
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Trails of Irchelpark
How students walk.

Marius Buehlmann & Anton Beitler

Zurich

May 2011

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Anton Beitler Marius Bühlmann

2

Contents

1 Individual contributions 4

2 Introduction and Motivations 5

3 Description of the Model 6
3.1 Model requirements . 6
3.2 Active Walker Model . 6
3.3 Mathematical formulation . 7

4 Implementation 9

5 Simulation Results and Discussion 12
5.1 Reproduction . 12

5.1.1 Triangle destinations . 12
5.1.2 Corner entry . 14

5.2 Trails of Irchelpark . 16

6 Summary 20

7 Outlook 20

8 References 23

A Code 24
A.1 Main loops . 24
A.2 Pedestrian handling: creation and repositioning 26
A.3 Environmental updates . 29

3

1 Individual contributions

Our work is based on the papers of Dirk Helbling (HKM97), (HSKM97) and the
report of (PN10), who did the same lecture one semester before. We developed an
own code for the given mathematical formulation. Most of the ideas in the code were
developed in teamwork during the lectures of ”Lecture with Computer Exercises:
Modelling and Simulating Social Systems with MATLAB”. There were some model
ideas in (PN10), which we implemented and improved in our code. Everything is
declared in the chapter Implementation. For writing the report, we divided the work
in two parts. Anton has done the model description and the code implementation,
Marius has described the results , the summary and the outlook. The summary and
the outlook, was discussed in the team before.

4

Figure 1: Example for a trail formation at Irchelpark, Zurich (Source: Google Maps)

2 Introduction and Motivations

We decided to contribute to the efforts of modeling the evolution of human trail
systems. Such trails evolve apart from existing paths and often show characteristic
patterns. The knowledge about which conditions lead to this phenomenon might
be helpful in planning path-systems such as public green spaces efficiently. On the
contrary there are situations where such trails need to be avoided for instance due
to environmental protection where this concept might come handy, too.

Mainly we want to focus on the reproduction of known concepts and their results.
Later we want to expand the knowledge a real-life problems on university campus of
different complexity. Our goal is to verify or modify the model as required.

5

3 Description of the Model

3.1 Model requirements

Pedestrians can be viewed as moving entities that follow certain rules in choosing
the direction of movement. From our own experience we know that the location
of the destination may ultimately be factor that has the greatest impact in this
decisionmaking. Nevertheless certain attributes of the current environment have
an influence. Such attributes include for instance the existence and condition of
walkways or the presence of obstacles.

These factors lead to a tradeoff situation between a shortest and a most comfort-
able path that has to be evaluated at each moment.

Additionally the model should consider environmental changes over time. For
example some alteration of the ground’s condition may be caused by weathering
(heavy rain might cause muddy ground, aridity may dry out plants, etc.). But also
each step being taken causes erosion and therefore changes the attractiveness of a
certain path.

Thus a choice of a walking direction being made at a certain point of time depends
on the choices of Pedestrians that walked this way before. Obviously this fact is
essential for the evolution of trails and therefore a key requirement for our model.

3.2 Active Walker Model

The active walker model1 is the model of choice when it comes to modelling the
movement of pedestrians. The model builds laws of mutual interaction between
one entity and it’s environment. Though the interaction is of microscopic scale it
indirectly influences other entities in the same environment. This fits perfectly to
the requirements stated above as it comprises the bidirectional dependency of a
pedestrian’s walking direction and environmental change.

In order to embrace the state and evolution of a system consisting of pedestrians
and the ground they are walking on, certain descriptive objects and parameters are
introduced.

~rα: Position of Pedestrian α

1(HSKM97, 2)

6

Ground G(~r, t): The comfort of walking on the ground at position ~r denoted by
a scalar with initial value G(~r, 0) = G0(~r) limited by a maximum comfort
Gmax(~r).

Durability T (~r): The resistance of the ground towards erosion of any kind.

Intensity Iα: Intensity of the footprints of a pedestrian.2

Visibility σ(~rα): A scalar that indicates the distance up to which the condition of
the ground is taken into account in choosing the next step.

