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1 Individual contributions

The entire report was created in a cooperative manner.

2 Introduction and Motivations

Social networks play an important role in many people’s life. Especially in the last
years social online communities like Facebook increased in size rapidly. In such a
network, people have up to thousands of friends and opinions can spread quickly.
By stating your opinion publicly, you influence and eventually change the opinions
of people connected to you. For that reason social online networks became highly
interesting for many applications in economy and politics. For instance, this notably
could be seen by the 2008’s American presidential election, where campaigns for the
candidates were extended to social networks. For future elections, such networks
might play an even more important role than today.

In this report, we like to study, how such social online networks can be modelled
and how opinion formation can be influenced. We studied two research articles
about the subject opinion formation.
In ”Minorities in a Model for Opinion Formation” [LZ04] a continuous model for
opinion formation was explored to investigate how the final opinion distribution de-
pends on the choice of different model parameters. The model was presented in
[WN02] and is referred as ”bounded confidence model”. In ”Opinion Formation by
Informed Agents” [AA10] a continuous and network-based model for opinion for-
mation with informed agents was proposed. Informed agents are common people,
indistinguishable from usual agents. They try to shift the public opinion towards a
desired direction. Therefore they pretend to have an opinion similar to their neigh-
bors’ opinions to gradually change the opinion of the individuals in their neighbor-
hood. In [AA10] the influence of informed agents in different network structures and
parameter settings was analyzed.

In this report, we consider a continuous and network-based model for opinion forma-
tion with employed agents. It is based on the bounded confidence model described
in [LZ04]. Employed agents are entities in a network, which are hired by some party
to advance a particular view and to argue for that view in their neighborhood. We
like to investigate the influence of employed agents on opinion formation in different
network structures. In particular, we like to run simulations on real world friendship
graphs from the Facebook networks of several American universities. Moreover, we
want to run the same simulations on generated graphs with similar characteristics
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to explore to which extend generated graphs can be used to approximate real world
friendship networks.
Finally, we analyze the impact of a particular selection strategy. Therefore, a simple
greedy strategy for selecting the employed agents is compared to a strategy which
chooses them randomly.
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3 Description of the Model

3.1 Bounded confidence model

In the bounded confidence model as described in [LZ04], there is a fixed size popula-
tion of agents. Each agent has an opinion x(t) ∈ [0, 1] at time t. There exists a global
threshold u which is referred as ”uncertainty level” in [AA10]. At each time step t,
two randomly chosen agents xA and xB meet and interact if the difference between
their opinions is smaller than their uncertainty level, i.e. if |xA(t) − xB(t)| < u. If
the two agents interact, they change their opinions according to the following update
rules:

xA(t+ 1) = xA(t) + µ · (xB(t)− xA(t))

xB(t+ 1) = xB(t) + µ · (xA(t)− xB(t)),

where the constant µ ∈ (0, 1) is the model’s convergence factor which corresponds to
the influence the two agents have on each other’s opinion. In [AA10] the convergence
parameter µ was chosen from the interval (0, 0.5]. For µ = 0.5 two agents agree on
the same opinion after one single interaction.

Note that the average of the opinions of two interacting agents is the same before
and after an interaction, therefore the bounded confidence model cannot be used to
investigate a shift in the community’s opinion of a social network.

3.2 Informed agents extension

Mohammad Afshar and Masoud Asadpour describe in [AA10] an extension of the
bounded confidence model. As setting they choose a graph structure where each
node corresponds to an agent. Every agent has an opinion x ∈ [−1, 1] and an un-
certainty level u. The population is divided into two groups named majority and
informed agents. The informed agents try to change the public opinion towards +1.
Moreover, informed agents are indistinguishable from the majority, i.e. an agent A
interacting with an agent B cannot decide whether B is an informed agent or not.

Two agents can only interact with each other if there is an edge connecting them in
the underlying graph structure. At each time step t an agent A is chosen at random
and from A’s neighborhood an agent B is selected randomly. The two agents interact
with each other if |xA(t)− xB(t)| < uA, similar to the bounded confidence model.
The update rule for the opinion change is more fine grained. Each agent has a social
force which corresponds to the will to accept a neighbors’ opinion, and a self force
which reflects the will to keep its own opinion. Informed agents have an negligible
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self-force in order to be in higher conformance with their neighbors. Additionally,
informed agents have a goal force conforming to their motivation to change other
agents’ opinions.

3.3 Our proposal

In our proposed model, the community is modeled as an undirected graph with n
nodes. Each nodes corresponds to an agent which has an opinion between −1 and
+1. The set of agents is partitioned into two groups: normal and employed agents.
The employed agents are entities which are hired by some party to hold the opinion
+1 and to do as much as they can to change other agents’ opinions towards +1. For
instance, a company could pay some users of a social online community like Facebook
to agree about a topic and to try to convince their friends of that view. For that
reason, in each interaction with another agent, an employed agent pretends to have
an opinion as close to +1 as possible to be able to interact with that agent, i.e. if
an employed agent E meets a normal agent A with opinion xA, E pretends to have
the opinion min(xA + u, 1), where u ∈ (0, 1) is the global threshold as described in
the bounded confidence model. The initial opinions of the normal agents are chosen
uniformly at random from [−1, 1].

At each time step t, an agent xA and one of its neighbors xB is chosen at random.
Depending on their types, there are different update rules to be applied:

(a) Two normal agents meet:
If the difference between their opinions is smaller than the uncertainty level,
both agents change their opinions, i.e. if |xA(t)−xB(t)| < u holds, their opinions
are updated as follows:

xA(t+ 1) = xA(t) + µ · (xB(t)− xA(t))

xB(t+ 1) = xB(t) + µ · (xA(t)− xB(t))

(b) A normal and an employed agent meet:
Without loss of generality assume A is the employed agent. Agent A pretends
to have an opinion xA(t) = min(xB(t) + u, 1). The two agents interact as
described in (a) but A’s opinion doesn’t change, i.e. A’s opinion is reset to +1
after the interaction.

(c) Two employed agents meet:
Nothing happens.

Note some differences between the informed agents described in [AA10] and the pro-
posed employed agents: At first, employed agents are a group of explicitly hired
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entities, whereas informed agents are independent individuals. Moreover, in con-
trast to informed agents, employed agents are not completely indistinguishable from
normal agents, since normal agents could exchange information about opinions of
former interaction partners and may detect employed agents. Furthermore, an em-
ployed agent satisfies the interaction condition for all its neighbors at any point in
time. However, an informed agent changes his opinion in course of meetings. Hence,
he may become unable to fulfill the interaction condition with some of his neighbors.
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4 Implementation

For the implementation of our proposed model, the generation of the random graphs
as well as for the statistics and plots, MathWorks Matlab1 has been used.
The most important part of the Matlab code, written for this project, is the imple-
mentation of the simulation process of the proposed employed agent model. As we
want to run this part for various parameters as well as for a large number of time
steps and a moderately large number of agents, i.e. nodes in the underlying graph,
the performance of this part of the implementation is crucial for the overall runtime.
Furthermore, one fixed simulation setup has to be run several times to investigate
the average value for that parameter setting.

The two main techniques that have been used for writing code with good perfor-
mance are vectorization[Mat] and parallelization. For the latter, Matlab’s Parallel
Computing Toolbox has been used. Moreover we used Matlab’s Profiler to find bot-
tlenecks in our code. Despite all that, we tried to keep the code clean and well
structured by following many of the advices given in Richard Johnson’s MATLAB
Programming Style Guidelines[Joh].

4.1 Model for graphs and generation

4.1.1 Real world graphs

As we want to simulate our model on both randomly generated and real world graphs,
the first goal was to get some real world data of social networks, preferably of a so-
cial networking service like Facebook. It turned out that the data published with
”Social Structure of Facebook Networks” [TKMP10] is a great resource for these
purposes. Those data sets from September 2005 contain the full friendship graphs
of 100 American colleges and universities; the graphs contain only intra-school links.
Moreover, the datasets include further information like gender and graduation year
of each person. We didn’t use that information, but it could be interesting for future
research. The sizes of the provided networks vary between 769 and 41, 554 nodes. We
restricted our investigations to six of those networks. We chose the three networks
with the smallest and the three with the largest number of nodes.

Furthermore, we decided to only consider the largest connected component for each
network. One reason for this is that it’s easier to define the average shortest path
in a graph where each node is connected via a path to every other node. Another
reason is that selecting an employed agent out of a very small connected compo-

1Version R2010b
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nent could dramatically increase the variance of the results. An employed agent in
a very small connected component can influence only a very small number of other
agents, whereas an agent in a network consisting of just one connected component
can at least theoretically influence (directly or indirectly through its neighborhood)
every other agent’s opinion. However, restricting the network to the largest com-
ponent does only exclude less than 1% of the nodes for the case of our considered
real world networks. Hence, it cannot change the results significantly, as with less
than 1% of the nodes dropped, the worst case absolute change of the community’s
average opinion is less than 0.02. This can be easily calculated by assuming that
the discarded agents all have opinion −1, while the majority, i.e. the agents as-
sociated with the nodes in the largest connected component all have opinion +1:
|(1.00 · (+1)− (0.01 · (−1) + 0.99 · (+1))| = 0.02.
Choosing six networks as described above and discarding nodes that were not con-
nected to the largest component, we obtained graphs of sizes 762, 962 and 1, 510
resp. 35, 111, 36, 364 and 41, 536. These networks will be referred as small resp.
large real world graphs.

4.1.2 Random graphs

The generated random graphs on which we will compare the employed agents model
to the real world networks are generated using the same three different models that
have been used in [AA10]: random, scale-free and small-world.
The random networks are generated using a variant of the Erdős-Rényi model [Wik11b],
where each possible edge is included in the network with a fixed probability. The
scale-free networks are generated using the Barabási-Albert model as described in
[BA99]. For the small-world graphs we used the ”Watts and Strogatz model” as
illustrated in [WS98].

