

Lecture with Computer Exercises:
Modelling and Simulating Social Systems with

MATLAB

Project Report

Agent-based Financial Markets Model
A new approach incorporating findings from the financial crisis

Florian Müller-Reiter Matthias Wyss

Zürich
December 2010

Page 2 of 40

Eigenständigkeitserklärung

 Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe,
keine anderen als die angegebenen Quellen-Hilfsmittel verwenden habe, und alle
Stellen, die wörtlich oder sinngemäß aus veröffentlichen Schriften entnommen
wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass
diese Gruppenarbeit nicht, auch nicht auszugsweise, bereits für andere Prüfung
ausgefertigt wurde.

Florian Müller-Reiter Matthias Wyss

Page 3 of 40

Agreement for free-download

We hereby agree to make our source code of this project freely available
for download from the web pages of the SOMS chair. Furthermore, we assure
that all source code is written by ourselves and is not violating any copyright
restrictions.

Florian Müller-Reiter Matthias Wyss

Page 4 of 40

Table of content

AGREEMENT FOR FREE-DOWNLOAD 3

TABLE OF CONTENT 4

1. INDIVIDUAL CONTRIBUTIONS 5

2. INTRODUCTION AND MOTIVATIONS 5

3. DESCRIPTION OF THE MODEL 6

4. IMPLEMENTATION 6

4.1. THE AGENT-BASED FINANCIAL MARKET MODEL 7

4.2. THE CELLULAR AUTOMATON 8

4.3. THE MARKET ANALYSIS TOOLKIT 10

5. SIMULATION RESULTS AND DISCUSSION 10

5.1. EMPIRICAL DATA VS. MODEL SIMULATION 10

5.2. ANALYZING STYLIZED FACTS 12

5.3. STABILITY ANALYSIS OVER MODEL FEATURES 13

5.4. STABILITY ANALYSIS OVER MODEL SIZE 18

6. SUMMARY AND OUTLOOK 20

7. REFERENCES 21

8. APPENDIX 21

Page 5 of 40

1. Individual contributions
All parts of the presented work have in principle been created in close collaboration. The items
listed below merely represent areas that required some degree of specialization.

Matthias Wyss

• Organization and structuring of main market model including integration of CA
• Concept and implementation of short selling
• Construction of both market analysis toolkits and improvement of the output
•

Florian Müller-Reiter
• The Cellular Automaton application, which includes:

o Idea generation for the use of a Cellular Automaton in Finance
o Development of a Cellular Automaton application to clustering in financial

markets
o Cellular Automaton code implementation

2. Introduction and Motivations
As students of Quantitative Finance we are used to rigorously examining partial equilibrium
pricing models, which take the price process as exogenously given. Recent developments in
financial markets as well as thereby arising new avenues in finance research have sparked our
interest in broader modeling approaches. Conventional general equilibrium models in
economics and finance rely on a “representative agent” merely in order to avoid computational
complexity. However, we find this approach unsatisfactory and find methods for computational
agent-based modeling of financial market equilibria highly appealing. An established approach
is the so called “Genoa Artificial Stock Market” (Raberto, Cincotti, Focardi, & Marchesi,
2001). This model has previously been implemented in MATLAB (Müllener & Walti, 2008),
which we will refer to throughout the paper as the “old model”. This implementation manages
to capture many of the key stylized facts observed in financial time-series such as heavy-tailed
log return distributions and serially correlated volatility. Recent disruptions in financial markets
across the world however have demonstrated unprecedented levels and persistence of volatility.
Agents in financial markets have clearly shown signs of herding behavior.
In an attempt to better capture these recent findings from the financial crisis, we propose an
enhanced model which places a particular focus on the above mentioned new phenomena. To
this end, we replace the existing model feature of simple opinion propagation by a more
sophisticated approach using a cellular automaton. Furthermore, to address the recent debate
regarding short selling, our implementation adds this feature to the model by allowing agents to
sell more assets than they currently own.
To better evaluate the impact of the model innovations when comparing them to the old model,
we have extended the model’s analysis as well as the visualized output with particular focus on
volatility and agent clustering. Overall, it is our goal to propose a new model better adapted to
empirical financial time-series from the recent crisis while still capturing the key stylized facts.
Furthermore, it should eliminate some of the known shortcomings of the old model.

Page 6 of 40

3. Description of the Model
The theoretical model that is used as a foundation for our work is the above mentioned Genoa
market model laid out in the work of Raberto, Cincotti, Focardi, & Marchesi, 2001 and
described in detail by Müllener & Walti, 2008. We do not repeat these explanations here.

The use of a cellular automaton as an agent-clustering-model is motivated by the limitations of
sophisticated financial mathematics. These limitations are encountered when simulating
complex human behaviour. One might assume that traditional mathematics should enable
scientists to accurately model stock markets. However, the extent of the financial crisis and the
involved shortcomings in many implementations of quantitative models suggest the exploration
of new modelling methods. As traditional mathematical modelling aspires to reduce problems
under examination to a set of numerical functions, it proves to be flawed when it comes to
modelling complex systems that have an internal dependence structure and feedback
mechanisms. As the interaction of human beings can surely be considered as one of the most
complex systems, cellular automata are a natural choice as these are well suited to model such
complex behaviour, as analysed in Wolfram, 2002. In this book, it is laid out how random
structures can emerge from a set of deterministic rules in a cellular automaton (such as
“Rule30”). Chapter 8 in this book then points to a possible simple and direct application of
cellular automata in financial markets via the use of such a random structure. “Buy” and “sell”
attributes could directly be assigned to any cell (i.e. agent) of the automaton according to this
random structure. In what we have developed however, we do not rely on a pre-defined rule
such as “Rule30”, but have used a set of rules that proves suitable to model herding behaviour
(i.e clustering) and restrict the application of the cellular automaton to this clustering feature,
rather than imposing it as the only determinant of agents behaviour. In order to model agent
clustering in this way, we define a binary matrix, in which each entry represents a single agent
of our financial market model. Any agent can either be a member of a cluster (state “1”) or not
(state “0”). Members of any cluster will then always act in concert to simulate herding.

4. Implementation
In order to maintain comparability of the old versus our new model, we have adopted the same
code for the “old model” as proposed by Müllener & Walti, 2008. Hence, we will omit a
detailed description of that part of the code and instead refer the reader to this source. In the
following, we will give a broad overview of the code structure and description of the enhanced
model features. The second sub-section gives a detailed description of the cellular automaton
implementation while the third sub-section is devoted to the improved market analysis and
comparison toolkit.