Potential V (~rα, t): A scalar characterizing attractiveness of walking at place ~ralpha.

3.3 Mathematical formulation

Having defined the characteristics of the systems to be modelled we now derive how
they are suggested to evolve in time.

→ Environmental change

The change of the ground’s comfort of walking is reflected in two dynamics: a
restoration (to initial state) and an erosion (erosion of plants leading to a higher
comfort) of the ground. The restoration depends on the durability T (~r) whereas
erosion takes place due to the intensity of people’s footprints. This leads to an
ordinary differential equation of first order for the evolution of the ground’s condition
in time:

dG(~r, t)

dt
=

[G0(~r)−G(~r, t)]

T (~r)︸ ︷︷ ︸
restoration

+ I(~r)

[
1− G(~r, t)

Gmax(~r)

]∑
α

δ(~r − ~rα(t))︸ ︷︷ ︸
erosion

(1)

→ Walking potential The potential of a certain place V (~rα, t) is defined as an
integral over the ground function G(~r, t) weighted with a factor of exponential decay
radial from the reference point ~rα. The damping factor of the exponential is the
visibility parameter σ(~rα):

V (~r, t) =

∫
G(~r, t) · exp

(
−|~r − ~rα|

σ(~rα)

)
d2r (2)

→ Determination of walking direction

2Though the proposed model states the Intensity as a function of space (see (HKM97)) we consider it
more applicable to introduce it a constant.

7

The walking direction is influenced by the direction of the destination ~dα which is

~eα(~rα) = (~dα−~rα)
|~dα−~rα|

and the gradient of the potential ∇rV (~rα, t). The walking direction

is the superposition of both:

~eα =
~dα − ~rα +∇rV (~rα, t)

|~dα − ~rα +∇rV (~rα, t)|
(3)

The resulting trajectory ~rα(t) of a pedestrian α walking with speed vα is therefore
determined by

d~rα
dt

= vα~eα(~rα, t) (4)

8

4 Implementation

This section is devoted to describe how the model is put into action. In doing so we
decided to simplify the model in some minor aspects:

� The durability T (~r) is a constant T .

� The intensity Iα = I is the same for every pedestrian.

� The visibility σ(~rα) is a constant σ

The model is implemented in MATLAB which is optimized for operations matri-
ces. As we aim to optimize our code for speed we choose a functional programming
paradigm and try to avoid loops and conditional structures wherever possible.

In order to run a numerical simulation of the proposed model the equations have
to be discretised as follows.

→ Environmental change

The values for ground’s comfort G(~r, t) are stored in a m × n-matrix G(k) such

that G(~ri,j, uT) = Gi,j(k), where ~r =

(
i
j

)
(i = 1, 2, . . . ,m; j = 1, 2, . . . , n; u ∈ N)

becomes a discrete coordinate vector for a position of an element in the matrix.
Throughout our work we chose n = m and T = 1 such that k = u.

The ODE (1) then becomes an iteration law:

Gi,j(0) = G0 (5)

Gi,j(k + 1) = G(k)i,j +
(G0,(i,j) −Gi,j(k))

T
(6)

+ I ·
(

1− Gi,j(k)

Gmax

)
∀i, j ∈ [m]× [n] (7)

The initial ground state can include a set of elements of value Gmax which then
indicates a pathway.

→ Walking potential

The potential is also a matrix of the same size as the ground. An element in this
matrix is the evaluation of the Integral at a given position ~ri,j where the integral
over the given two dimensional space of the ground becomes a summation over all

9

Figure 2: Discretisation of a pathway

matrix elements:

Vi,j(k) =
∑
o,p

Go.p(k) · exp

(
−|~ro,p − ~ri,j|

σ

)
(8)

For better performance the evaluate this summation only every other iteration
step without significant loss of accuracy.

→ Determination of walking direction

For choosing the resulting walking direction we used the same method as (PN10):

We determine the direction of both, the destination ~d and the maximum potential
~v = argmax

i,j
(Vi,j(k)) in the neighbourhood. The resulting direction is a superposition

of both with a weight we call the importance IMP .