The parameters for the random graphs have been chosen such that they are similar
to characteristics of the real world graphs. Doing so, for each of the three random
graph models the size of the graphs to be generated is chosen as 1, 000 resp. 35, 000.
In addition, other parameters have been chosen in such a way that characteristic val-
ues for the graph structure like average number of edges per node, average shortest
path and clustering coefficient are similar to the real world networks. For a detailed
list of parameters used for generation see Table 1.
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Network Parameter Value

Number of nodes n 1000 35000

Random Probability of link creation between two nodes p 0.0401 0.0024

Scale-free Number of initially placed nodes m 21 39

Number of nodes a new added node is connected to m0 20 38

Small-world Average nodal degree k 40 76

Rewiring probability β 0.25 0.25

Table 1: Parameters used for graph generation
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Figure 1: Degree distribution for the small networks in log-log scale (x-axis: sorted order
of degree, y-axis: fraction of nodes having this degree)
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Figure 2: Degree distribution for the large networks in log-log scale (x-axis: sorted order
of degree, y-axis: fraction of nodes having this degree)

4.1.3 Generation of the graphs

Loading and generating graphs of up to about 42, 000 nodes, it was important to
represent the graphs in a data structure with size that is not quadratic in the num-
ber of nodes2. For that reason we used a symmetric sparse matrix to represent the
graphs.
For the real world graphs there was no generation. Moreover importing them to
Matlab was easy as they each were given as a sparse matrix saved to a .mat-file that
could be loaded by simply using Matlab’s ”load(...)” command.
Note that for the process of generating the random graphs it was not feasible to
construct the whole adjacency matrix represented as a full matrix, for the reason
mentioned above. Moreover ”inserting or removing a nonzero [into a sparse matrix]
may require extensive data movement”[GMS92], therefore insertions have been post-
poned by collecting non-zero entries in a column vector first and afterwards filling it

2Otherwise on a system where a variable of type double takes 8 Byte, an adjacency matrix for 42, 000
nodes would need 8 · 42, 0002 Byte = 14 GB of memory and therefore not fit into main memory of a typical
desktop PC
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in the sparse matrix as proposed by [GMS92]. This technique has been used in the
implementation of all three graph models, leading to much faster solutions then just
implementing the model in a naive way.

The implementation of the generation of random graphs where each edge is added
with a fixed probability can be found in the file ”generation/random graph.m”, while
the implementation of the scale-free and small-world models can be found in ”gen-
eration/scale free.m” resp. ”generation/small world.m”. For further details see the
fully commented implementations and the references describing the underlying mod-
els.

In total, we created six graphs, a small and a large one for each of the three types
of examined random graph models. As these graphs are fixed for all simulations,
we further wrote a wrapper function that returns the graph specified in its argu-
ments. It can be found in ”utility/get graph.m”. Once a graph has been created,
it is saved to a file. The next time this wrapper is called for the same parameters,
it loads and returns the already generated graph and therefore avoids the possibly
time-consuming process of constructing the graph again. Furthermore this wrapper
function saves both the random stream and its state for later verification that the
used graphs really have been generated using the described functions. The wrapper
function also works for the real world graphs for which it simply returns the graph
that is loaded from disk.

4.2 Statistics on the graphs

For calculation of characteristic values of a graph like the average number of edges
per node, the average shortest path or the clustering coefficient, we wrote the Matlab
function ”statistics/print statistics.m”:

statistics/print statistics.m

1 function print statistics(A)
2 % Print statics for a undirected, loop−free graph.
3 %
4 % INPUT
5 % A: [n n]: adjacency matrix
6

7 n = size(A, 1);
8 fprintf('number of nodes = %d\n', n);
9

10 m = nnz(A);
11 assert(mod(m, 2) == 0);
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12 fprintf('number of (undirected) edges = %d\n', m/2);
13

14 k = m/n;
15 fprintf('average node degree = %.4f\n', k);
16

17 maxDeg = max(full(sum(A)));
18 fprintf('maximum node degree = %d\n', maxDeg);
19

20 avgPathLength = average path length(A);
21 fprintf('average path length = %.4f\n', avgPathLength);
22

23 clusterCoeff = global clustering coefficient(A);
24 fprintf('global clustering coefficient = %.4f\n', clusterCoeff);
25

26 end % print statistics(...)

To compute the average path length [Wik11a] and the global clustering coefficient
[Wik11c] we wrote additional Matlab functions that can be found in ”statistics/av-
erage path length.m” and ”statistics/global clustering coefficient.m”. To speed up
computations, both implementations are using vectorization. Parallelizing loops can
improve things even more. In both implementations the outermost loop is running
from 1 to n and sums up over some values that are rather costly to compute but
free of side-effects. The following code illustrates how this code is accelerated using
Matlab’s Parallel Computing Toolbox:

Listing 1: Usual for-loop

1 acc = 0;
2 for i=1:n
3 acc = acc + f(i);
4 end

Parallelized for-loop

1 parfor i=1:n
2 a(i) = f(i);
3 end
4 acc = sum(a);

Even for our small graphs with 1, 000 nodes, on a dual core machine, this tech-
nique accelerated the calculation of both the average path length and the clustering
coefficient by a factor of about 1.7.

4.3 Implementation of employed agent model

For the reasons provided in the introduction of this chapter, this is the most time-
critical part of the implementation. There is a straightforward implementation of
the simulation part that would look like the following:
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1 for t=1:maxTime
2 a = randomAgent();
3 b = randomNeighbor(a);
4 updateOpinion(a, b);
5 end

This code won’t run very fast, as every step of the simulation is dependent on the
previous time step. Furthermore, there a are hidden conditional statements in ”up-
dateOpinion(a, b)”.

As explained before, the simulation has to be repeated several times using the same
parameter setting, in particular on the same graph. This leads to a simple but
effective optimization of the above given pseudo-code: instead of running a single
simulation, run m simulations simultaneously. In regard to the above code, one
should consider the variables a and b as vectors holding m entries instead of a single
one. The tic-toc-plot in Figure 3 shows the influence of m on the overall running
and the average running time per simulation for our final implementation:
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Figure 3: Impact of the parameter m, i.e. the number of simulations run ”in parallel”, on
the average running time of a single simulation (minimum tic-toc-timing over 3 runs using
Simmons81 graph and 755, 000 time steps)

Instead of vectorizing the time-loop, there are m different simulation steps performed
at every time step. These m steps are done only using vector operations, resulting
in a great improvement of the average running time per simulation. Moreover, the
final code updates the opinions without any conditional statements. For a detailed
explanation see the comments in the provided Matlab-code. The final simulation
code can be found in ”simulation/simulate.m”. A simplified version in pseudo-code
is shown in Figure 4.
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Simulate
convert the graph represented by a sparse matrix     
to a data structure that allows efficiently choosing
u.a.r. among a node's adjacent nodes  (→ simulation/convert_graph.m)
for each of the m simulations
   choose n0 employed agents
   set the employed agents' opinion to +1
   choose the normal agents' opinion u.a.r.
for t = [1:dt:maxTime]
   for each of the simulations
      choose dt pairs of agents to meet 
       in the next dt time steps      (→ simulation/generate_meetings.m)
   for i = [1:dt]                                                      
      simulate meeting at time t+i-1  (→ simulation/vectorized_simulate.m)
      update consensusTimeInformation                                
   if (consensus reached in all simulations) or (accumulated absolute
    change of opinion in the last dt steps is negligible)
      break
end

simulate m simulations in "parallel", 
check conditions for early break every dt time steps.

Figure 4: Pseudo-code for simulation/simulate.m

Similar to what we did for the generation of the graphs, we wrote a wrapper func-
tion for the simulation that can be found in ”simulation/simulate and store.m”. This
wrapper function writes the values returned by simulate(...) to a file. Furthermore
it saves both the random stream and its state to guarantee reproducibility.

We don’t make explicitly use of Matlab’s Parallel Computing toolbox for the simu-
lation. Instead the overall running time is decreased by running several independent
instances of simulate(...) in parallel.
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5 Simulation Results and Discussion

5.1 Experimental setup

In the experimental setup, some parameters will be fixed. One reason for fixing
them is that running the simulations for varying parameters in too many dimensions
would be too time consuming. Furthermore it would be much harder to visualize
respectively extract results having that many variables.

We define a basic setup: a simulation is run on a fixed network, an undirected
graph of n nodes representing n agents that can communicate if and only if they are
connected by an edge. For an overview of the graphs used in the simulations see
table 2. As described in section 3.3 the population of agents is partitioned into two
groups: there are no employed agents and n−n0 normal agents. At the beginning of
each simulation the n0 employed agents are chosen randomly. Each normal agent has
an initial opinion that is chosen uniformly at random from [−1, 1], while – according
to our model – employed agents have an initial opinion equal to +1. The simulation
is run for a maximal number of time steps tmax. We choose tmax := 500 · n, i.e. on
average every agent will communicate 1, 000 times with one of its neighbors. In each
time step two randomly chosen agents meet and update their opinion, see section 3.3.

There are two characteristics we will analyze: the average opinion of the whole pop-
ulation (i.e. including the employed agents) after tmax time steps and the number
of time steps it takes until ”consensus” is reached. In [AA10] consensus is defined
as ”Interpreting the opinion of each agent as his agreement (positive value) or dis-
agreement (negative value) on a subject, the consensus can be supposed as a situation
where most of the individual in the society agree or disagree on that subject. We say
consensus is reached when more than 90% of the society either all have positive opin-
ions (agree) or all have negative opinions (disagree).” We use a slightly modified
definition, only considering agreement, i.e. consensus is reached if at least 90% of
the community have positive opinions.
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Graph n m k kmax avgSP c

Random 1 000 20 169 40.34 65 2.15 0.0406

3 5000 2 901 630 82.90 120 2.82 0.0024

Scale-free 1 000 19 790 39.58 205 2.16 0.1048

35 000 2 658 518 75.96 1743 2.74 0.0118

Small-world 1 000 20 000 40.00 53 2.41 0.3240

35 000 1330 000 76.00 93 2.95 0.3133

Caltech36 762 16 651 43.70 248 2.34 0.4091

Reed98 962 18 812 39.11 313 2.46 0.3184

Simmons81 1 510 32 984 43.69 300 2.58 0.3166

UF21 35 111 1 465 654 83.49 8246 2.93 0.2212

Texas84 36 364 1 590 651 87.49 6312 2.90 0.1937

Penn94 41 536 1 362 220 65.59 4410 3.13 0.2118

Table 2: Characteristics of graphs used in simulations: n: number of nodes, m: number
of edges, k: average nodal degree, kmax: maximal nodal degree, avgSP : average shortest
path length, c: global clustering coefficient

