
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Simulation of Human
Trail Systems in Parks

Markus Frei & Adrian Gaemperli

Zurich

May 2011

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Markus Frei Adrian Gaemperli

2

Contents

1 Individual contributions 4

2 Introduction and Motivations 4

3 Description of the Model 4
3.1 Summary of the model . 4
3.2 Extensions . 5

4 Implementation 6
4.1 Visualisation of the results . 6

4.1.1 Filename . 6
4.2 Parameters . 7

4.2.1 Path schemas . 7
4.2.2 Park setup . 8
4.2.3 Locations . 8

4.3 Class design . 8
4.3.1 Simulation . 8
4.3.2 Initialisation . 8
4.3.3 Park . 8
4.3.4 Pedestrian . 9

5 Simulation Results and Discussion 9
5.1 Entrances in the corners . 10

5.1.1 Path schema 1 . 10
5.1.2 Path schema 2 . 13

5.2 Entrances shifted 25% of the edges length 17
5.3 Entrances in the middle of the park edges 22
5.4 Alternative path schemas . 25

6 Summary and Outlook 26

7 References 26

A MATLAB code 26
A.1 start.m . 26
A.2 Simulation.m . 28
A.3 Initialisation.m . 34
A.4 Park.m . 36
A.5 Pedestrian.m . 40

3

1 Individual contributions

The whole project was done in a cooperative manner.

2 Introduction and Motivations

We decided to simulate a park with some paths, an obstacle and different pedestrian
destinations. Human trail systems can be described by very simple formulas. This
was of special interest to us and it is interesting to simulate this very common activity
of walking. Furthermore it was a perfect opportunity to improve our MATLAB
programming skills.

Of high interest are the following questions:

� With which path schema do people walk at least on the grassland?

� In which location do people walk at least beside the path?

� With which setup do they walk at least beside the paths?

� With which combination they walk at least beside the paths?

3 Description of the Model

Our simulation model is based on the continuous model of the paper Modeling the
evolution of human trail systems [HKM97]. We used the discretized model of the
previous Project Report [PP10]. A short summary for the discretized model and
explanation of our extended model will be given.

3.1 Summary of the model

The park is divided into a mesh of small squares. The different values are constant
for each square. We use a model with a discrete time step. The ground structure is
updated by the following formula taken from [PP10].

G(r, t+1) = G(r, t)+
1

T (r)
[G0(r)−G(r, t)]+I(r)

[
1− G(r, t)

Gmax(r)

]∑
α

δ(r−rα(t)) (1)

G(r, t) ground structure at place r for time t
Gmax(r, t) maximal ground structure at place r
T (r) durability of a footprint at place r
I(r) intensity of a footprint at place r

4

To calculate the attractiveness Vtr of a place rα we use the formula taken from
[PP10].

Vtr(rα, t) =

∑
r∈Ω

e
−|r−rα|
σ(rα) G(r, t)

|Ω|
(2)

Ω set of places which influence the attractiveness
σ(r) visibility of a place r

We use the following formula taken from [PP10] to calculate the direction which
the pedestrian walks in this time step.

eα(rα, t) = ρ ∗ dα − rα
‖dα − rα‖

+
arg maxr∈Λ Vtr(r, t)

‖ arg maxr∈Λ Vtr(r, t)‖
(3)

ρ If smaller than one the attractiveness gets more important. If larger than one
the distance gets more important

3.2 Extensions

We had to extend this model because we faced several problems. The pedestrians
walked through the obstacle. This limitation of the model was known from [PP10].
To avoid this behaviour we check every new position of a pedestrian if it is inside an
obstacle. In this case we exclude this position from the possible new positions and
guide the pedestrian around the obstacle. The position closest to the destination will
be chosen. In some cases it is still possible that they are trapped. This will be shown
during the discussion of the simulation. For each of the eight positions around the
pedestrian we have to calculate the attractiveness. Two or more positions often have
exactly the same value. To make a proper choice we took the position which is closest
to the destination. The pedestrians are free to choose a position on a path which
is in the closest direction to the destination. The attractiveness is not important if
the pedestrians are on a path. For ρ equal to zero the pedestrians can now find a
way to the destination and stay always on the paths. For ρ bigger than zero they
leave at some places the paths and walk over the grassland as expected. But for
some values of ρ it is still possible that the pedestrians are trapped on a place. The
circumstances are explained in the discussion of the simulations.

5

4 Implementation

4.1 Visualisation of the results

The visualisations are a representation of the ground structure matrix. Blue circles
represent entrances, yellow circles the position of a kiosk and green crosses pedes-
trians. Blue parts have a low ground structure value whereas red parts have a high
ground structure value.

Figure 1: An example of a visualisation

4.1.1 Filename

The filename of the figures states the parameters which were used and the step
number.

6

v1 program version
adjustment position of the entrances, equals 0 if entrances are in the corners
setup park setup number
loc location number
path path schema number
rho value of ρ, which defines how the attractiveness and the shortest way are weighted
step step number

Table 1: Explanation of the filename

4.2 Parameters

4.2.1 Path schemas

We developed several path schemas which seemed to be of special interest to us. All
path schemas have a path around the park and around the obstacle.

(a) Schema 1 (b) Schema 2 (c) Schema 3 (d) Schema 4

Figure 2: Examples of path schemas

Schema 1 The Path schema 1 has two straight diagonal paths. (see Figure 2a)

Schema 2 At this schema the inner and outer paths are connected by paths in the
middle of the sides. (see Figure 2b)

Schema 3 This schema is very similar to schema 1 but it has only one diagonal
path. (see Figure 2c)

Schema 4 This schema consists of a jagged diagonal path. (see Figure 2d)

7

4.2.2 Park setup

Kiosk (1) The kiosk is in the middle of the park and it changes the pedestrians’
behaviour. 20% of pedestrians walk to the kiosk and after that to their destination.