~e = IMP ·
~d− ~ri,j
|~d− ~ri,j|

+ (1− IMP) · ~v − ~ri,j
|~v − ~ri,j|

(9)

Since each matrix-element represents a position, one pedestrian has eight possible
positions in the next iteration step. The position south ~s = (1, 0) servers as a
reference direction for the calculation of an angle α:

α = sign(e2) · acos

(
〈~e, ~s〉
|~e| · |~s|

)
+ 2π · I {−e2 > 0} (10)

(I {M} denotes the indicator function applied on a set M)

10

Figure 3: The eight sectors

Based on this angle α it is possible to determine which of the sectors Si in the
direct neighbourhood of the current position is going to be taken.

s =

(
bα + π/8

π/4
c mod 8

)
+ 1 (11)

With this implementation we were able to replace many loops and conditional
structures by algebraic operation which boost the performance significantly compared
to (PN10)

11

5 Simulation Results and Discussion

5.1 Reproduction

In this part it is shown how the results of (HKM97) can be reproduced. The results
are also compared with (PN10). In all our simulations a 50 by 50 square grid is used.

5.1.1 Triangle destinations

In this geometry the entry points and the destinations are located in a triangular
geometry. The goal was to reproduce the results in (HKM97, Fig. 2). When we
set the parameters as we calibrated them for the Irchelpark geometry, the pathway
system looks as in the figure of (HKM97). But to reproduce a trail which looks
like the 3rd of these figures, we had to change the importance and the intensity
parameters. When we set the importance to 0.2 and the intensity to 0.3 the results
were similar. Unfortunately we do not know the values of the parameters used in
(HKM97). Rising the visibility parameter leads to a similar change in the pathway
system as in the paper describe above. Between the left and the right bottom entry
there are some other results. This might because of the grid to determine the walking
direction as we implemented it and the importance might play a major role. If we
set the importance to zero, which leads to a straight way to the center of the area,
the pedestrians will stay and walk around in this center. They are not able to reach
their destination.

12

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 100

10 20 30 40 50

10

20

30

40

500.1

0.2

0.3

0.4

0.5

0.6

2

3

4

5

6

7

x 10
−4

Figure 4: Vis=1.0, Imp=0.5, Int=0.2

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 400

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

3

3.5

x 10
−3

Figure 5: Vis=2.0, Imp=0.2, Int=0.3

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 300

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Figure 6: Vis=6.0, Imp=0.2, Int=0.3

13

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 320

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Figure 7: Vis=50.0, Imp=0.2, Int=0.3

5.1.2 Corner entry

In this part we tried to get the same result for the corner geometry as in (HKM97).
To be plausible, we took the parameters we determined in the triangle geometry and
did not change them. As shown in the figures below, in a manner it was possible
to generate the same results. But like in the triangle geometry, the behaviour for a
large visibility is not as smooth as it is expected. The guessed reason is described in
the Summary chapter.

14

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 320

10 20 30 40 50

10

20

30

40

500.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4

6

8

10

x 10
−4

Figure 8: Vis=1.0, Imp=0.5, Int=0.2

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 380

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

1.5

2

2.5

3
x 10

−3

Figure 9: Vis=2.0, Imp=0.2, Int=0.3

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 480

10 20 30 40 50

10

20

30

40

500.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.008

0.01

0.012

0.014

0.016

Figure 10: Vis=6.0, Imp=0.2, Int=0.3

15

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 380

10 20 30 40 50

10

20

30

40

500.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0.13

Figure 11: Vis=50.0, Imp=0.2, Int=0.3

5.2 Trails of Irchelpark

Our main goal in the research plan was to reproduce the pathway described in chapter
2. It was generated by students who did not want to do a loop way and walked
directly over the grass.