5.2 Influence of the parameters µ and u

For the Facebook network Simmons81 (which has 1, 510 nodes) we choose 5% of the
agents to be employed agents, i.e. 76 agents are selected. The model parameters µ
and u are both varied between 0.1 and 0.5. Figure 5 resp. 6 show the average opinion
achieved after 500 · n = 755, 000 and 4, 000 · n = 6, 040, 000 time steps. Furthermore
the number of time steps until consensus is reached is shown in Figure 7. These and
all future simulations are all averaged over 32 runs, if not stated otherwise. Note
that Figure 7 is the result of simulating at most 8, 000 ·n time steps; nevertheless for
small values of µ and large values of u (e.g. µ = 0.1, u = 0.5) there is at least one
simulation where no consensus is reached after simulating 12, 080, 000 time steps.
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Figure 5: Average opinion after tmax = 500 · n = 755, 000 time steps for n0 = 0.05 · n = 76
using Simmons81 graph
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Figure 6: Average opinion after tmax = 4, 000 ·n = 1, 510, 000 time steps for n0 = 0.05 ·n =
76 using Simmons81 graph
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Figure 7: Time until consensus is reached for n0 = 0.05 · n = 76 using Simmons81 graph
and tmax = 8, 000 · n = 12, 080, 000

In Figure 6 one can see that for the Simmons81 Facebook network and a large tmax

decreasing values of u increase the average opinion at time tmax, while increasing
values of µ also increase the final average opinion, i.e. the average opinion and u are
negatively correlated, while the average opinion and µ are positively correlated.
Furthermore, comparing Figure 5 and 6 for µ ≥ 0.25 there is no big difference in
the average opinion after 500 · n and 4, 000 · n time steps. Moreover, averaged over
32 simulations for µ ≥ 0.25 consensus is reached in less than 500 · n steps (Fig.7).
At least for n0 = 0.05 · n and µ > 0.2 a larger tmax would not change the achieved
result significantly. The same simulations (but using less than 32 repetitions) gave
similar results using the other real-world graphs. Note that for different choices of
n0 a maximal achievable average opinion might not be reached within tmax = 500 · n
time steps, but that is not a problem: one might interpret tmax just as the num-
ber of times two agents communicate in a fixed period of time, e.g. in the last six
months before an election an agent on average communicates with 2·500 other agents.

The parameters µ and u are now being fixed: µ = 0.25 and u = 0.5. The con-
vergence factor µ can be interpreted as follows: let two normal agents A and B with
opinions xA < xB meet. If their opinions differ by ∆ = xB − xA < u, then after
interacting, A changes her opinion to xA + 0.25 · ∆, while B has xB − 0.25 · ∆ as
his new opinion. That is their opinion will then differ by 0.5 ·∆, i.e. the difference
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between their opinions is halved. An uncertainty level of u = 0.5 has the effect that
given an uniform distribution of the opinions (discarding employed agents), an agent
with opinion xA that satisfies −0.5 ≤ xA ≤ 0.5 will in expectation be influenced by
half of his neighbors.

Table 3 shows the parameters that have been fixed. In Figure 8, 9 and 10 one can
finally see a comparison for different values of µ and u for the evolution of the average
opinion resp. the fraction of people with positive opinion for a varying number of
employed agents n0.
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Figure 8: Average opinion and fraction of population with positive opinion for n0 = 0.01 ·
n = 15 using Simmons81 graph
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Figure 10: Average opinion and fraction of population with positive opinion for n0 =
0.10 · n = 151 using Simmons81 graph

5.3 Influence of the number of employed agents

The parameters µ, u and tmax are fixed for the following simulations. Table 3 gives
a summary. We run simulations for different values for n0, i.e. number of employed
agents, to investigate to which extend more employed agents yield to a higher average
opinion or an earlier consensus time.

Parameter Value

Convergence parameter µ 0.25

Uncertainty level u 0.5

Maximum number of timesteps tmax 500 · n

Table 3: Fixed parameters for following simulations

Figure 11 shows the final average opinion after tmax time steps for varying fractions of
employed agents for both small and large networks. The fraction of employed agents
has been varied between 0% and 2%. Both small and large random and real-world
networks follow the same trends. An increasing fraction of employed agents implies
a higher average opinion. The difference between the average opinion observed for a
fixed fraction of employed agents is rather small among the various random graphs.
Moreover, the average opinion achieved in the real-world networks is slightly below
the average opinion investigated for the random graphs. Increasing the fraction of
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employed agents to more than 1.5% doesn’t yield to a considerably enhancement in
the final average opinion of the population.
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Figure 11: Average opinion after tmax = 500 ·n time steps for varying fractions of employed
agents

In Figure 12 the percentage of simulations that did not reach consensus after maximal
tmax time steps for varying fractions of employed agents is shown. The maximal
considered fraction of employed agents has been chosen such that for all graphs
of the respective size and for all simulations consensus is reached. That is, the
maximal considered fraction is 1.5% for the small and 0.5% for the large networks.
For large real networks, especially large real-world networks, only a smaller fraction
of employed agents is needed to achieve consensus.
Different network types behave differently. In particular, the small-world graphs
tend to reach consensus for much smaller fractions of employed agents, while for
the real-world graphs on average a higher fraction of employed agents is needed to
decrease the number of simulations without consensus.
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Figure 12: Percentage of simulations that did not reach consensus after maximal tmax =
500 ·n time steps for varying fractions of employed agents (averaged over 1, 000 simulations
for the small and 100 simulations for the large graphs)

A reason for the small-world graphs to behave differently might be that their clus-
tering coefficient is significantly higher than the clustering coefficient of the other
random networks. This seems to lead to a community structure which favors opinion
formation, i.e. at the end of the process the majority of agents hold the same opinion.
Moreover, for the real-world networks a higher fraction of employed agents is needed
to achieve consensus compared to the random graphs. Although, those real-world
networks have a higher cluster coefficient than both the random and the scale-free
networks. A reason might be the distribution of the nodal degrees of the considered
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real-world networks (Fig. 13 and 14). For example the small graph Reed98 has
17.6%, the large graph UF21 has 9.6% nodes with degree less then 10. In contrast
such low-degree nodes don’t exist in the considered random graphs. Having only a
small number of neighbors, there are on average even less neighbors holding an opin-
ion within the uncertainty level. Therefore an agent with just one neighbor might
never change its opinion in the whole process of opinion formation.
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Figure 13: Histograms of grouped nodal degrees for small graphs: node k is in group i if
2i−1 ≤ deg(k) < 2i
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Figure 14: Histograms of grouped nodal degrees for large graphs: node k is in group i if
2i−1 ≤ deg(k) < 2i

Figure 15 shows the average time until consensus for varying fractions of employed
agents. The lowest considered fractions of employed agents has been chosen such that
consensus is reached in all simulations. With a higher fraction of employed agents the
number of interactions needed until consensus is reached decreases, independently of
the graph type. For a fixed fraction of employed agents, small-world networks need
the least number of interactions to reach consensus, whereas in the real-world net-
works the most number of interactions are needed. Possible reasons mentioned above.
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Figure 15: Average time until consensus for varying fractions of employed agents

Figure 16 and 17 illustrate how the average opinion and the fraction of population
with positive opinion changes over time for varying fractions of employed agents.
Scenarios with 0.5% resp. 1% employed agents are compared for the large networks.
For a fixed average opinion one observes that in the setting with 1% employed agents
it takes only about half the time to achieve this opinion compared to a setting with
just 0.5% employed agents.
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Figure 16: Propagation of opinion: interactions per agent against average opinion for 0.5%
and 1% employed agents
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Figure 17: Propagation of opinion: interactions per agent against fraction of population
with positive opinion for 0.5% and 1% employed agents

By doubling the fraction of employed agents from 0.5% to 1%, the number of time
steps needed to reach consensus is halved. The reason for the large slope (around
time step 400) increasing the fraction of population with positive opinion abruptly
from less than 0.55 to more than 0.95 is illustrated in Figure 18. It shows the result
of one single simulation for the UF21 graph. After 400 time steps per agent only
about one half of the population has a positive opinion. Most agents of the other
half have a negative opinion very close to zero. Being influenced by the agents with
positive opinion, their opinion is slightly increased and therefore the overall fraction
of agents with positive opinion increases rapidly.
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Figure 18: Distribution of opinion after 0, 200, 400 and 600 interactions per agent for one
single simulation and 1% employed agents using UF21 graph (x-axis: agents ranked by
their opinion, y-axis: opinion)

In Figure 19 a comparison of the results for small and large real-world networks can
be seen: Both the average opinion and the number of interactions until consensus
behave similarly for small and large graphs, that is there is no major difference ob-
servable.
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Figure 19: Direct comparison between results for small and large real-world networks:
average opinion after tmax time steps and average time until consensus for varying fractions
of employed agents

5.4 Impact of the selection strategy for employed agents

Investigating the development of the average opinion over time and the standard
deviation for different time steps (Fig.20), one observes that the standard deviation
for the scale-free and the real-world networks is greater than for the other network
types. One possible reason might be the wide distribution of nodal degrees for these
two network types3. Therefore, for a fixed fraction of employed agents, a strategy
for selecting them may yield to a better final average opinion and consensus might
be reached faster. A simple strategy for choosing n0 employed agents out of n agents
is to select the agents with the most neighbors. This strategy will be referred as
”greedy strategy”. For example when hiring employed agents, a party would proba-
bly prefer an agent having many social contacts over an ”outsider”.

