') 
legend(s) 
figure('Name','Price Trajectories old model') 
plot(price2(1:T-1,:)); 
xlabel('Time') 
ylabel('Price Dynamics') 
legend(s) 
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