16

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1
Potential

 Step 0

10 20 30 40 50

10

20

30

40

50

0.5

1

1.5

2

x 10
−3

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 60

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 120

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

17

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 180

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 240

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 300

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

18

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 360

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

Ground and Pedestrians

10 20 30 40 50

10

20

30

40

50

Potential

 Step 420

10 20 30 40 50

10

20

30

40

50

0.2

0.4

0.6

0.8

1

0.5

1

1.5

2

x 10
−3

19

Figure 12: Direction

6 Summary

First of all, we were able to reproduce this trail nearby correct. All the pedestrians
behave like expected an walk over the grass. The path is clearly recognisable on
the plots. We also were able to reproduce the results from the paper (HKM97). In
some cases there were some differences. But if you compare our results to the those
o(PN10), it is interesting, that their model in some cases behaves as ours. Even they
implemented some features in a different way. On the other hand, we used the idea
of the importance and the implementation of the grid for the walking direction from
(PN10). It might be, that those implementations cause these troubles. The angle
between two directions is obviously to large. We can easily see this feature in the
Irchelpark geometry, when pedestrians are walking from north to southeast. At the
begin, the angel is small, this means the will walk straight down. While they walk
south (green arrows), the angle between their walking direction and the destination
is getting bigger. If 25 degrees are reached, the movement direction changes rapidly
(purple arrows).

20

7 Outlook

We have realised that the implemented determination of the walking direction has
its weakness. There are 8 possible walking directions in our model. If a pedestrian is
walking in direction of south east, there are only 2 possible directions. We considered
about a finer mesh and a pedestrian would move 5 squares every step. In such a
model 32 different directions could be chosen, which would lead to a much more
appropriate pathway systems. In addition, we were thinking about an importance
which is depending on the angle between the direction on the vector of the biggest
potential. If the biggest potential (usually this is on the pathway) is nearby in the
same direction as the destination, the importance should be low. If the biggest
potential is in a 90 degrees direction of the destination, the importance should have
a maximum. In such a way, the pedestrians should behave more natural and walk on
the path, if its direction is the same as the destination. Furthermore, to develop a
more sensitive behaviour when 2 pedestrians cross would be a next challenge. People
should realise at least 4 squares before they meet that somebody is coming and go
aside. But to get better results, the first two suggestions for improvement seem to
be more appropriate.

21

Figure 13: 2 possible directions south-east

Figure 14: 5 possible directions south-east

22

8 References

References

[HKM97] Helbing, Dirk ; Keltsch, Joachim ; Molnar, Peter: Modelling the
evolution of human trail systems. In: Nature 388 (1997), Juli, Nr. 6637,
S. 47–50. – ISSN 0028–0836

[HSKM97] Helbing, Dirk ; Schweitzer, Frank ; Keltsch, Joachim ; Molnár,
Péter: Active walker model for the formation of human and animal
trail systems. In: Phys. Rev. E 56 (1997), Sep, Nr. 3, S. 2527–2539.
http://dx.doi.org/10.1103/PhysRevE.56.2527. – DOI 10.1103/Phys-
RevE.56.2527

[PN10] Pfefferle, Jonas ; Nicholas, Pleschke: Simulation of Human Trail
Systems / ETH Zurich. 2010. – Forschungsbericht

23

A Code

A.1 Main loops

Listing 1: simulate.m

1 clear; clc; hold off;
2 %% Constants %%
3 steps = 600;
4 people = 3; % number of pedestirans on field
5 cr_steps= 3; % number of steps until the next pedestrian will be created
6 INT =0.2; % Intensity (0 < int < 1) --> good: 0.3
7 VIS =5.8; % Visibilty -> good: 1.8
8 DUR =350; % Durability (dur > 1)
9 Gmax = 1; % maximal Comfort of walking

10 importance = 0.18; % average Importance of destination

12 %% Examples %%
13 % --------- EXAMPLE 1 - Trails of Irchelpark ---------------------------
14 PATH = imread(’path50.bmp’, ’bmp’); % PATH
15 PATH = PATH ./255;
16 PATH = ˜PATH; % make logical (1=path , 0=no path)
17 % --> Random entry and destination
18 % ENTRY = [1,23; 50,17; 12,50; 50 ,43];
19 % DEST = [1,24; 50,20; 14,50; 50 ,45]; % Destinations of the