3Scale-free networks show a power law degree distribution [Wik11d], the distributions of the real-world
networks follow similar trends
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Figure 20: Propagation of opinion: interactions per agent against average opinion for 1%
employed agents including vertical bars illustrating the standard deviation

In the following the previously described greedy strategy is compared with the ran-
dom selection of employed agents (Fig. 21, 22, 24). The greedy strategy indeed
yields to a large advance for the scale-free and real-world networks: using the new
strategy the same (small) fraction of employed agents leads to a much higher av-
erage opinion, e.g. using 0.2% employed agents for the real-world network UF21,
the final average opinion choosing the employed agents at random is 0.2 while the
greedy strategy leads to an average opinion of about 0.9 (Fig. 21). In contrast to all
considered random networks, using the greedy strategy on the real-world networks
doesn’t lead to an average opinion that is larger than 0.985 (at least when choosing
10% or less employed agents). More than that, increasing the fraction of employed
agents doesn’t necessarily increase the average opinion. For example in the Reed98
network, increasing the fraction from 0.8% to 1.0% (i.e. using 10 employed agents
instead of 8) decreases the average opinion from 0.961 to 0.957 (averaged over 1, 000
simulations). A possible reason for this small anomaly could be that some agents
increase the value of their opinion too fast to propagate their opinion change to
their neighborhood. As described before, the wide distribution of nodal degrees is
probably the reason why the greedy strategy performs much better for scale-free and
real-world networks: choosing the employed agents greedily increases the average
number of interactions per employed agent (Fig. 23). For the small-world and the
random network the improvement is rather small.
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Figure 21: Comparison of greedy selection strategy against random selection of employed
agents: average opinion after tmax = 500 · n time steps for varying fractions of employed
agents
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Figure 22: Comparison of greedy selection strategy against random selection of employed
agents: average time until consensus for varying fractions of employed agents
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Figure 23: Probability that exactly one employed agent is involved in a single interaction for
random selection (blue) and greedy selection strategy (red). (x-axis: fraction of employed
agents, y-axis: probability)
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Furthermore the greedy strategy leads for a fixed fraction of employed agents to a
smaller number of interactions per agent until consensus. Again, the most significant
decrease can be observed for the scale-free and the real-world networks. Compar-
ing the percentage of simulations without consensus for small fractions of employed
agents, one can see in Figure 24 that for 0.25%, i.e. 2 employed agents in the Reed98
graph consensus is reached in all simulations using the greedy strategy. Notably
using just a single employed agent (i.e. 0.10%) there were only 43 out of 1, 000 simu-
lations (i.e. 4.3%) where no consensus was reached. Similarly to the small real-world
network Reed98, in the large UF21 graph the smallest fraction of employed agents
for which all simulations reached consensus could be reduced from 0.5% to about
0.083%. Finally, Figure 25 illustrates the distribution of opinion as a function of
time. In both plots two main opinion streams emerge after a short period of time.
The opinions of the two streams drift towards +1 and join to one single main stream.
The greedy strategy accelerates this process.
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Figure 24: Comparison of greedy selection strategy against random selection of employed
agents: percentage of simulations that did not reach consensus after maximal tmax = 500·n
time steps for varying fractions of employed agents (averaged over 1, 000 simulations for
the small and 100 simulations for the large graphs)
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Figure 25: Distribution of opinion as a function of time for choosing employed agents
randomly (left) and greedily (right). Brighter colors indicate more agents.
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6 Summary and Outlook

In this report we described a continuous and network-based model for opinion for-
mation with employed agents. Employed agents are individuals which advance a
particular view and argue for that view in their neighborhood. Even a small fraction
of employed agents is able to convince the majority of their opinion. The strat-
egy for selecting the employed agents has an large impact on the propagation of
opinions. The greedily chosen employed agents cause a higher final average opin-
ion and consensus is reached faster. Using the greedy selection strategy, employed
agents turned out to be quite influential. A greedily chosen single employed agent
was able to cause consensus in a real-world network consisting of about 1, 000 agents.

Real-world and different types of random networks were compared using the con-
sidered model. Following a power-law distribution for its nodal degrees, the scale-
free networks yielded to a good approximation for the real-world graphs. The lack
of clustering compared to the real-world networks didn’t become noticeable in our
simulations. In contrast, the small-world graphs have higher clustering coefficients.
Together with the small variance of nodal degrees, consensus was reached faster than
in the real-world networks. Moreover, the considered random networks (generated
using the Erdős-Rényi model) have low clustering and a small variance of nodal de-
grees. Compared to the networks having a wider degree distribution, the greedily
selection of employed agents leaded to a smaller improvement. All analyzed random
graphs have a small average shortest path length, similar to the real-world graphs.
Although recognizing differences in these values we couldn’t spot a relation to the
different results. Finally, none of the considered random models produced nodes
having low degrees as observed in the real-world networks. This was noticeable, as
agents corresponding to those nodes can hardly be influenced.

As a possible interesting extension to our proposed model, one could allow sev-
eral groups of employed agents, which compete against each other. For example,
one could consider two groups of employed agents, where one group tries to influ-
ence the community’s opinion towards +1 and the other towards −1. Moreover, one
could add some properties like social force, self force and goal force to the agents,
as described in [AA10]. In combination with a more fine grained update rule, the
model would allow a more sophisticated characterization of individual agents. For
instance, the model could distinguish between opinion leaders and ordinary people,
which change their opinion more rapidly. Furthermore, we code assign weights to
the connections between agents, as this could possibly better characterize friendships
in social online networks. For example in the Facebook network, a person having
a dozen friends might have greater influence on one of her friends’ opinion than a
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person having thousands of people on his friend list. Finally, different strategies for
choosing employed agents could be analyzed. One might think of a strategy not only
using local information of the network (like the node degree) but also taking the
network’s topology into account.

38



7 Appendix

7.1 References

[AA10] Mohammad Afshar and Masoud Asadpour. Opinion formation by in-
formed agents. Journal of Artificial Societies and Social Simulation,
13(4):5, 2010.

[BA99] A. L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[GMS92] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices
in Matlab: Design and Implementation. SIAM J. Matrix Anal. Appl,
13:333–356, 1992.

[Joh] Richard Johnson. Matlab programming style guidelines. http://www.

datatool.com/downloads/matlab_style_guidelines.pdf.

[LZ04] Abramson G. Laguna, M. F. and D. H. Zanette. Minorities in a model
for opinion formation. Complexity, 9:31–36, 2004.

[Mat] MathWorks. Code vectorization guide. http://www.mathworks.com/

support/tech-notes/1100/1109.html.

[TKMP10] Amanda L. Traud, Eric D. Kelsic, Peter J. Mucha, and Mason A. Porter.
Comparing community structure to characteristics in online collegiate
social networks. SIAM Review, in press (arXiv:0809.0960), 2010.

[Wik11a] Wikipedia. Average path length — Wikipedia, the free encyclopedia,
2011. [Online; accessed 10-May-2011].
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7.4 Source code

7.4.1 Simulation

simulation/simulate.m
1 f unc t i on [ opinion , consensusTime , t , intermediateOpinion , employedAgent ] = . . .
2 s imulate (A, m, maxT, dt , n0 , mu0 , u0 , consensusFract ion , ep s i l on , . . .
3 employedAgent , get IntermediateOpin ion , breakOnConsensus , a c t i on )
4 % Perform a s imu la t i on o f the ”employed” agent model on a given graph.
5 % n : [ 1 ] : number o f agents
6 %
7 % INPUT
8 % A: [ n n ] : adjacency r ep r e s en t a t i on o f a graph de s c r i b i n g the connect i ons
9 % between agents , i . e . A( i , j ) i s 1 i f f the r e i s an edge between node i and j .

10 % A i s assumed to be symmetric .
11 % m: [ 1 ] : number o f s imu la t i on s done in p a r a l l e l
12 % maxT: [ 1 ] : maximal number o f time s t ep s s imulated
13 % dt : [ 1 ] : number o f time s t ep s done in a s i n g l e c a l l to v e c t o r i z e d s imu l a t e
14 % n0 : [ 1 ] : number o f employed agents , 0 <= n0 <= n.
15 % mu0, u0 : [ 1 ] / [m 1 ] : model c on s t an t s . E i ther a s i n g l e constant i s provided
16 % and used f o r every s imu la t i on or a vec to r conta in ing ( d i f f e r e n t ) cons tant s
17 % prov id ing the u and mu−va lue s f o r the d i f f e r e n t s imu la t i on s
18 % consensusFract ion : [ 1 ] : f r a c t i o n o f agents with p o s i t i v e op in ion needed f o r
19 % consensus to be reached
20 % employedAgent : empty / [ n0 m] : i f employedAgent i s empty , f o r every
21 % simula t i on the employed agents are s e l e c t e d uni formly at random. Otherwise
22 % the i−th row should be a subset o f s i z e n0 o f the numbers 1 to n
23 % correspond ing to the employed agent in s imu la t i on i
24 % ep s i l o n : [ 1 ] : i f average abso lu t e change over dt s imu la t i on s t ep s i s sma l l e r
25 % than ep s i l i o n , i . e . de l taOpin ion / dt < eps i l on , in a l l m s imu la t i on then
26 % stop the s imu l a t i on . Use ep s i l o n = −1 f o r no ea r l y break .
27 % getIntermediateOpin ion : [ 1 ] : f l a g to get the in t e rmed ia t e op in ions o f a l l m
28 % s imu la t i on s a f t e r every dt time s t ep s
29 % breakOnConsensus : [ 1 ] : f l a g to break when consensus i s reached in every
30 % simula t i on
31 % act i on : s t r i n g : eva l ( ac t i on ) i s executed a f t e r each s imu la t i on s t e p . This
32 % parameter can be used to i n d i v i d u a l l y p r i n t or animate th ing s without
33 % changing the whole f u n c t i o n . Note that eva l ( ac t i on ) po s s i b l y has s ide−e f f e c t s
34 % that might change the funct ion ' s behav i o r .
35 %
36 % OUTPUT
37 % opin ion : [m n ] : op in ion ( i , : ) g i v e s the f i n a l op in ion o f the agents in
38 % simula t i on i
39 % consensusTime : [m 1 ] : consensusTime ( i ) g i v e s the time consensus i s reached in
40 % simula t i on i . I f no consensus i s reached , consensusTime ( i ) = I n f .
41 % t : [ 1 ] : number o f time s t ep s s imulated
42 % intermediateOpin ion : {1 nIntermediateSteps } : i f ge t IntermediateOpin ion i s set ,
43 % intermediateOpin ion { i } holds a matrix o f s i z e [m n ] r ep r e s en t i ng the op in ion
44 % of the agents be f o r e the i−th i t e r a t i o n o f the while−loop
45 % employedAgent : [ n0 m] : employedAgent ( : , i ) g i v e s the agents s e l e c t e d as
46 % employed agent in s imu la t i on i
47

48 % get data s t r u c tu r e f o r gene ra t i on o f meetings
49 [ neighbor , nNeighbor ] = convert graph (A) ;
50 n = s i z e (A, 1 ) ;
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51

52 % i n i t i a l op in ion
53 op in ion = 2* rand (m, n)−1; % U(−1 , 1)
54

55 % simula t i on parameters
56 i f s i z e (mu0 , 1) == 1 , mu = repmat (mu0 , m, 1 ) ; e l s e mu = mu0 ; end
57 i f s i z e (u0 , 1) == 1 , u = repmat (u0 , m, 1 ) ; e l s e u = u0 ; end
58