Page 7 of 40

4.1. The agent-based financial market model
At the heart of the financial market model is the function “market.m”, which simulates the
agent-based financial markets and incorporates 7 sub-functions (cf. Figure 16, Appendix). For
this function, the user can specify inputs to run either the “old” or the “new” market with any
combination of the following model features activated:

• trading
• historic volatility
• opinion propagation (two versions)
• short selling

Furthermore, the user specifies the model size (number of agents) and simulation period (time-
steps), as well as whether to show summary statistic plots together with the outputs.
The outputs provided by the function are the full time-series over the simulation period of:

• trade volume
• daily volatility
• number of agents in clusters
• number of agents engaging in short selling
• price process

In contrast to the old code, the market model was incorporated within a function including
these outputs to ease the market analysis and comparison described in the last sub-section.

While the first part of the market function is concerned with the model features activation and
parameter/agent initialization, the core is the main loop over all time steps. In the old model,
the feature of opinion propagation has to be run in every loop while in our new code structure,
with the implementation of the cellular automaton (CA), this mechanism only needs to be run
once before the main loop. Then, the cluster information is extracted piecewise in every time
loop from the CA dynamics by passing this information to the function “opinion.m”. This
drastically reduces the computational complexity, leading to 2-3 times faster calculations of the
entire model when this feature is considered.
The main loop also includes the historic volatility feature, while price formation (depending on
the supply and demand function) as well as the trading function are outside of this loop.
The last part of the code is devoted to the new detailed analysis of the model’s outputs with
particular focus on volatility and clusters.

As already mentioned, the original model described by Raberto, Cincotti, Focardi, & Marchesi,
2001 limits the selling agents to sell between 0% and 100% of their current asset holdings, the
percentage being determined by a random draw from a uniform distribution. To make the
model more realistic, we extended this model to allow for short selling. Instead of a uniform
random draw, we determine the fraction/multiple of current asset holdings to be sold by a
normal random draw with the same mean as before: 0.5. Hence, there is a positive probability
that an agent is selling more than 100% of his current asset holdings, i.e. short selling. To avoid
a negative percentage (i.e. sellers becoming buyers), we take the absolute value of this quantity,
which then of course adds more weight on the right-hand side of the distribution. This creates
the intended characteristic of over-weighting the possibility of short selling.
In order to keep the model symmetric, whenever the short selling feature is activated, we need
to allow for credit-financed buying, the economic analogon of short selling. This is

Page 8 of 40

implemented by drawing from a normal distribution with mean 0.5 to determine the “buy
cash”. This enables buyers to spend more cash than they currently have on their account, which
happens with a positive probability. Again, to avoid buyers to become sellers, we take the
absolute value of this amount resulting in the same left skewed distribution described above.

Since a main point of analysis focuses on clusters and their induced volatility, the output of the
market model was extended to include these features in a separate graph. To maintain
comparability, we kept the summary plots of price, returns, probability plot and density plot.

4.2. The Cellular Automaton
The appendix shows the code for the cellular automaton. In lines 10-21 the automaton
parameters are set. All key parameters are explained below:

Probabilistic Parameters:

• “pini” defines the probability for each agent to be in a cluster at initialization of the
automaton or at re-initialization after a cluster-burst

• “pd” is a probability used to curb the de-clustering effect of neighboring cells at cluster
edges

• “pn” defines the level of background noise
• “pdest” defines the probability of clusters being destroyed, given a certain cluster size

is achieved
Cluster density limits:

• “densl” defines the local maximum allowed cluster density per area
• “densg” defines the global maximum allowed cluster density per area

Redundant parameters:
• “p” could be used to curb the chances of an agent to remain in a cluster, but we set this

parameter to 1 and it therefore does not impact the model
• “pr” could be used to curb the clustering effect of neighboring agents through the

below rules but we set this parameter to 1 and it therefore does not impact the model
Lines 27-29 initialize the output matrix of the automaton function and initialize the automaton
grid with a frame such that all agents, including all edge agents have a complete neighborhood.
All agents are then randomly assigned an initial state (cluster or non-cluster, i.e. 1 or 0)
according to the pini parameter.

Lines 34-39 define vectors of row and column indices used in the following neighborhood
definitions. For example "up" contains all those indices of rows that can contain an "up-
neighbor" of any agent.

In the time loop, the agent cluster simulation takes place. First, the agent grid is cut into 9
equally sized squares and local maximum cluster size conditions are given according to densl.
Each local area is set back to a random initial condition if the local cluster-burst conditions are
met (lines 57 – 89).
Lines 93 – 104 define matrices that store the information of whether or not a neighbor is
currently in a cluster for the first order Moore-neighborhood (that is for all eight cells
surrounding the agent cell). Exact neighbor locations are specified by use of the letters “a” to

Page 9 of 40

“h”. Thus from “aga” to “agh” the information from the upper left neighbor to the lower right
neighbor are stored. “ag” contains the information about the state of each agent itself. For
example aga=Cells(up, left) shifts the entire agent matrix up by one step and left by one step.
As a result, aga is a matrix of the same size as the actual agent matrix that stores, for any agent,
the current state of its upper left neighbor.

Lines 108 – 121 define the actual automaton clustering rules. Lines 108 – 113 give conditions
that will cause any agent to be a cluster member at the first step in the automaton rules. In
particular, any agent will be a cluster member at this stage, if the agent already is in a cluster or
any adjacent pair of its first order von Neumann-neighborhood (that is of the four cells
orthogonally surrounding it) is already in a cluster. For clustering, it is sufficient that any of the
below four conditions is met, irrespective of the state of other neighbors, as long as the de-
clustering rules do not override this. The below graph serves as an illustration: Grey cells
represent current cluster members. All four states (individually) of the first order von
Neumann-neighborhood shown cause an agent to become a cluster member at this stage.

 b b b b
d Agent e d Agent e d Agent e d Agent e
 g g g g

Figure 1: Clustering conditions

Furthermore an agent can become a cluster member purely by chance (at very low probability)
according to the parameter pn.
Lines 114-121 give conditions that can cause a current cluster member to de-cluster: if such
four adjacent Moore-neighborhood agents are in a cluster, that they leave a straight line of three
non-cluster-Moore-neighbors, the agent might de-cluster. For de-clustering, it is necessary that
all eight Moore-neighbors are in these exact states. This is intended to identify cluster members
at the outer boundaries of a cluster and potentially let them de-cluster. Already mature clusters
will hence be curbed. The below graph illustrates this. Grey cells again represent current cluster
members. All four states (individually) of the Moore-neighborhood shown can cause an agent
to de-cluster.

a b c a b c a b c a b c
d Agent e d Agent e d Agent e d Agent e
f g h f g h f g h f g h

Figure 2: De-clustering conditions

Finally, after the automaton has updated all agents’ states according to the above rules a global
maximum condition for cluster size is given. The if-statement starting in line 125 initiates the
possibility of a global cluster burst from a cluster-size defined by densg. If a global burst
occurs, all agents are set back to a random initial condition according to pini. This loop runs
over all time steps in the simulation.