Pedestrians

21 % --> possible pathways considering geology of irchelpark
22 % DEST = [1 23 50 20 ;
23 % 1 23 50 45 ;
24 % 50 17 1 24;
25 % 50 17 14 50;
26 % 50 43 1 24;
27 % 12 50 50 20];
28 %
29 % ENTRY = [0];

31 % --------- EXAMPLE 2 - Square ---------------------------------
32 PATH = zeros (50 ,50);
33 ENTRY = [1 ,65;1 ,75;150 ,49;150 ,57;150 ,126;150 ,136;31 ,150;42 ,150]; % Entry Points

of the Pedestrians
34 ENTRY = [1,1; 50,49; 1,50; 50,1];
35 DEST =[1,2; 50,50; 1,49; 49,1]; % Destinations of

37 % --------- EXAMPLE 2 - Triangle ---------------------------------
38 % PATH = zeros (50 ,50);
39 % ENTRY = [1,24; 49,1; 49 ,50];
40 % DEST =[1 ,26; 50,2; 50 ,49];

42 n = size(PATH ,2);
43 m = size(PATH ,1);
44 G0 = 0.1* ones(m,n); % Initial Ground (set to 0.2 8.5.1011 ,

Marius)
45 G0 = (G0.*˜ PATH)+(PATH.*Gmax); % Place the Path onto the ground

24

48 %% Importance of Destination
49 % Create Importance Matrix (Importance higher close to destinations)
50 IMP=ones(m,n)*importance; %Importance of destination (see Pfefferle , Pleschko

4.1)
51 % ---
52 % OPTIONAL: increase importance of destination close to a destination
53 glocke = zeros(n,m);
54 for k = 1:size(DEST ,1)
55 i = DEST(k,1);
56 j = DEST(k,2);
57 [A,B]= meshgrid (([1:m]-j).ˆ2 ,([1:n]-i).ˆ2);
58 tempglocke = -sqrt(A+B);
59 tempglocke = exp(-abs(tempglocke)/3); % 5
60 glocke = glocke + tempglocke;
61 end
62 IMP = IMP + (1 - importance)*glocke;
63 % ---

65 % INITIAL STATES
66 G = G0; % Initial ground
67 P = zeros(n,m); % Initial positions of pedestrians
68 V = updPot(G,VIS); % Initial walking potential
69 step_count = 0; % counts the steps from beginning

71 %% CREATE LOOP %%
72 % Create and move the first person -> Build PT (Pedestrian Hash -Table)
73 pid =1;
74 PT=zeros (1,4);
75 [P PT(1,:)]= createPedFcn(ENTRY ,DEST ,P);

77 for d=1: cr_steps
78 [P PT]= updPedestrian(V,G,P,PT,pid ,VIS ,IMP); %do cr_step times move untitl next

gerneration ,
79 [G] = updGround(G,P,G0,Gmax ,PATH ,DUR ,INT); %so peds aren ’t too closed
80 plotGround(V,G,PT,step_count);
81 step_count=step_count +1;
82 end

84 for i=2: people
85 [P PTi]= createPedFcn(ENTRY ,DEST ,P);
86 PT=[PT;PTi];
87 pid=size(PT ,1); %number of pedestrians on field

89 for d=1: cr_steps %do cr_steps ntil next creation
90 for ii=1:pid %move loop
91 [P PT] = updPedestrian(V,G,P,PT,ii,VIS ,IMP);
92 [P PT] = checkArrival(ENTRY ,DEST ,P,PT,ii);
93 end
94 G = updGround(G,P,G0,Gmax ,PATH ,DUR ,INT);
95 plotGround(V,G,PT,step_count);
96 V = updPot(G,VIS);
97 step_count=step_count +1;
98 end

100 end

102 %% UPDATE LOOP %%
103 for i = 1:steps

25

104 % UPDATE Pedestrian
105 for pid = 1: people
106 [P PT] = updPedestrian(V,G,P,PT,pid ,VIS ,IMP);
107 [P PT] = checkArrival(ENTRY ,DEST ,P,PT,pid);
108 end