59 % agent parameters
60 s e l fOp in i onFac to r = ones (m, n ) ;
61 otherOpinionFactor = ze ro s (m, n ) ;
62 op in ionBias = ze ro s (m, n ) ;
63 i f isempty ( employedAgent )
64 employedAgent = ze ro s (n0 , m) ;
65 f o r i =1:m
66 employedAgent ( : , i ) = randsample (n , n0 ) ;
67 end
68 end
69 nPos it iveAgent = ze ro s (m, 1 ) ;
70 normalAgentFlag = ones (m, n ) ;
71

72 % s e l e c t s p e c i a l agents and modify t h e i r parameter
73 f o r i = 1 :m
74 op in ion ( i , employedAgent ( : , i ) ) = ones (1 , n0 ) ;
75 normalAgentFlag ( i , employedAgent ( : , i ) ) = ze ro s (1 , n0 ) ;
76 nPos it iveAgent ( i ) = sum( op in ion ( i , : ) >0) ;
77 op in ionBias ( i , employedAgent ( : , i ) ) = u( i ) ;
78 s e l fOp in i onFac to r ( i , employedAgent ( : , i ) ) = ze ro s (1 , n0 ) ;
79 otherOpinionFactor ( i , employedAgent ( : , i ) ) = ones (1 , n0 ) ;
80 end
81

82 t = 0 ;
83 consensusTime = i n f (m, 1 ) ;
84 i f ge t IntermediateOpin ion ˜= 0
85 intermediateOpin ion = c e l l (1 , c e i l (maxT/dt ) ) ;
86 e l s e
87 intermediateOpin ion = {} ;
88 end
89 whi leStep = 0 ;
90

91 whi le t < maxT
92 whi leStep = whi leStep + 1 ;
93 i f ge t IntermediateOpin ion ˜= 0
94 intermediateOpin ion {whi leStep } = opin ion ;
95 end
96 % generate m * dt pa i r s o f meeting agents
97 [ meetingA , meetingB ] = genera te meet ings ( neighbor , nNeighbor , m, dt ) ;
98 % perform s imu la t i on
99 [ opinion , stepConsensusTime , nPosit iveAgent , de l taOpin ion ] = . . .

100 v e c t o r i z e d s imu l a t e (meetingA , meetingB , opinion , mu, u , . . .
101 s e l fOp in ionFactor , otherOpinionFactor , opin ionBias , normalAgentFlag , . . .
102 nPosit iveAgent , consensusFract ion ) ;
103 t = t + dt ;
104 noConsensusSimulation = f i nd ( stepConsensusTime==dt+1);
105 stepConsensusTime ( noConsensusSimulation ) = i n f ;
106 consensusTime = min( consensusTime , stepConsensusTime+t−dt ) ;
107 eva l ( ac t i on ) ;
108 i f ( breakOnConsensus && isempty ( noConsensusSimulation ) ) . . .
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109 | | max( de l taOpin ion )/ dt<ep s i l o n
110 break ;
111 end
112 end
113

114 i f ge t IntermediateOpin ion ˜= 0
115 intermediateOpin ion = intermediateOpin ion ( 1 : whi leStep ) ;
116 end
117

118 end % s imulate ( . . . )

simulation/vectorized simulate.m

1 f unc t i on [ opinion , consensusTime , nPosit iveAgent , de l taOpin ion ] = . . .
2 v e c t o r i z e d s imu l a t e (meetingA , meetingB , opinion , mu, u , s e l fOp in ionFactor , . . .
3 otherOpinionFactor , opin ionBias , normalAgentFlag , nPosit iveAgent , . . .
4 consensusFract ion )
5 % ” Pa r a l l e l ” s imu la t i on o f our ”employed” agent−model f o r a f i x ed s i z e o f agents
6 % and p r e c a l cu l a t ed meeting t ime s .
7 % Performing s e v e r a l s imu la t i on s in p a r a l l e l has the grea t advantage that one
8 % can s imulate a s i n g l e time step o f the s imu la t i on us ing v e c t o r i z a t i o n
9 % techn ique .

10 % m: [ 1 ] : number o f s imu la t i on s done in p a r a l l e l
11 % t : [ 1 ] : number o f time s t ep s
12 % n : [ 1 ] : number o f agents
13 %
14 % INPUT
15 % meetingA , meetingB : [m t ] : agent meetingA ( i , j ) and meetingB ( i , j ) meet in
16 % simula t i on i at time j
17 % opin ion : [m n ] : op in ion ( i , j ) i s the i n i t i a l op in ion o f agent j in
18 % simula t i on i
19 % mu: [m 1 ] : mu( i ) i s the convergence f a c t o r in s imu la t i on i
20 % u : [m 1 ] : u ( i ) i s the unce r ta in ty l e v e l in s imu la t i on i
21 % se l fOp in ionFactor , otherOpinionFactor , op in ionBias : [m n ] : op in ion o f agent j
22 % in s imu la t i on i when meeting other agent i s s e l fOp in i onFac to r ( i , j ) *

23 % se l fOp in i on + otherOpinionFactor ( i , j ) * otherOpinion + opin ionBias ( i , j )
24 % normalAgentFlag : [m n ] : normalAgentFlag ( i , j ) i s 1 i f f agent j in s imu la t i on i
25 % i s a ”normal” agent i . e . not an emplyed agent
26 % nPosit iveAgent : [m 1 ] number o f agents with p o s i t i v e op in ion ( at i n i t i a l time )
27 % consensusFract ion : [ 1 ] f r a c t i o n o f ( normal ) agents with p o s i t i v e op in ion s . t .
28 % consensus i s reached
29 %
30 % OUTPUT
31 % opin ion : [m n ] : op in ion ( i , j ) i s the op in ion o f agent j in s imu la t i on i a f t e r
32 % performing the s imu la t i on
33 % consensusTime : [m 1 ] : consensusTime ( i ) g i v e s the number o f time s t ep s T taken
34 % un t i l in s imu la t i on i the f r a c t i o n o f agents with p o s i t i v e op in ion i s g r e a t e r
35 % or equal consensusFract ion , i . e . , 1 <= T <= t , i f no consensus i s reached
36 % then T = t+1
37 % nPosit iveAgent : [m 1 ] : number o f agents with p o s i t i v e op in ion a f t e r per forming
38 % the s imu la t i on
39 % deltaOpin ion : [m 1 ] : de l taOpin ion ( i ) g i v e s the sum of the abso lu t e va lue s o f
40 % changes o f agents ' op in ion in s imu la t i on i
41

42 m = s i z e (meetingA , 1 ) ;
43 t = s i z e (meetingA , 2 ) ;
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44 n = s i z e ( opinion , 2 ) ;
45

46 % minOpinion , maxOpinion : [m 1 ] : minOpinion ( i ) r e s p . maxOpinion ( i ) d e f i n e
47 % the maximal and minimal op in ion an agent can hold in s imu la t i on i
48 minOpinion = −ones (m, 1 ) ;
49 maxOpinion = ones (m, 1 ) ;
50 de l taOpin ion = ze ro s (m, 1 ) ;
51 consensusTime = repmat ( t+1, m, 1 ) ;
52

53 % ca l c u l a t e one−dimens iona l i n d i c e s i n to [m n]−matrix ,
54 % i . e . op in ion ( i , meetingA ( i , j ) ) == opin ion (m*(meetingA ( i , j )−1)+1)
55 meetingA = m*(meetingA−1)+repmat ( ( 1 :m) ' , 1 , t ) ;
56 meetingB = m*(meetingB−1)+repmat ( ( 1 :m) ' , 1 , t ) ;
57

58 f o r k = 1 : t
59 oldOpinionA = opin ion (meetingA ( : , k ) ) ;
60 oldOpinionB = opin ion (meetingB ( : , k ) ) ;
61

62 % ca l c u l a t e op in ion held o f the i n t e r a c t i n g agents at time step k
63 opinionA = se l fOp in i onFac to r (meetingA ( : , k ) ) . * oldOpinionA . . .
64 + otherOpinionFactor (meetingA ( : , k ) ) . * oldOpinionB . . .
65 + opin ionBias (meetingA ( : , k ) ) ;
66 opinionB = se l fOp in i onFac to r (meetingB ( : , k ) ) . * oldOpinionB . . .
67 + otherOpinionFactor (meetingB ( : , k ) ) . * oldOpinionA . . .
68 + opin ionBias (meetingB ( : , k ) ) ;
69 opinionA = min ( opinionA , maxOpinion ) ;
70 opinionA = max( opinionA , minOpinion ) ;
71 opinionB = min ( opinionB , maxOpinion ) ;
72 opinionB = max( opinionB , minOpinion ) ;
73

74 % normalAgentA , normalAgentB : [m 1 ] : 0−1−v e c t o r . An entry i s 1 i f f the
75 % correspond ing agent i s a normal agent .
76 normalAgentA = normalAgentFlag (meetingA ( : , k ) ) ;
77 normalAgentB = normalAgentFlag (meetingB ( : , k ) ) ;
78

79 d i f fOp in i on = opinionA−opinionB ;
80

81 % changeOpinion i s p r imar i l y (mu . * d i f fOp in i on ) but has e n t r i e s equal to 0
82 % where the abso lu te va lue o f d i f fOp in i on i s sma l l e r than the unce r ta in ty
83 % l e v e l ( p lus a smal l e p s i l o n f o r comparing f l o a t i n g po int numbers )
84 changeOpinion = mu . * ( abs ( d i f fOp in i on )<u+1e−9) . * d i f fOp in i on ;
85

86 % changeOpinionA , changeOpinionB de s c r i b e the e f f e c t i v e change o f agents '

87 % opin ion at time step k , i . e . employed agents don ' t change t h e i r op in ion
88 changeOpinionA = normalAgentA . * changeOpinion ;
89 changeOpinionB = normalAgentB . * changeOpinion ;
90

91 newOpinionA = oldOpinionA − changeOpinionA ;
92 newOpinionB = oldOpinionB + changeOpinionB ;
93

94 % accumulate op in ion change
95 de l taOpin ion = deltaOpin ion + abs ( changeOpinionA ) + abs ( changeOpinionB ) ;
96

97 % update number o f agents with p o s i t i v e op in ion
98 nPos it iveAgent = nPosit iveAgent−(oldOpinionA>0)+(newOpinionA>0) . . .
99 −(oldOpinionB>0)+(newOpinionB>0);