Page 10 of 40

4.3. The market analysis toolkit
As it is a main goal of this paper to compare and contrast the new enhanced model to the old
model implemented by Müllener & Walti, 2008, we implemented an extended market analysis
toolkit for this purpose.
The script “MarketsAnalysis.m” is designed to conduct a “ceteris paribus” analysis of the two
models’ stability over model size (i.e. number of agents). It allows for a direct comparison of
output results produced by both models over a number of diffent model sizes. Usually, these
are looped in decreasing order (e.g. 400 to 80 agents in steps of 40), while all other model
parameters can be specified by the user and are then kept constant. The output produced within
the loop plots the volatility process of the new model against the old model’s. When all agent
loops are completed, the effect of changing model size is visualized in a volatility surface for
both the new and the old model. “MarketsAnalysis.m” was used extensively in section 5.4.
Stability Analysis over Model Size.
An equally useful toolkit to conduct a “ceteris paribus” analysis of the stability of model
features is the script “Trajectories.m”. In a similar fashion to the script described above, it
produces multiple runs of both the old and the new model, where the user can specify all input
and all model parameters, which are then kept constant. The output produced in the loop
focuses on volatility and clustering, these are plotted for every “trajectory” over time for both
the new and the old model. Finally all price trajectories are plotted for both models. This script
file was used for all simulations conducted in section 5.3. Stability Analysis over Model
Features.

5. Simulation Results and Discussion
5.1. Empirical Data vs. Model Simulation

As a first view on our model, we would like to compare the simulation results with both
empirical data from the financial crisis and the old model. For the purpose of comparison, we
run our model as well as the old model over 4 years (i.e. 1000 trading days) with 200 agents,
including all model features. As an example of empirical data from the financial sector, we take
a time-series of log returns for JP Morgan Chase over the period from 1.1.2006 to 31.12.2009
(Figure 3.a). Figure 3.b shows a sample run from the new model while Figure 3.c shows a
sample run from the old model.

Page 11 of 40

Figure 3: a. Empirical data b. sample trajectory from new model c. sample trajectory from old model

Page 12 of 40

The figures indicate that the new model better captures the characteristics from the empirical
data than the old model. In particular, one can see that the new model has the ability to produce
clusters of large log returns (in periods 600 to 800) as it has appeared during the financial crisis
in fall 2008, while the old model seems to be better suited to model single spikes only.
However, the old model has been able to reproduce other well-known stylized facts which we
have tested in our model as well.

5.2. Analyzing stylized facts
As Müllener & Walti, 2008 have shown, the old model was able to capture heavy-tailed log
return distributions as well as serially correlated volatility to some degree. To ease comparison,
we employ the same testing toolkit for our model. Figure 4: Summary Statistics of a Simulation
run (new model) shows the price dynamics of a single run, the respective log returns, a
probability plot to test normality of the time-series as well as the density of log returns.

Figure 4: Summary Statistics of a Simulation run (new model).

All four graphs show similar results with respect to these features, in particular the probability
plot indicates a clear deviation from the normal assumption, as it is usually observed in
empirical data. To verify this, we have conducted a Jarque-Bera test at the 99.9% significance
level with the null hypothesis that the sample be drawn from a normal distribution. For the
sample run plotted, the null hypothesis is rejected.

Furthermore, our new financial markets model produces output showing the relationship
between volatility and clusters, as this is the major change over the old model.

Page 13 of 40

Figure 5: Agents in Clusters vs. Volatility

As we can see in Figure 5, the new model allows for serially correlated clusters which in turn
have a clear impact on the volatility level. Obviously, since all the figures above only show
single sample runs from the new model, further analysis on the stability of such results is
required.

5.3. Stability Analysis over Model Features
In the following, we extend the comparison of our new model and the old model to the stability
of results over model features. We conduct ten runs of each model over 2 years (i.e. 500 trading
days) with 200 agents, testing the impact of the model features “short sales” and “opinion
propagation”. The first stability analysis is conducted in both models using all
features.

Figure 6: Ten price paths of the new model (top) vs. old model (bottom)

Page 14 of 40

As can be observed in Figure 6, the price paths created in the new model clearly show heavier
fluctuations compared to the old model. This finding is stable over ten runs. However, we are
even more interested in the second moment of the return distribution (i.e. volatility) and its
dependence on the number of cluster members. In Figure 7, we plot for the same ten runs as in
Figure 6 the respective volatilities and cluster sizes for both the new and the old model.
Consistent with the previous observation, the new model has the ability to produce serially
dependent clusters, which is not the case in the old model. This in turn reflects in overall higher
and more serially correlated volatility. Comparing the two models over the ten runs, we see that
the new model produces extreme scenarios with longer phases of extraordinary volatility more
frequently. Additionally, in the old model clusters are non-persistent spikes while the clusters
in the new model tend to build up to large bubbles which then burst abruptly. This arises from
the different approach to the modeling of opinion propagation, where we have introduced a
cellular automaton.

Figure 7: Overview of both models including all features

To filter the effect of opinion propagation, we run both the old and the new model without this
feature. Again, we conduct ten runs of each model in the same setting as above (500 trading
days with 200 agents), including the additional feature “short sales” only.
As opposed to the previous runs in the full models, the price paths in the two models are
indistinguishable (cf. Figure 8). When we plot the volatilities in both models without opinion
propagation (and hence without any clusters) in Figure 9, we have the same observation that the

Page 15 of 40

two models cannot be told apart. Not in a single run do we observe an extreme event with high
volatility.

Figure 8: Ten price paths of the new model (top) vs. old model (bottom) without the opinion propagation
feature

Figure 9: Overview of both models without the opinion propagation feature

Page 16 of 40

Thus far, the effect of allowing for short sales is not obvious. To single out the effect of this
feature, we run the same analysis as above with short sale restrictions (i.e. just like in the old
model) but all other model features activated.