110 % UPDATE Ground
111 G = updGround(G,P,G0,Gmax ,PATH ,DUR ,INT);
112 % UPDATE Potential every second loop
113 if mod(i,2)==0
114 V = updPot(G,VIS);
115 end
116 % PLOT Ground and Pedestrians
117 plotGround(V,G,PT,step_count);
118 step_count=step_count +1;
119 end

A.2 Pedestrian handling: creation and repositioning

Listing 2: createPedFcn.m

1 function [P ped_ENTRY_DEST] = createPedFcn(ENTRY ,DEST ,P)
2 %This Function creates a new pedestrian (entry and destination)
3 if(ENTRY ==0)

5 k = size(DEST ,1);
6 n = ceil(k*rand());
7 ped_ENTRY_DEST = DEST(n,:);
8 P(DEST(n,1),DEST(n,2)) = 1;

10 else

12 ke=size(ENTRY ,1); %number of entry points
13 kd=size(DEST ,1); %number of destinations

15 %index can ’t be 0
16 rndENT = ceil(rand()*ke);
17 rndDES=rndENT;

19 while rndENT == rndDES
20 rndDES=ceil(kd*rand()); %destinastion can ’t be the entry point
21 end

23 % [x-entry y-entry x-destination y-destination]
24 ped_ENTRY_DEST =[ENTRY(rndENT ,:),DEST(rndDES ,:)];

26 i=ped_ENTRY_DEST (1,1);
27 j=ped_ENTRY_DEST (1,2);

29 P(i,j)=1;

31 end

Listing 3: updPedestrian.m

26

1 function [P PT] = updPedestrian(V,G,P,PT,pid ,VIS ,IMP)
2 %% P = WALKINGDIRFUNC(G,P,PT,O,PID ,VIS ,IMP)
3 % G : Current state of the ground
4 % P : Current positions of pedestrians
5 % PT : Attributes of all pedestrians by id
6 % PID : Current pedestrian
7 % VIS : Visabilty Matrix (m-n-Matrix)
8 % IMP : Importance

10 % Ground size
11 [m n] = size(G);

13 % Current Position
14 i = PT(pid ,1);
15 j = PT(pid ,2);
16 curpos = PT(pid ,1:2);

18 %% Resulting Direction
19 % Relative direction to maximum Potential
20 W = V;
21 W(i,j)=0;
22 % ---
23 % OPTIONAL: evaluate maxpot in k-sized neighborhood
24 k = 25;
25 mask = W.*0;
26 mask(max(i-k,1):min(n,i+k),max(j-k,1):min(n,j+k)) = ones();
27 W = W.*mask;
28 % ---

30 [maxpot x] = max(W);
31 [maxpot y] = max(maxpot);

33 maxpotpos = [x(y) y]; % Absolulte position of maximal potential
34 maxpotdir = (maxpotpos - curpos)/norm(maxpotpos - curpos);

36 destpos = PT(pid ,3:4); % Absolute Position of destination
37 destdir = (destpos - curpos)/norm(destpos - curpos);

39 I = IMP;
40 % ---
41 % OPTIONAL: make importance of destination depend on the angle between the
42 % maximum Potential an the destination. big angle -> high importance , small
43 % angle -> low importance
44 % --- v.1 ------------
45 % impangle = (maxpotdir (2)-destdir (2) >= 0)* acos((dot(destdir ,maxpotdir)) /(norm(

destdir)*norm(maxpotdir))) +2*pi*(-(maxpotdir (2)-destdir (2)) > 0);
46 % impangle = sin(impangle /2);
47 % --- v.2 ------------
48 % impangle = acos((dot(destdir ,maxpotdir)) /(norm(destdir)*norm(maxpotdir)));
49 % impangle = impangle/pi;
50 %
51 % I = IMP./IMP * impangle;
52 % ---

55 % Resulting walking direction
56 % IMP = 0 --> 50/50 IMP = 1 --> 0/100

27

57 dir = ((.5 -.5*I(i,j))*maxpotdir + (.5+.5*I(i,j))*destdir) ...
58 / norm (((.5 -.5*I(i,j))*maxpotdir + (.5+.5*I(i,j))*destdir));