100 % update consensusTime , i . e . s e t i t i f consensus i s reached f o r the f i r s t
101 % time
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102 consensusTime = min( consensusTime , . . .
103 ( nPosit iveAgent<consensusFract ion *n )* ( t+1)+k ) ;
104

105 op in ion (meetingA ( : , k ) ) = newOpinionA ;
106 op in ion (meetingB ( : , k ) ) = newOpinionB ;
107 end
108

109 end % ve c t o r i z e d s imu l a t e ( . . . )

simulation/convert graph.m
1 f unc t i on [ neighbor , nNeighbor ]= convert graph (A)
2 % Convert an adjacency matrix in to a concatenated vec to r l i s t i n g a l l the
3 % neighbors and another vec to r conta in ing the number o f ne ighbors per node.
4 %
5 % INPUT
6 % A: [ n n ]
7 % adjacency matrix
8 %
9 % OUTPUT

10 % neighbor : [m 1 ] : concatenated l i s t o f ne ighbors , m=nnz (A)
11 % nNeighbor : [ n 1 ] : node i has ne ighbor ( i ) ne ighbors
12 n = s i z e (A, 1 ) ;
13 nNeighbor = f u l l (sum(A, 2 ) ) ;
14 [ neighbor , ˜ ] = ind2sub (n , f u l l ( f i nd (A) ) ) ;
15 end % convert graph ( . . . )

simulation/generate meetings.m
1 f unc t i on [ meetingA , meetingB ] = genera te meet ings ( neighbor , nNeighbor , m, t )
2 % Given a graph and i n t e g e r s m and t , r e turn two [m t ]−matr i ce s meetingA and
3 % meetingB. For 1 <= i <= m and 1 <= j <= t , meetingA ( i , j ) and meetingB ( i , j )
4 % repr e s en t a pa i r o f meeting ag en t s . This pa i r i s generated by f i r s t choos ing
5 % an agent A uni formly at random and a f t e rwards choos ing another agent B
6 % randomly from A' s n e i ghbo r s .
7 %
8 % INPUT
9 % neighbor : [m 1 ] : concatenated l i s t o f ne ighbors as returned by

10 % convert graph (A)
11 % nNeighbor : [ n 1 ] : node i has ne ighbor ( i ) ne ighbors as returned by
12 % convert graph (A)
13 % m, t : [ 1 ] : d imensions o f the matr i ce s to be generated
14 %
15 % OUTPUT
16 % meetingA , meetingB : [m t ] : matr i ce s r ep r e s en t i ng pa i r s o f meeting agents ( as
17 % desc r ibed above )
18

19 n = s i z e ( nNeighbor , 1 ) ;
20 neighborIndex = cumsum ( [ 1 ; nNeighbor ] ) ;
21 meetingA = randi (n , m, t ) ;
22 meetingB = ze ro s (m, t ) ;
23 f o r i = 1 : t
24 meetingB ( : , i ) = neighbor ( ne ighborIndex (meetingA ( : , i ) ) + . . .
25 f l o o r ( rand (m, 1) . * nNeighbor (meetingA ( : , i ) ) ) ) ;

47



26 end
27

28 end % genera te meet ings ( . . . )

simulation/simulate and store.m

1 f unc t i on [ opinion , consensusTime , t , intermediateOpinion , employedAgent , . . .
2 f i l ename ] = s imu l a t e and s t o r e (A, m, maxT, dt , n0 , mu0 , u0 , . . .
3 consensusFract ion , ep s i l on , employedAgent , getIntermediateOpin ion , . . .
4 breakOnConsensus , act ion , graphName)
5 % Wrapper f o r s imulate ( . . . ) . Perform a s imu la t i on o f the ”employed” agent model
6 % on a given graph and save input and output as we l l as the random stream and
7 % i t s s t a t e f o r l a t e r p ro c e s s i ng / reproduc ing the r e c e i v ed r e s u l t s .
8 % The f i l e i s wr i t t en to the d i r e c t o r y ' s imulat ionResu l t ' , f o r proper operat ion ,
9 % th i s f o l d e r has to be with in the Matlab path .

10 %
11 % INPUT
12 % Same as input to s imulate ( . . . ) . One add i t i ona l argument has to be provided :
13 % graphName : s t r i n g : name o f the graph repre s en ted by A
14 %
15 % OUTPUT
16 % Same as output o f s imulate ( . . . ) . One add i t i o na l v a r i ab l e i s returned :
17 % f i l ename : s t r i n g : the name o f the f i l e that input and output have been saved
18 % to . The name o f the output f i l e i s a concatenat ion o f graphName and the
19 % parameters n0 , mu0 and u0 being used . To make sure that th ing s work proper ly
20 % using the Pa r a l l e l Computing Toolbox , the f i l ename a l s o i n c l ud e s the worker
21 % i d .
22

23 muStr = ' var ' ;
24 i f s i z e (mu0 , 1) == 1 , muStr = num2str (mu0 ) ; end ;
25 uStr = ' var ' ;
26 i f s i z e (u0 , 1) == 1 , uStr = num2str ( u0 ) ; end ;
27

28 worker = ' ' ;
29 w = getCurrentTask ( ) ;
30 i f ˜ isempty (w)
31 worker = [ ' ' num2str ( get (w, ' ID ' ) ) ] ;
32 end
33

34 % determine random stream and i t s s t a t e
35 stream = RandStream.getDefaultStream ;
36 s t a t e = st r eam.Sta te ;
37

38 [ opinion , consensusTime , t , intermediateOpinion , employedAgent ] = . . .
39 s imulate (A, m, maxT, dt , n0 , mu0 , u0 , consensusFract ion , ep s i l on , . . .
40 employedAgent , get IntermediateOpin ion , breakOnConsensus , a c t i on ) ;
41

42 f o r i =1:1024
43 f i l ename = s p r i n t f ( ' s imu la t i onResu l t/%s n0=%d mu=%s u=%s [%d%s ] .mat ' , . . .
44 graphName , n0 , muStr , uStr , i , worker ) ;
45 i f e x i s t ( f i l ename , ' f i l e ' ) ˜= 2
46 save ( f i l ename , ' op in ion ' , ' consensusTime ' , ' t ' , . . .
47 ' intermediateOpin ion ' , ' employedAgent ' , 'A ' , 'm ' , 'maxT ' , ' dt ' , . . .
48 'mu0 ' , 'u0 ' , ' consensusFract ion ' , ' ep s i l o n ' , ' employedAgent ' , . . .
49 ' get IntermediateOpin ion ' , ' breakOnConsensus ' , ' ac t i on ' , . . .
50 'graphName ' , ' stream ' , ' s t a t e ' ) ;
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51 r e turn
52 end
53 end
54

55 f p r i n t f ( ' Error wr i t i ng parameters and output to f i l e \n ' ) ;
56

57 end % s imu l a t e and s t o r e ( . . . )

simulation/select greedy.m

1 f unc t i on employedAgents = s e l e c t g r e e d y (A, n0 )
2 % Se l e c t g r e e d i l y ( as de s c r ibed in the r epo r t ) the n0 agents cor re spond ing to
3 % the nodes with the l a r g e s t d e g r e e s .
4 %
5 % INPUT
6 % A: [ n n ] : adjacency r ep r e s en t a t i on o f a graph de s c r i b i n g the connect i ons
7 % between agents , i . e . A( i , j ) i s 1 i f f the r e i s an edge between node i and j .
8 % A i s assumed to be symmetric .
9 % n0 : [ 1 ] : number o f employed agents to be s e l e c t ed , n0 <= n

10 %
11 % OUTPUT
12 % employedAgents : [ 1 n0 ] : i n d i c e s o f the s e l e c t e d employed agents
13

14 [ ˜ , J ] = so r t (sum(A) ) ;
15 employedAgents = J ( end−n0+1:end ) ;
16

17 end % s e l e c t g r e e d y ( . . . )

7.4.2 Generation

generation/random graph.m

1 f unc t i on A = random graph (n , p)
2 % Generates an und i rec ted random graph ( without s e l f −l oops ) o f s i z e n ( as
3 % desc r ibed in the Erdoes−Renyi model )
4 %
5 % INPUT
6 % n : [ 1 ] : number o f nodes
7 % p : [ 1 ] : p r obab i l i t y that node i and node j , i != j , are connected by an edge
8 %
9 % OUTPUT

10 % A: [ n n ] spa r s e symmetric adjacency matrix r ep r e s en t i ng the generated graph
11

12 % Note : A gene ra t i on based on sprandsym (n , p) f a i l e d ( f o r some va lues o f p
13 % sprandsym was f a r o f f from the expected number o f n*n*p non−z e ro s ) , t h e r e f o r e
14 % th i s l ong i s h implementation in s t ead o f j u s t doing the f o l l ow i ng :
15 %
16 % B = sprandsym (n , p ) ;
17 % A = (B−diag ( diag (B))˜=0) ;
18 %
19

20 % Idea : f i r s t generate the number o f non−zero va lue s in every row f o r a gene ra l

49



21 % 0−1−adjacency matr ix . For every row th i s number i s d i s t r i b u t e d b inomia l l y with
22 % parameters n and p.
23 %
24 % The f o l l ow i ng l i n e s c a l c u l a t e ” rows i z e = bino inv ( rand (1 , n ) , n , p )” , j u s t in a
25 % f a s t e r way f o r l a r g e va lue s o f n .
26

27 % generate a vec to r o f n va lue s chosen u . a . r . from (0 , 1 )
28 v = rand (1 , n ) ;
29 % Sort them and c a l c u l a t e the binomial cumulat ive d i s t r i b u t i o n func t i on with
30 % parameters n and p at va lue s 0 to n . Afterwards match the so r t ed random
31 % 0−1−va lue s to those cdf−values , i . e . a s s o c i a t e a binomial d i s t r i b u t e d value
32 % with each value in r . Each value in v a l s o cor responds to a value in r :
33 % permute the va lue s in rowSize s . t . they correspond to the order g iven in v .
34 [ r index ] = so r t ( v ) ; % i . e . v ( index ) == r holds
35 rowSize = ze ro s (1 , n ) ;
36 j = 0 ;
37 binoCDF = cumsum( binopdf ( 0 : n , n , p ) ) ;
38 f o r i = 1 : n
39 whi le j<n && binoCDF( j+1)<r ( i )
40 j = j + 1 ;
41 end
42 rowSize ( i ) = j ;
43 end
44 rowSize ( index ) = rowSize ;
45