Figure 10: Ten price paths of the new model (top) vs. old model (bottom) without the short selling feature

From the price paths, one can easily see that not only the new model produces much more
extreme price fluctuations than the old model (cf. Figure 10) but also much more extreme price
fluctuations than in Figure 6, where short selling was allowed. This is reflected in the volatility
plot (cf. Figure 11), where we see more frequent and much more severe market scenarios.
Opposing general sentiment, this implies that the short selling restrictions can create stronger
market disruptions while allowing for short selling results in smoothed volatility and stronger
mean reversion. This is due to the known model feature of mean reversion (cf. Raberto,
Cincotti, Focardi, & Marchesi, 2001) which is enhanced through the short selling in extreme
market situations. For example, when a price bubble emerges, many agents would like to sell
large quantities at these elevated prices, exceeding their current holdings, which is only
possible when short selling is allowed. Therefore, agents who sell short counteract bubbles at
earlier stages.

Page 17 of 40

Figure 11: Overview of both models without the short selling feature

Page 18 of 40

5.4. Stability Analysis over Model Size
In all above experiments, we have kept the model size (i.e. number of agents) constant at the
level of 200 agents where Müllener & Walti, 2008 have tested their model. Additionally, we
have analyzed the stability of the new versus the old model over the model size. We have
conducted sample runs starting from a large model (400 agents), decreasing in steps of 40
agents to a very small model (80 agents). To obtain a broader view, we have increased the time
period analyzed to four years (i.e. 1000 trading days). Furthermore, to maintain comparability
to the old model, we have excluded short selling, which is a feature unique to the new model.

Figure 12: Size Sensitivity Analysis of both models without short selling

We can observe in Figure 12, as one would expect from the previous analysis in section 5.3,
that the new model has produced one extreme event within the nine loops over four years.
However, there seems to be no correlation between model size and the probability of an
extreme event as this has happened in the sample run with 280 agents. In the old model
however, we verify the findings of Raberto, Cincotti, Focardi, & Marchesi, 2001 that volatility
is sensitive to model size. This clear relationship can be seen in both Figure 14 and in Figure
15, in which we see that volatility decreases with increasing model size. In Figure 14, we see
the same sample runs as a surface of volatility dynamics with respect to the number of agents,
where the agent loops are ordered from many agents to few agents. In the new model, to ease
visualization, we have excluded the extreme event in the sample run with 280 agents when
displaying the volatility surface (cf. Figure 13). This close-up view on volatility levels in
relatively calm markets allows us to identify a smaller volatility peak, which again occurs
arbitrarily in the middle of the agent loops, again suggesting independence of model size. More
detailed and computationally intensive analysis would be required to further strengthen this
hypothesis.

Page 19 of 40

Figure 13: Volatility Surface w.r.t. Agents in the new model without short selling

Figure 14: Volatility Surface w.r.t. Agents in the old model without short selling

Page 20 of 40

Figure 15: Average Market Volatility w.r.t. Agents of the two models without short selling

6. Summary and Outlook
To address some of the shortcomings of the Genoa market model implemented by Müllener &
Walti, 2008, we have introduced short selling as an additional model feature and replaced the
opinion propagation mechanism by a cellular automaton. When simulating using this new
agent-based financial market model we find a better representation of real world data from the
recent financial crisis. In particular, the new model better captures the autocorrelation
characteristics of volatility as it can be observed in empirical data. This is due to the new
modelling of agent clusters via the above mentioned cellular automaton. Furthermore, the new
model also produces non-normal (i.e. heavy-tailed) distributions. The recent severe disruptions
in the financial markets over the past three years justify this high frequency of extreme
scenarios in our model.
In light of the recent debate regarding short selling, we present another noteworthy finding
within our model: deregulating the market (i.e. removing short selling restrictions) leads to a
smoothing of volatility when including all model features. This is due to the fact that short
selling counteracts both the emergence of bubbles and therefore also bubble-burst induced
crashes. This is in stark contrast to Müllener & Walti, 2008 (p. 18) who conjecture that short
selling would contribute to “undesirable” market volatility.
Moreover, the above findings are stable over multiple simulation runs as well as with respect to
model size. The stability of volatility overcomes the old model’s weakness of volatility
dependence on model size. However, this is only a conjecture and requires further analysis
which proves to be highly resource intensive. A detailed investigation of this phenomenon
could be addressed in future research.
Another interesting direction for further projects would be the modeling of heterogeneous
agents (e.g. both reversal and momentum traders) as well as the extension of the model to more
sophisticated financial products such as derivatives.

Page 21 of 40

7. References

• Müllener, S., & Walti, T. (2008). Modelling of a primitive stock market with MATLAB.
ETH Zürich.

• Raberto, M., Cincotti, S., Focardi, S. M., & Marchesi, M. (2001). Agend-based
simulation of a financial market. Physica (A299), 319-327.

• Wolfram, S. (2002). A New Kind of Science. Champaign, IL: Wolfram Media.

8. Appendix

Market.m

Time Loop price_formation.m trading.m

opinion_prop.m or
opinion.m

hist_volat.m

automaton2.m

supply_demand.m

Figure 16: Overview of the Code Structure

Page 22 of 40

market.m

function [tradeVolume,vola1d,Cluster,shortsale,price]=
market(version,trade,histVola,opinionProp,short,T,agents,p)

% This function simulatates an agent-based financial market
% INPUTS are: 'new' or 'old' market model (as a string); activate (1) or
% deactivate (0) the model features: trading, historic volatility, opinion
% propagation and shortselling; number of timeperiods T to be simulated and
% number of agents in the model; finally 0 or 1 for graphical plots
% sample inputs are: market('new',1,1,1,1,500,400,1);

% OUTPUTS are: trading Volume in the market, the daily volatility, the
% number of agents in clusters, number of shortsales and the price proces

tic

%% Model Features
TRADING = trade;
HISTORICAL_VOLATILITY = histVola;
OPINION_PROPAGATION_CLUSTERS = opinionProp;
SHORTSELLING=short;
PLOTS=p;
if strcmp(version,'new')
 NEWMARKET=1;
 else NEWMARKET=0;
end;

%% Parameter Initialisation

global agent;
global t;
global globalBuyProb;
global clusterPairProbability;
global clusterActivateProbability;
global activatedClusterSize;
global clusters;
global buySigmaK;
global sellSigmaK;
global timeSteps;
global N;
global stockPrice;

timeSteps = T;
N = agents;
PercentageDone = 0;
% set global market parameters
stockPrice = ones(timeSteps,1);
activatedClusterSize = zeros(timeSteps,1);
clusters = zeros(N,1); % maximum number of possible clusters: N/2
clusterPairProbability = 0.0001;
clusterActivateProbability = 0.2;
tradeVolume = zeros(timeSteps,1);
vola1d=zeros(timeSteps,1);
shortsale=zeros(timeSteps,1);