60 %% New Position
61 % Angle between resulting walking direction and (1,0).
62 % (1,0) -> 0, (0,1) -> pi/2, (-1,1) -> pi, etc.
63 angle = sign(dir(2))* acos((dot(dir ,[1 0])) /(norm(dir)*norm ([1 0]))) +2*pi*(-dir(2)

> 0);

65 % Determine which sector is going to be our new position based on the resulting angle
66 [x y newpos] = getNewPos(i,j,m,n,angle);

68 %% Avoid places where other Pedestrians are
69 uu=0;
70 origangle = angle;
71 while ((P(x,y) == 1) || max(max(newpos)) == 0) && uu <4
72 angle = origangle -round(uu)*pi/4; %*cos(2*uu*pi);
73 [x y newpos] = getNewPos(i,j,m,n,angle);
74 uu=uu+0.5;
75 end

77 if sum(sum(newpos)) == 0
78 fprintf(’------------------- ERRROORRR --------------\n’);
79 fprintf(’ A pedestrian does not know where to go\n’);
80 PT(pid ,:)
81 maxpotdir
82 destdir
83 dir
84 origangle
85 angle
86 fprintf(’--\n’);
87 error(’No Position found’);
88 end

90 P(i,j) = 0; % erase the old position
91 P = P + newpos; % add new position
92 PT(pid ,1:2) = [x y]; % update Pedestrian table

Listing 4: getNewPos.m

1 function [x y newpos] = getNewPos(i,j,m,n,angle)

3 sector = mod(floor((angle+pi/8)/(pi/4)) ,8)+1;
4 S = [6 5 4 ; % The 8 possible sectors.
5 7 0 3 ;
6 8 1 2] ;

8 bound = zeros(m+1,n+1);
9 bound(i:i+2,j:j+2) = S;

10 bound = bound (2:m+1,2:n+1);

12 newpos = (bound == sector);
13 newpos(i,j) = 0;

15 [maxnew x] = max(newpos);
16 [foo y] = max(maxnew);

18 x = x(y);

28

Listing 5: checkArrival.m

1 function [P PT] = checkArrival(ENTRY ,DEST ,P,PT,pid)
2 if (PT(pid ,1:2)==PT(pid ,3:4)) %create new ped if one is at dest
3 fprintf(’ich bin am ziel %2.0f \n’,pid);
4 P(PT(pid ,1),PT(pid ,2))=0;
5 [P PTi]= createPedFcn(ENTRY ,DEST ,P);
6 PT(pid ,:) = PTi;
7 end

A.3 Environmental updates

Listing 6: updPot.m

1 function V = updPot(G,VIS)

3 %% Potential
4 % Generate walkpot base function
5 m = size(G,1);
6 n = size(G,2);

8 V = zeros(m,n);

10 for i = 1:m
11 for j = 1:n
12 [A,B]= meshgrid (([1:m]-j).ˆ2 ,([1:n]-i).ˆ2);
13 walkpot = -sqrt(A+B);
14 walkpot=exp(walkpot ./VIS);
15 walkpot=walkpot .*G;
16 v = sum(sum(walkpot))/(m*n);
17 V(i,j) = v;
18 end
19 end

(The lines 12-13 are taken from (PN10))

Listing 7: updGround.m

1 function [Ground] = updGround(G,P,G0,Gmax ,path ,dur ,int)
2 % UPDGROUND(GROUND , G0, GMAX , DUR , VIS , INT)
3 % Updates the ground Matrix which models the comfort of walking
4 % G : Current state of the ground
5 % P : Current positions of pedestrians
6 % G0 : Initial State of the ground
7 % GMAX : Maximum comfort
8 % PATH : PATH Matrix
9 % DUR : Durability at each point

10 % INT : Intensity of footprints

12 restoration = (1/dur).*(G0-G); % Selfrestoration of the groud
13 damage = (int*(1-G./Gmax)).*P; % Damage by footprints
14 update = (restoration + damage).*˜ path; % only update where no path is located

29

15 Ground = G + update;

30