46 % fo r every row choose the non−zero e n t r i e s in i t
47 nNZ = sum( rowSize ) ;
48 I = ze ro s (1 , nNZ) ;
49 J = ze ro s (1 , nNZ) ;
50 j = 1 ;
51 f o r i = 1 : n
52 I ( j : j+rowSize ( i )−1) = i ;
53 J ( j : j+rowSize ( i )−1) = randsample (n , rowSize ( i ) ) ;
54 j = j + rowSize ( i ) ;
55 end
56

57 % r e s t r i c t I and J to i n d i c e s that correspond to e n t r i e s above the main d iagona l
58 % and f i n a l l y cons t ruc t a symmetric spar s e matrix us ing I and J
59 upperTriu = f i nd ( I<J ) ;
60 I = I ( upperTriu ) ;
61 J = J ( upperTriu ) ;
62 A = spar s e ( [ I ; J ] , [ J ; I ] , ones (1 , 2* s i z e ( I , 2 ) ) , n , n ) ;
63

64 end % random graph ( . . . )

generation/scale free.m

1 f unc t i on A = s c a l e f r e e (n , m0, m)
2 % Use the Barabasi−Albert model to generate a s c a l e f r e e graph o f s i z e n ( as
3 % desc r ibed in Albert−Lasz lo Barabasi & Reka Albert : ”Emergence o f s c a l i n g
4 % in random networks ”)
5 %
6 % INPUT
7 % n : [ 1 ] : number o f nodes
8 % m0: [ 1 ] : number o f i n i t i a l l y p laced nodes
9 % m: [ 1 ] : number o f nodes a new added node i s connected to , 1 <= m < m0
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10 %
11 % OUPUT
12 % A: [ n n ] spa r s e symmetric adjacency matrix r ep r e s en t i ng the generated graph
13

14 % Star t with a graph o f s i z e m0 and add edges to t h i s graph. Each o f the se m0
15 % nodes i s connected to at l e a s t m nodes .
16 B = ze ro s (m0, m0) ;
17 f o r i = 1 :m0
18 ne ighbors = randsample (m0−1, m) ;
19 ne ighbors = ne ighbors + ( neighbors>=i ) ;
20 B( i , ne ighbors ) = 1 ;
21 B( neighbors , i ) = 1 ;
22 end
23

24 % Create a vec to r o f edges added so far , i . e . nodes edge (2* i ) and edge (2* i −1) ,
25 % 1 <= i <= nEdges , are connected by an edge .
26 [ rows , columns ] = f i nd ( t r i u (B) ) ;
27 nEdges = s i z e ( rows , 1 ) ;
28 edges = reshape ( [ rows ' ; columns ' ] , 2*nEdges , 1 ) ;
29 edges = [ edges ; z e r o s (2* (n−m0)*m, 1 ) ] ;
30

31 % Add nodes m0+1:n , one at a t ime . Each node i s connected to m ex i s t i n g nodes ,
32 % where each o f the e x i s t i n g nodes i s chosen with a p r obab i l i t y that i s
33 % propo r t i ona l to the number o f nodes i t i s a l r eady connected t o .
34 used = ze ro s (n , 1 ) ; % i s a node a l r eady used in a t imestep ?
35 f o r i = m0+1:n
36 ne ighbors = ze ro s (1 , m) ;
37 f o r j =1:m
38 k = edges ( randi (2* nEdges ) ) ;
39 whi le used (k )
40 k = edges ( randi (2* nEdges ) ) ;
41 end
42 used (k ) = 1 ;
43 ne ighbors ( j ) = k ;
44 end
45 used ( ne ighbors ) = 0 ;
46 edges (2* nEdges+1:2*nEdges+2*m) = reshape ( [ repmat ( i , 1 , m) ; ne ighbors ] , . . .
47 1 , 2*m) ;
48 nEdges = nEdges+m;
49 end
50

51 % f i n a l l y cons t ruc t a symmetric adjacency matrix us ing the vec to r o f edges
52 edges = edges ( 1 : 2* nEdges ) ;
53 f i r s t = edges ( 1 : 2 : end ) ;
54 second = edges ( 2 : 2 : end ) ;
55 A = spar s e ( [ f i r s t ; second ] , [ second ; f i r s t ] , ones (2*nEdges , 1 ) , n , n ) ;
56

57 end % s c a l e f r e e ( . . . )

generation/small world.m

1 f unc t i on A = smal l wor ld (n , k , beta )
2 % Generate a smal l world graph us ing the ”Watts and Strogatz model” as
3 % desc r ibed in Watts , D.J . ; Strogatz , S.H. : ” Co l l e c t i v e dynamics o f
4 % ' small−world ' networks . ”
5 % A graph with n*k/2 edges i s constructed , i . e . the nodal degree i s n*k f o r
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6 % every node.
7 %
8 % INPUT
9 % n : [ 1 ] : number o f nodes o f the graph to be generated

10 % k : [ 1 ] : mean degree ( assumed to be an even i n t e g e r )
11 % beta : [ 1 ] : r ew i r i ng p r obab i l i t y
12 %
13 % OUPUT
14 % A: [ n n ] spa r s e symmetric adjacency matrix r ep r e s en t i ng the generated graph
15

16 % Construct a r e gu l a r l a t t i c e : a graph with n nodes , each connected to k
17 % neighbors , k/2 on each s i d e .
18 kHalf = k /2 ;
19 rows = reshape ( repmat ( [ 1 : n ] ' , 1 , k ) , n*k , 1 ) ;
20 columns = rows+reshape ( repmat ( [ [ 1 : kHalf ] [ n−kHalf : n−1 ] ] , n , 1 ) , n*k , 1 ) ;
21 columns = mod( columns−1, n) + 1 ;
22 B = spar s e ( rows , columns , ones (n*k , 1 ) ) ;
23 A = spar s e ( [ ] , [ ] , [ ] , n , n ) ;
24

25 % With p r obab i l i t y beta r ew i r e an edge avo id ing loops and l i n k dup l i c a t i o n .
26 % Unt i l s tep i , only the columns 1 : i are generated making imp l i c i t use o f A' s
27 % symmetry.
28 f o r i = [ 1 : n ]
29 % The i−th column i s s to r ed f u l l f o r f a s t a c c e s s i n s i d e the f o l l ow i n g l o op .
30 c o l= [ f u l l (A( i , 1 : i −1)) ' ; f u l l (B( i : end , i ) ) ] ;
31 f o r j = i+f i nd ( c o l ( i +1:end ) ) '

32 i f ( rand()<beta )
33 c o l ( j )=0;
34 k = randi (n ) ;
35 whi le k==i | | c o l ( k)==1
36 k = randi (n ) ;
37 end
38 c o l ( k ) = 1 ;
39 end
40 end
41 A( : , i ) = co l ;
42 end
43

44 % A i s not yet symmetric : to speed th ing s up , an edge connect ing i and j , i < j
45 % imp l i e s A( i , j )==1, A( i , j ) might be z e r o .
46 T = t r i u (A) ;
47 A = T+T ' ;
48

49 end % smal l wor ld ( . . . )

7.4.3 Statistics

statistics/print statistics.m

1 f unc t i on p r i n t s t a t i s t i c s (A)
2 % Print s t a t i c s f o r a undirected , loop−f r e e graph.
3 %
4 % INPUT
5 % A: [ n n ] : adjacency matrix
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6

7 n = s i z e (A, 1 ) ;
8 f p r i n t f ( 'number o f nodes = %d\n ' , n ) ;
9

10 m = nnz (A) ;
11 a s s e r t (mod(m, 2) == 0 ) ;
12 f p r i n t f ( 'number o f ( und i rec ted ) edges = %d\n ' , m/2 ) ;
13

14 k = m/n ;
15 f p r i n t f ( ' average node degree = %. 4 f \n ' , k ) ;
16

17 maxDeg = max( f u l l (sum(A) ) ) ;
18 f p r i n t f ( 'maximum node degree = %d\n ' , maxDeg ) ;
19

20 avgPathLength = average path l ength (A) ;
21 f p r i n t f ( ' average path l ength = %. 4 f \n ' , avgPathLength ) ;
22

23 c l u s t e rCo e f f = g l o b a l c l u s t e r i n g c o e f f i c i e n t (A) ;
24 f p r i n t f ( ' g l oba l c l u s t e r i n g c o e f f i c i e n t = %. 4 f \n ' , c l u s t e rCo e f f ) ;
25

26 end % p r i n t s t a t i s t i c s ( . . . )

statistics/average path length.m
1 f unc t i on lG = average path l ength (A)
2 % Calcu la te the average path l ength in a graph.
3 % ( see http :// en .w i k i p ed i a . o r g /wik i /Average path length f o r a d e f i n i t i o n )
4 %
5 % INPUT
6 % A: [ n n ] : adjacency matrix
7 %
8 % OUTPUT
9 % lG : [ 1 ] : average path l ength

10 %
11 % This func t i on makes use o f the P a r a l l e l Computing Toolbox , i . e . the outer loop
12 % can be d iv ided among s e v e r a l worker s .
13

14 n = s i z e (A, 1 ) ;
15 lGs = ze ro s (n , 1 ) ;
16 par f o r i = 1 : n
17 a c t i v e = i ;
18 todo = ones (n , 1 ) ;
19 todo ( i ) = 0 ;
20 d i s t = 0 ;
21 t o t a l = 0 ;
22 whi le ˜ isempty ( a c t i v e )
23 d i s t = d i s t + 1 ;
24 a c t i v e = f i nd (sum(A( : , a c t i v e ) , 2) . * todo ) ;
25 todo ( a c t i v e ) = 0 ;
26 t o t a l = t o t a l + s i z e ( ac t ive , 1) * d i s t ;
27 end
28 lGs ( i ) = t o t a l ;
29 end
30 lG = sum( lGs ) / (n * (n − 1 ) ) ;
31

32 end % average path l eng th ( . . . )
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statistics/global clustering coefficient.m

1 f unc t i on C = g l o b a l c l u s t e r i n g c o e f f i c i e n t (A)
2 % Calcu la te the g l oba l c l u s t e r i n g c o e f f i c i e n t o f a graph.
3 % ( see http :// en .w i k i p ed i a . o r g /wik i / C l u s t e r i n g c o e f f i c i e n t f o r a d e f i n i t i o n )
4 %
5 % INPUT
6 % A: [ n n ] : adjacency matrix
7 %
8 % OUTPUT
9 % C: [ 1 ] : g l oba l c l u s t e r i n g c o e f f i c i e n t