Page 23 of 40

% set global agent parameters
globalBuyProb = .5;
sellMu = 1.01;
sellSigmaK = 3.5;
buyMu = 1.01;
buySigmaK = 3.5;
shortSigma = 0.2;

% initializing the agents individual parameters
for n = 1:N
agent(n).cash = 1000;
agent(n).assets = 1000;
agent(n).volatSigma = 0.02;
agent(n).volatTimeInt = 50;
agent(n).buyProb = globalBuyProb;
agent(n).isBuyer = 0;
agent(n).isSeller = 0;
agent(n).buyCash = 0;
agent(n).buyQuant = 0;
agent(n).buyUpperLimit = 0;
agent(n).sellQuant = 0;
agent(n).sellLowerLimit = inf;
agent(n).cluster = 0; % if member of cluster: [clusternumber] | else: [0]
end

% running the cellular automaton if opinion propagatian is activated in the
% new model
if (OPINION_PROPAGATION_CLUSTERS && NEWMARKET==1)
Cells=automaton2(N,timeSteps,PLOTS);
end

%% Main Loop
for t = 1:timeSteps

%% Opinion Propagation in the old model
if OPINION_PROPAGATION_CLUSTERS && NEWMARKET==0
opinion_prop()
end

%% Opinions Propagation in the new model
if OPINION_PROPAGATION_CLUSTERS && NEWMARKET==1
 % passing the CA output to the opinion function, which returns a vector
 % of reset buy probabilites for all agents
 [buyProb,activatedClusterSize(t)]=opinion(Cells(:,:,t));
 for n = 1:length(buyProb)
 agent(n).buyProb=buyProb(n);
 end
end

for n = 1:N

%% Agent is Buyer or Seller during this time-step?
if rand(1)<agent(n).buyProb %randomly choosing buyers

Page 24 of 40

agent(n).isSeller = 0;
agent(n).isBuyer = 1;
% buyCash update: if short-selling is activated, then exceedance of current
% cash account is allowed (credit buying); else short-selling constraint
if SHORTSELLING
agent(n).buyCash = abs(normrnd(0.5,shortSigma))*agent(n).cash;
else agent(n).buyCash = rand(1)*agent(n).cash;
end
else %rest are sellers
agent(n).isSeller = 1;
agent(n).isBuyer = 0;
% sellQuant update: if short-selling is activated, then exceedance of
% current asset level is allowed; else short-selling constraint
if SHORTSELLING
agent(n).sellQuant = round(abs(normrnd(0.5,shortSigma))*agent(n).assets);
else agent(n).sellQuant = round(rand(1)*agent(n).assets);
end
% counting incidenct of short-selling
if agent(n).sellQuant>agent(n).assets
 shortsale(t)=shortsale(t)+1;
end
end

%% Historial Volatility
if HISTORICAL_VOLATILITY
hist_volat(n)
end

%% Agent buy or sell parameters
if (agent(n).isBuyer == 1)
agent(n).buyUpperLimit = stockPrice(t)*(normrnd(buyMu,agent(n).volatSigma));
agent(n).buyQuant = round(agent(n).buyCash/agent(n).buyUpperLimit);
else
agent(n).sellLowerLimit =
stockPrice(t)/abs(normrnd(sellMu,agent(n).volatSigma));
end

end

%% New Market Price
stockPrice(t+1) = price_formation(stockPrice(t));

%% Trading
if TRADING
tradeVolume(t)=trading();
end

if PLOTS
if PercentageDone ~= round(100*(t/timeSteps))
PercentageDone = round(100*(t/timeSteps))
end
end
end

Page 25 of 40

% Calculate 10d-averaged daily Volatility
voladays=10; %number of days to average the volatility
stockPriceReturnLog = log(stockPrice(2:end))-log(stockPrice(1:end-1));
%calculating log price returns

% calculation of the daily volatility
for i=1:(timeSteps-(voladays-1))
 vola1d(i+voladays-1)=std(stockPriceReturnLog(i:(i+voladays-
1)))/sqrt(voladays);
end

price=stockPrice(2:end); % the stock price process
Cluster=activatedClusterSize; % the cluster size process

%% PLOT THE DATA
if PLOTS
% plot options
figure('Name','Financial Market Summary')
hold on
% Stock price process
subplot(2,2,1)
plot(price)
title('Price Dynamics')
xlabel('Time')
ylabel('Price')
% Log return of the Stock price
subplot(2,2,2)
plot(100*stockPriceReturnLog)
title('Price Log Returns')
xlabel('Time')
ylabel('Log Returns in %')
% Probplot of the log price return
subplot(2,2,3)
probplot(stockPriceReturnLog)
% Estimate of the PDF
subplot(2,2,4)
ksdensity(stockPriceReturnLog)
title('Density of Log-Returns')
xlabel('Data')
ylabel('Frequency')
hold off

% Plot Clusters vs. Volatility
figure('Name','Agents in Clusters and Volatility')
AX=plotyy(voladays:timeSteps,activatedClusterSize(voladays:timeSteps),volada
ys:timeSteps,100*vola1d(voladays:timeSteps));
set(get(AX(1),'Ylabel'),'String','Agents in Clusters')
set(get(AX(2),'Ylabel'),'String','Volatility in %')
xlabel('Time')

end
toc
end

Page 26 of 40

opinion_prop.m

function [] = opinion_prop()
% This function forms clusters amongst agents by resetting their buy
% probabilites to obtain "sure buyers" and "sure sellers".
% NOTE: This is the opinion propagation mechanism for the OLD model only

global agent
global N
global t
global globalBuyProb
global clusterPairProbability
global clusterActivateProbability
global activatedClusterSize
global clusters