10 %
11 % This func t i on makes use o f the P a r a l l e l Computing Toolbox , i . e . the outer loop
12 % can be d iv ided among s e v e r a l worker s .
13

14 n = s i z e (A, 1 ) ;
15 Cs = ze ro s (n , 1 ) ;
16 par f o r i = 1 : n
17 Cs( i ) = l o c a l c l u s t e r i n g c o e f f i c i e n t (A, i ) ;
18 end
19 C = sum(Cs) / n ;
20

21 end % g l o b a l c l u s t e r i n g c o e f f i c i e n t ( . . . )

statistics/local clustering coefficient.m

1 f unc t i on Ci = l o c a l c l u s t e r i n g c o e f f i c i e n t (A, i )
2 % Calcu la te the l o c a l c l u s t e r i n g c o e f f i c i e n t o f a node in a graph.
3 % ( see http :// en .w i k i p ed i a . o r g /wik i / C l u s t e r i n g c o e f f i c i e n t f o r a d e f i n i t i o n )
4 %
5 % INPUT
6 % A: [ n n ] : adjacency matrix
7 % i : [ 1 ] : index o f the node the l o c a l c l u s t e r i n g c o e f f i c i e n t i s c a l c u l a t ed f o r
8 %
9 % OUTPUT

10 % Ci : [ 1 ] : l o c a l c l u s t e r i n g c o e f f i c i e n t
11

12 neighbor = f i nd (A( : , i ) ) ;
13 m = s i z e ( neighbor , 1 ) ;
14 Ci = 0 ;
15 i f m > 1
16 f o r j = neighbor '

17 Ci = Ci + f u l l (sum(A( neighbor , j ) ) ) ;
18 end
19 Ci = Ci / (m * (m − 1 ) ) ;
20 end
21

22 end % l o c a l c l u s t e r i n g c o e f f i c i e n t ( . . . )
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7.4.4 Utility

utility/get graph.m

1 f unc t i on [A, name , stream , s t a t e ] = get graph ( graphID , graphSize , . . .
2 generateNew , verbose )
3 % Function f o r loading , gene ra t ing and s t o r i n g graphs . I f the reques ted graph
4 % does not ex i s t , the func t i on gene ra t e s a new one and s t o r e s i t to a mat− f i l e .
5 % For proper operat ion , the f o l d e r s ' generatedGraphs ' and ' facebook100 ' have to
6 % be with in the Matlab path .
7 %
8 % INPUT
9 % graphID : [ 1 ] : i d e n t i f i e r f o r the graph type which should be loaded / generated :

10 % 1 <−−> Random graph
11 % 2 <−−> Sca l e f r e e graph
12 % 3 <−−> Small world graph
13 % 4−6 <−−> Real world graph
14 % graphSize : [ 1 ] : determines s i z e o f graph :
15 % 0 <−> smal l graph , i . e . ˜1000 nodes
16 % 1 <−> l a r g e graph , i . e . ˜35000 nodes
17 % generateNew : [ 1 ] : f l a g to generate a new graph , i . e . the graph i s newly
18 % generated even i f i t has been s to r ed be f o r e
19 % verbose : [ 1 ] : enable showing what i s going on
20 %
21 % OUTPUT
22 % A: [ n , n ] ( spa r s e ) : adjacency matrix o f the loaded / generated graph. I f the
23 % graph i s not connected , i t s l a r g e s t component i s r e tu rned .
24 % name : s t r i n g : d e s c r i b i n g the returned graph
25 % stream : [ 1 RandStream ] : the random stream used f o r gene ra t ing the graph ( as
26 % returned by RandStream.getDefaultStream ) .
27 % sta t e : the s t a t e o f stream be fo r e the graph i s generated
28

29 % Ce l l array f o r graph f i l enames
30 generatedGraphsFilenames = {{ 'Random small ' , ' Sca l eFr e e sma l l ' , . . .
31 ' SmallWorld small ' } ; { 'Random large ' , ' Sca l eF r e e l a r g e ' , ' Smal lWorld large ' }} ;
32 % Ce l l array f o r r e a l world graph f i l enames
33 realWorldGraphsFilenames = {{ 'Simmons81 ' , 'Reed98 ' , 'Caltech36 ' } ; . . .
34 { 'Penn94 ' , 'UF21 ' , 'Texas84 ' }} ;
35

36 % Parameters f o r graph g en e r a t i on . The number o f nodes n , edges m and the
37 % average nodal degree k have been chosen such that they best match the
38 % correspond ing c h a r a c t e r i s t i c s o f the r e a l world graphs .
39 n = [1000 35000 ] ;
40 m = [40000 2900000 ] ;
41 k = [40 7 6 ] ;
42 k2 = c e i l ( k / 2 ) ;
43

44 % Ce l l array with func t i on s f o r graph g en e r a t i on .
45 generat ionFunct ions = {{@(n) random graph (n , m(1 ) / ( ( n−1)*(n−1))) , . . .
46 @(n) s c a l e f r e e (n , k2 (1)+1 , k2 ( 1 ) ) , @(n) smal l wor ld (n , k (1 ) , 0 . 25 )} . . .
47 {@(n) random graph (n , m(2 ) / ( ( n−1)*(n−1))) , @(n) s c a l e f r e e (n , k2 (2)+1 , . . .
48 k2 ( 2 ) ) , @(n) smal l wor ld (n , k ( 2 ) , 0 . 25 )}} ;
49

50 % determine random stream and i t s s t a t e
51 stream = RandStream.getDefaultStream ;
52 s t a t e = st r eam.Sta te ;
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53

54 name = ' ' ;
55 A = [ ] ;
56 i f graphID <= 3
57 % Determine f i l ename with c e l l array and check i f f i l e e x i s t s .
58 name = generatedGraphsFilenames { graphSize+1}{graphID } ;
59 f i l ename = [ name ' .mat ' ] ;
60 i f ˜ generateNew && ex i s t ( f i l ename , ' f i l e ' ) == 2
61 i f verbose
62 f p r i n t f ( ' Loading graph from : %s \n ' , f i l ename ) ;
63 end
64 load ( f i l ename , 'A ' , ' stream ' , ' s t a t e ' ) ;
65 e l s e % New graph to be generated or f i l e does not e x i s t .
66 i f graphSize>1
67 e r r o r ' I nva l i d va lue f o r graphSize ' ;
68 end ;
69 i f verbose
70 f p r i n t f ( [ 'New graph with %d nodes i s generated and saved to ' . . .
71 '%s \n ' ] , n ( graphSize +1) , f i l ename ) ;
72 end
73 A = generat ionFunct ions { graphSize+1}{graphID }(n( graphSize +1)) ;
74 o l dS i z e = s i z e (A, 1 ) ;
75 A = larges t connected component (A) ;
76 i f verbose && s i z e (A, 1) ˜= o ldS i z e
77 f p r i n t f ( [ ' dropped %d nodes from graph o f s i z e %d r e s u l t i n g in ' . . .
78 ' a graph o f s i z e %d\n ' ] , o ldS i ze−s i z e (A, 1) , o ldS i ze , s i z e (A, 1 ) ) ;
79 end
80 save ( [ ' generatedGraphs / ' f i l ename ] , 'A ' , ' stream ' , ' s t a t e ' ) ;
81 end
82 e l s e i f graphID <= 6 % r e a l world graph
83 name = realWorldGraphsFilenames{ graphSize+1}{graphID−3};
84 f i l ename = [ name ' .mat ' ] ;
85 i f verbose
86 f p r i n t f ( ' Loading r e a l world graph : %s \n ' , f i l ename ) ;
87 end
88 load ( f i l ename , 'A ' ) ;
89 o l dS i z e = s i z e (A, 1 ) ;
90 A = larges t connected component (A) ;
91 i f verbose && s i z e (A, 1) ˜= o ldS i z e
92 f p r i n t f ( [ ' dropped %d nodes from graph o f s i z e %d r e s u l t i n g in a ' . . .
93 ' graph o f s i z e %d\n ' ] , o ldS i ze−s i z e (A, 1) , o ldS i ze , s i z e (A, 1 ) ) ;
94 end
95 e l s e
96 e r r o r 'Wrong graphID ' ;
97 end
98

99 end % get graph ( . . . )

utility/largest connected component.m

1 f unc t i on B = larges t connected component (A)
2 % Returns the adjacency matrix o f the l a r g e s t connected component o f an
3 % undi rec ted graph.
4 %
5 % INPUT
6 % A: [ n , n ] : symmetric adjacency matrix with e n t r i e s 0 r e s p . 1

56



7 %
8 % OUTPUT
9 % B: [m,m] : Adjacency matrix o f the l a r g e s t connected component o f the graph

10 % repre s en ted by the matrix A.
11

12 n = s i z e (A, 1 ) ;
13 % vecto r to record v i s i t e d nodes : node i was v i s i t e d i f f v i s i t e d ( i )==1
14 v i s i t e d = ze ro s (n , 1 ) ;
15 todo = ones (n , 1 ) ;
16 indexLargestComponent = 0 ;
17 s izeLargestComponent = 0 ;
18 f o r i = 1 : n
19 % i f node i wasn ' t v i s i t e d yet , s t a r t a new component search at node i
20 i f ˜ v i s i t e d ( i )
21 % vecto r with i n d i c e s o f cu r r en t l y a c t i v e nodes
22 a c t i v e = i ;
23 todo ( i ) = 0 ;
24 count = 1 ;
25 v i s i t e d ( i ) = i ;
26 whi le ˜ isempty ( a c t i v e )
27 % Set a c t i v e nodes to a l l not v i s i t e d nodes reachab l e from . . .
28 % cur r en t l y a c t i v e nodes .
29 a c t i v e = f i nd (sum(A( : , a c t i v e ) , 2) . * todo ) ;
30 count = count + length ( a c t i v e ) ;
31 todo ( a c t i v e ) = 0 ;
32 v i s i t e d ( a c t i v e ) = i ;
33 end
34 i f count>s izeLargestComponent
35 s izeLargestComponent = count ;
36 indexLargestComponent = i ;
37 end
38 end
39 end
40

41 % ext ra c t i n d i c e s o f nodes be long ing to the l a r g e s t connected component
42 largestComponent = f i nd ( v i s i t e d==indexLargestComponent ) ;
43 B = A( largestComponent , largestComponent ) ;
44

45 end % larges t connected component ( . . . )
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