%% Pairing: defining which agents belong to a cluster

% Reset last buyProb at first (changed for activated clusters)
agent(N).buyProb = globalBuyProb;

for i = 1:N-1
% Reset all buyProb to globalBuyProb (changed for activated clusters)
agent(i).buyProb = globalBuyProb;
for j = i+1:N
% form pair with Pa
if rand(1)<clusterPairProbability && ...
((agent(i).cluster~=agent(j).cluster) || agent(i).cluster==0)
% form pair:
% if i agent is member of cluster:
% set j agent (and all his cluster members)
% to i cluster (and free j cluster)
if agent(i).cluster~=0
if agent(j).cluster~=0
clusters(agent(j).cluster)=0;
clusterToChange = agent(j).cluster;
for k = 1:N
if agent(k).cluster==clusterToChange
agent(k).cluster=agent(i).cluster;
end
end
end
agent(j).cluster=agent(i).cluster;
% elseif j agent is member of cluster (and i is not):
% set i agent to j cluster
elseif agent(j).cluster~=0
agent(i).cluster = agent(j).cluster;
% else
% form new cluster and reserve slot in cluster-arr
else
k = 1;
while clusters(k)~=0; k=k+1; end
%if k ~= 1; keyboard; end
clusters(k)=1;
agent(i).cluster = k;

Page 27 of 40

agent(j).cluster = k;
end
end
end
end

%% Cluster activation: activate a single cluster of agents
if rand(1)<clusterActivateProbability
% find nonzero clusters
activeClusters = find(clusters);
% random draw of a cluster (first element after randperm)
randElemNum = randperm(length(activeClusters));
%activeClusters = randperm(activeClusters);
% activate the cluster
if ~isempty(activeClusters)
if rand(1)<0.5
buyProb = 0;
else
buyProb = 1;
end
tempSum = 0;
for k = 1:N
if agent(k).cluster == activeClusters(randElemNum(1));
agent(k).buyProb = buyProb;
agent(k).cluster = 0; % leave cluster
tempSum = tempSum + 1;
end
end
activatedClusterSize(t) = tempSum;
if activatedClusterSize > 0.95*N
%keyboard % Too big a cluster was activated
end
clusters(activeClusters(randElemNum(1)))=0; % free cluster
end
end

end

Page 28 of 40

opinion.m

function [buyProb,sum]=opinion(Cells)
% identifying clusters in Cellular Automaton output and randomly resetting
% buy Probability of agents in that cluster

% INPUT: a n-by-n matrix coming from the CA output with
% n*n=N, the total number of agents in the market model

% OUTPUT: a vector of length N with buy probabilites for all agents
/buyProb) as
% well as the number of agents in clusters (sum)

% number of agents in the model
N=length(Cells)^2;

% indentifying the clusters in the CA
% output and counting the number of clusters
[Cluster,numb]=bwlabel(Cells);

buyProb=ones(N,1)/2;
sum=0;
% extracting each cluster of agents and its sizes
for i=1:numb
 %returning the vector of cluster members
 a = find(Cluster==i);
 size=length(a);
 sum=sum+size;
 % randomly allocating buyers/sellers
 if rand(1)<0.5
 buy=0;
 else buy=1;
 end
 for k=1:size
 buyProb(a(k))=buy;
 end
end
end

Page 29 of 40

hist_volat.m

function [] = hist_volat(n)
% This function resets the nth agent's historic volatility
% INPUT: agent number
%
% OUTPUT: none
%

global agent
global t
global stockPrice
global buySigmaK
global sellSigmaK

%calculate volatSigma
if t==1
agent(n).volatSigma = 0;
else
if t < agent(n).volatTimeInt
stockPricesRecent = stockPrice(1:t);
logPriceReturn = log(stockPricesRecent(2:end)./stockPricesRecent(1:end-1)
);
else
stockPricesRecent = stockPrice(t-agent(n).volatTimeInt+1:t);
logPriceReturn = log(stockPricesRecent(2:end)./stockPricesRecent(1:end-1)
);
end
if (agent(n).isBuyer == 1)
agent(n).volatSigma = buySigmaK * std(logPriceReturn);
else
agent(n).volatSigma = sellSigmaK * std(logPriceReturn);
end
end

Page 30 of 40

Automaton2.m

function[ClusterDynamics]=automaton2(agents,periods,plot)

%This function uses a stochastic cellular automaton to model cluster
%building amongst all agents over the specified time horizon

tic

%Parameter SetUp:

Lines 10 - 21:

pini=0.15;
p=1;
pr=1;
pd=0.6;
pn=0.0003;
pdest=0.1;

N=round(sqrt(agents));
T=periods;

densl=0.85;
densg=0.25;

PLOTS=plot;

% Initialisations

Lines 27 - 29:

ClusterDynamics=zeros(N,N,T);
Cells=zeros(N+2,N+2);
Cells(2:N+1,2:N+1)=(rand(N,N)<pini);

% Row/column indices set up

Lines 34 - 39:

up=(1:N);
down=(3:N+2);
center_rows=(2:N+1);
left=(1:N);
right=(3:N+2);
center_cols=(2:N+1);

if PLOTS
figure('Name','Agent Cluster Dynamics')
subplot(1,2,1)
imagesc(Cells(center_rows,center_cols))
colormap(gray)

Page 31 of 40

title('Initial state')
drawnow;
end

for i=1:T

Lines 57 – 89:

% Local Cluster Limitations

 % Three upper squares:

 if sum(sum(Cells(2:round(N/3)+1,2:round(N/3)+1)))> ((N/3)^2)*densl &&
rand()<pdest
 Cells(2:round(N/3)+1,2:round(N/3)+1)=rand(round(N/3),round(N/3))<pini;
 end;
 if sum(sum(Cells(2:round(N/3)+1,round(N/3)+2:round(N/3)*2)+1))>
((N/3)^2)*densl && rand()<pdest

Cells(2:round(N/3)+1,round(N/3)+2:round(N/3)*2+1)=rand(round(N/3),round(N/3)
)<pini;
 end;
 if sum(sum(Cells(2:round(N/3)+1,round(N/3)*2+2:round(N/3)*3+1)))>
((N/3)^2)*densl && rand()<pdest

Cells(2:round(N/3)+1,round(N/3)*2+2:round(N/3)*3+1)=rand(round(N/3),round(N/
3))<pini;
 end;

 % Three middle squares:

 if sum(sum(Cells(round(N/3)+2:round(N/3)*2+1,2:round(N/3)+1)))>
((N/3)^2)*densl && rand()<pdest

Cells(round(N/3)+2:round(N/3)*2+1,2:round(N/3)+1)=rand(round(N/3),round(N/3)
)<pini;
 end;
 if
sum(sum(Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)+2:round(N/3)*2+1)))>
((N/3)^2)*densl && rand()<pdest

Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)+2:round(N/3)*2+1)=rand(round(N/
3),round(N/3))<pini;
 end;
 if
sum(sum(Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)*2+2:round(N/3)*3+1)))>
((N/3)^2)*densl && rand()<pdest

Cells(round(N/3)+2:round(N/3)*2+1,round(N/3)*2+2:round(N/3)*3+1)=rand(round(
N/3),round(N/3))<pini;
 end;

 % Three lower squares:

Page 32 of 40

 if sum(sum(Cells(round(N/3)*2+2:round(N/3)*3+1,2:round(N/3)+1)))>
((N/3)^2)*densl && rand()<pdest

Cells(round(N/3)*2+2:round(N/3)*3+1,2:round(N/3)+1)=rand(round(N/3),round(N/
3))<pini;
 end;
 if
sum(sum(Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)+2:round(N/3)*2+1)))>
((N/3)^2)*densl && rand()<pdest

Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)+2:round(N/3)*2+1)=rand(round(
N/3),round(N/3))<pini;
 end;
 if
sum(sum(Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)*2+2:round(N/3)*3+1)))
> ((N/3)^2)*densl && rand()<pdest

Cells(round(N/3)*2+2:round(N/3)*3+1,round(N/3)*2+2:round(N/3)*3+1)=rand(roun
d(N/3),round(N/3))<pini;
 end;

Lines 93 – 104:

%Neighbourhood information storage

 aga=Cells(up,left);
 agb=Cells(up,center_cols);
 agc=Cells(up,right);

 agd=Cells(center_rows,left);
 age=Cells(center_rows,right);

 agf=Cells(down,left);
 agg=Cells(down,center_cols);
 agh=Cells(down,right);

 ag=Cells(center_rows,center_cols);

% Automaton clustering rules

Lines 108 – 113:

 Cells(center_rows,center_cols)= max((((ag==1)&rand(N,N)<p|...
 (agb==1) & (agd==1) & rand(N,N)<pr|...
 (age==1) & (agg==1) & rand(N,N)<pr|...
 (agd==1) & (agg==1) & rand(N,N)<pr|...
 (agb==1) & (age==1) & rand(N,N)<pr|...
 rand(N,N)<pn)...
Lines 114 - 121:

 -((ag==1) & (aga==1) & (agb==1) & (agd==1)
& (agf==1)&...

Page 33 of 40

 (agg==1) & (agc==0) & (age==0) & (agh==0)
& rand(N,N)<pd)...
 -((ag==1) & (agb==1) & (agc==1) & (age==1)
& (agh==1)&...
 (agg==1) & (aga==0) & (agd==0) & (agf==0)
& rand(N,N)<pd)...
 -((ag==1) & (agd==1) & (aga==1) & (agb==1)
& (agc==1)&...
 (age==1) & (agf==0) & (agg==0) & (agh==0)
& rand(N,N)<pd)...
 -((ag==1) & (agd==1) & (agf==1) & (agg==1)
& (agh==1)&...
 (age==1) & (aga==0) & (agb==0) & (agc==0)
& rand(N,N)<pd)), zeros(N,N));

% Global Cluster Limitations

Line 125:

 if (sum(sum(Cells)) > (N*N)*densg) && rand()<pdest
 Cells(center_rows,center_cols)=(rand(N,N)<pini);

 end;

 Cells2=Cells(center_rows,center_cols);

 ClusterDynamics(:,:,i)=Cells2;

 if PLOTS
 subplot(1,2,2)
 imagesc(Cells2)
 colormap(gray)
 title('Dynamics over time')
 drawnow;
 end

end

toc
end

Page 34 of 40

price_formation.m

function [p] = price_formation(marketPriceLast)
% this function balances supply and demand to determine the current market
% price from the previous market prices

% INPUT: the price in period t-1

% OUTPUT: the price in period t

%% Price Formation
pLower = 0;
pUpper = 10*marketPriceLast;

% check whether demand f(pLower)>g(pLower) supply AND f(pUpper)<g(pUpper) at
beginning
% exit with old price if not
[f1,g1] = supply_demand(pLower);
[f2,g2] = supply_demand(pUpper);
if f1<=g1
p = 0;
elseif f2>=g2
p = 10 * marketPriceLast;
else
pTest = (pUpper+pLower)/2;
[f,g] = supply_demand(pTest);
while((pUpper-pLower)>marketPriceLast/1000 && f~=g)
pTest = (pUpper+pLower)/2;
[f,g] = supply_demand(pTest);
if f>g
pLower=pTest;
else
pUpper=pTest;
end
end
p = pTest;
end
end

Page 35 of 40

supply_demand.m

function [f,g] = supply_demand(p)

%This function determines the supply and demand for a given market price

% INPUT: the current market price p

% OUTPUT: the aggregate demand and aggregate supply in the market model

global agent
global N

%% Supply/Demand values for given price p
f = 0;
g = 0;
for n = 1:N

%% Buy orders if agent is buyer and reservation price >= marketprice
if (agent(n).buyUpperLimit>=p)&&(agent(n).isBuyer)
f = f + agent(n).buyQuant;

%% Sell orders if agent is seller and reservation price <= marketprice
elseif (agent(n).sellLowerLimit<=p)&&(agent(n).isSeller)
g = g + agent(n).sellQuant;

end

end

end

Page 36 of 40

trading.m

function [Volume] = trading()
% This function is simulating the trading mechanism
% INPUT: none required
%
% OUTPUT: the volume of trades conducted in this period
%

global agent
global t
global N
global stockPrice

% lower bound of stocks to trade
[f,g] = supply_demand(stockPrice(t+1));
Volume = min(f,g);
tradedSell(t) = 0;
tradedBuy(t) = 0;
for n = 1:N
 if agent(n).isSeller == 1
 if stockPrice(t+1)>=agent(n).sellLowerLimit && tradedSell(t)<Volume
 % This seller sells
 numAssetsToSell = min(agent(n).sellQuant, Volume-tradedSell(t));
 agent(n).assets = agent(n).assets-numAssetsToSell;
 tradedSell(t) = tradedSell(t) + numAssetsToSell;
 agent(n).cash = agent(n).cash + (numAssetsToSell * stockPrice(t+1));
 end
 else
 if stockPrice(t+1)<=agent(n).buyUpperLimit && tradedBuy(t)<Volume
 % This buyer buys
 numAssetsToBuy = min(agent(n).buyQuant, Volume-tradedBuy(t));
 agent(n).assets = agent(n).assets+numAssetsToBuy;
 tradedBuy(t) = tradedBuy(t) + numAssetsToBuy;
 totalBuyPrice = numAssetsToBuy * stockPrice(t+1);
 agent(n).cash = agent(n).cash - totalBuyPrice;
 end
 end
end

Page 37 of 40

MarketsAnalysis.m

% To systematically compare the new model (CA opinions) with the old market
and to interpret results
% The analysis is conducted over different model sizes (i.e. number of
agents)

clear all
close all
clc
tic

% Enabling Features of the Markets
trading = 1; %trading
historicVola = 1; %historic vola
opinionPropagation = 1; %opinion prop
short = 1; %allows shortselling

% simulation periods
T=500;
% number of agents
start = 400;
finish = 80;
steps = -40;
loops = (finish-start)/steps+1;
irrel = 0;
threshold = 50; % non-plotting values

% initializing output variables
volume=zeros(T,loops);
vola=zeros(T,loops);
clusters=zeros(T,loops);
shortsales=zeros(T,loops);
price=zeros(T,loops);
volume2=zeros(T,loops);
vola2=zeros(T,loops);
clusters2=zeros(T,loops);
shortsales2=zeros(T,loops);
price2=zeros(T,loops);
voladays=10;

%Main Loop
figure('Name','new versus old model')
for d=start:steps:finish
 i=(d-start)/steps+1;
 % running both models with d number of agents
[volume(:,i),vola(:,i),clusters(:,i),shortsales(:,i),price(:,i)]=market('new
',trading,historicVola,opinionPropagation,short,T,d,0);
[volume2(:,i),vola2(:,i),clusters2(:,i),shortsales2(:,i),price2(:,i)]=market
('old',trading,historicVola,opinionPropagation,short,T,d,0);
%plotting volatility outputs
Amax=max(max(vola));
Bmax=max(max(vola2));
scale=max(Amax,Bmax)*100*1.2;
subplot(1,2,1)

Page 38 of 40

title('new model')
hold on
plot(vola(voladays:T,:)*100)
axis([voladays,T,0,scale])
s{i} = sprintf('Agents %i', d);
legend(s)
xlabel('Time')
ylabel('Daily volatility in %')

subplot(1,2,2)
title('old model')
hold on
plot(vola2(voladays:T,:)*100)
axis([voladays,T,0,scale])
legend(s)
xlabel('Time')
% counting the non-plotting values
if d<threshold
 irrel=irrel+1;
end
pause(0.05)
end

legend(s)
hold off

% creating a volatility surface with the new model data
figure('Name','Volatility Surface: new model')
surf(vola(voladays:T,1:loops-irrel)*100,'DisplayName','Volatility Surface')
title('Volatility Surface w.r.t. Agents: new model')
xlabel('Agent-Loop')
ylabel('Time')
zlabel('Daily volatility in %')

% creating a volatility surface with the old model data
figure('Name','Volatility Surface: old model')
surf(vola2(voladays:T,1:loops-irrel)*100,'DisplayName','Volatility Surface')
title('Volatility Surface w.r.t. Agents: old model')
xlabel('Agent-Loop')
ylabel('Time')
zlabel('Daily volatility in %')

% displaying the average volatility in the two markets
figure('Name','Average Market Volatility')
plot(start:steps:finish,nanmean(vola)*100,start:steps:finish,nanmean(vola2)*
100)
title('Average Market Volatility w.r.t. Agents of the two models')
legend('new model','old model');
xlabel('Agents')
ylabel('Daily volatility in %')

toc

Page 39 of 40

Trajectories.m

% To systematically compare the new model (CA opinions) with the old market
and to interpret results
% The analysis is conducted to test the stability of the models over
multiple runs

clear all
close all
clc
tic

% Enabling Features of the Markets
trading = 1; %trading
historicVola = 1; %historic vola
opinionPropagation = 1; %opinion prop
short = 1; %allows shortselling

T = 1000; %simulation periods
agents=200; %number of agents
loops=10; %specify the number of runs

% initializing output variables
volume=zeros(T,loops);
vola=zeros(T,loops);
clusters=zeros(T,loops);
shortsale=zeros(T,loops);
price=ones(T,loops);
volume2=zeros(T,loops);
vola2=zeros(T,loops);
clusters2=zeros(T,loops);
shortsales2=zeros(T,loops);
price2=zeros(T,loops);
voladays=10;

%Main Loop
figure('Name','new versus old model')
for i=1:loops
 % running both models in each loop

[volume(:,i),vola(:,i),clusters(:,i),shortsale(:,i),price(:,i)]=market('new'
,trading,historicVola,opinionPropagation,short,T,agents,0);

[volume2(:,i),vola2(:,i),clusters2(:,i),shortsales2(:,i),price2(:,i)]=market
('old',trading,historicVola,opinionPropagation,short,T,agents,0);
%plotting volatility outputs
Amax=max(max(vola));
Bmax=max(max(vola2));
scale=max(Amax,Bmax)*100*1.2;
s{i} = sprintf('Loop %i', i);
subplot(2,2,1)
title('new model vola')
hold on
plot(vola(voladays:T,:)*100)
axis([voladays,T,0,scale])

Page 40 of 40

legend(s)
xlabel('Time')
ylabel('Daily volatility in %')

subplot(2,2,2)
title('old model vola')
hold on
plot(vola2(voladays:T,:)*100)
axis([voladays,T,0,scale])
legend(s)
xlabel('Time')
ylabel('Daily volatility in %')
%plotting cluster outputs
subplot(2,2,3)
title('new model clusters')
hold on
plot(clusters(voladays:T,:))
xlabel('Time')
ylabel('Cluster Members')

subplot(2,2,4)
title('old model clusters')
hold on
plot(clusters2(voladays:T,:))
xlabel('Time')
ylabel('Cluster Members')
pause(0.05)

end
hold off

% plotting the price paths in both models
figure('Name','Price Trajectories new model')
plot(price(1:T-1,:));
xlabel('Time')
ylabel('Price Dynamics')
legend(s)
figure('Name','Price Trajectories old model')
plot(price2(1:T-1,:));
xlabel('Time')
ylabel('Price Dynamics')
legend(s)

	Agreement for free-download
	Table of content
	1. Individual contributions
	2. Introduction and Motivations
	3. Description of the Model
	4. Implementation
	4.1. The agent-based financial market model
	4.2. The Cellular Automaton
	4.3. The market analysis toolkit
	5. Simulation Results and Discussion
	5.1. Empirical Data vs. Model Simulation
	5.2. Analyzing stylized facts
	5.3. Stability Analysis over Model Features
	5.4. Stability Analysis over Model Size
	6. Summary and Outlook
	7. References
	8. Appendix