Lake (2) The lake is in the middle of the park and is a square.

4.2.3 Locations

As we realised that there is only a very little difference between location 1 and 2 we
later focused on location 2.

Location 1 The pedestrians enter the park at one side and walk to one exit of the
other side, uniformily distributed.

Location 2 The pedestrians walk from one entrance to another or walk back to the
entrance, uniformily distributed.

4.3 Class design

We implemented the model making use of object orientation to make the code more
readable. Furthermore we wrote a starter-script called start.m to make it easier to
start the simulations with a single call of start().

4.3.1 Simulation

The simulation class is responsible for the coordination of the simulation. It gives
the ”time-step” to the park and saves the figures, determines the start and endpoints
of the pedestrians and adds them to the simulation. Furthermore it also determines
if the pedestrians has to visit the kiosk.

4.3.2 Initialisation

This class is called by the simulation class and constructs the park. It adds the
obstacles (the lake and the kiosk) and sets the paths of the path schema.

4.3.3 Park

The park class registers all pedestrians and passes on the time-step to the pedestrians.
The class is responsible for the regeneration of the ground.

8

4.3.4 Pedestrian

In the pedestrian class all calculation is done which is needed to find out the walking
direction and location of the pedestrians. There is one instance per pedestrian.

5 Simulation Results and Discussion

Firstly, we will show the results when the entrances are in the corners of the park.
In this section we will describe the differences for the two path schemas, locations of
the park and park setups. A special focus will be set on different values of ρ.

We will move the entrances to the centre of the park edges in two steps. In this
part we focus on the second location and the setup with the kiosk. We will change
the path schema and ρ. In the last section we experiment with alternative path
schemas. For each case we simulated 500 steps. Our research has shown that there
is no significant difference.

9

5.1 Entrances in the corners

5.1.1 Path schema 1

(a) adjustment: 0, park setup: 1, location: 1,
path schema: 1, ρ: 1.2, step: 500

(b) adjustment: 0, park setup: 1, location: 1,
path schema: 1, ρ: 1.6, step: 500

(c) adjustment: 0, park setup: 1, location: 2,
path schema: 1, ρ: 0, step: 500

(d) adjustment: 0, park setup: 1, location: 2,
path schema: 1, ρ: 5, step: 500

Figure 3

10

The pedestrians never leave the paths in the first path schema with the kiosk setup
independent of the location of the park (see Figure 3). This is reasonable because
they always have a path in the shortest direction to their destinations. This path
schema in combination with these entrances would be optimal for park designers
because the grassland would not be destroyed by people. If we change the park
setup and increase ρ the pedestrians walk over the grassland (see Figure 4).

11

(a) adjustment: 0, park setup: 2, location: 2,
path schema: 1, ρ: 0.8, step: 500

(b) adjustment: 0, park setup: 2, location: 2,
path schema: 1, ρ: 1.2, step: 500

(c) adjustment: 0, park setup: 2, location: 2,
path schema: 1, ρ: 1.6, step: 500

(d) adjustment: 0, park setup: 2, location: 2,
path schema: 1, ρ: 5, step: 500

Figure 4

12

5.1.2 Path schema 2

(a) adjustment: 0, park setup: 1, location: 2,
path schema: 2, ρ: 0, step: 500

(b) adjustment: 0, park setup: 1, location: 2,
path schema: 2, ρ: 0.4, step: 500

(c) adjustment: 0, park setup: 1, location: 2,
path schema: 2, ρ: 0.8, step: 500

Figure 5

For little values of ρ we can see the trapped pedestrians in the figures (see Figure 5).
The pedestrian can reach the kiosk. Now he walks in the direction of his chosen park

13

exit. Until he reaches the corner of the squared region with high ground structure.
Then he is trapped because of the little value of ρ. The direction of the park exit
has a too low weight. It would be interesting to combine this algorithm with a path
finding algorithm to avoid such problems and improve the model of human trail
system.

(a) adjustment: 0, park setup: 1, location: 2,
path schema: 2, ρ: 1.2, step: 500

Figure 6

For ρ equal to 0.8 the pedestrians start to walk over the grassland. But the paths
are too attractive that is why they are still bound to them. For increasing ρ the
pedestrians walk more and more beside the paths (see Figure 6). The pedestrians
who want to go to the kiosk leave the paths earlier than those who want to go to
the diagonal entrance. The paths in the diagonals are made by the pedestrians who
walked from the kiosk in the centre to the entrances in the corners of the park.

14

Figure 7: adjustment: 0, park setup: 1, location: 2, path schema: 2, ρ: 1.6, step: 500

These effects continue for ρ equal to 1.6 (see Figure 7). In this picture we can see
three regions where the pedestrians are trapped (yellow dots). We can not explain
this effect because ρ is bigger than one and because of this the pedestrians should
find their way to the entrance. Beside this we can see in the upper right part of the
park that two paths are merged together.

Figure 8: adjustment: 0, park setup: 1, location: 2, path schema: 2, ρ: 2.0, step: 500

For ρ equal to 2 the paths are really close together (see Figure 8). This effect

15

gets more obvious the more we increase ρ. For ρ equal to 2.4 the pedestrians only
walk on the diagonals, the shortest way to their destinations (see Figure 9).

Figure 9: adjustment: 0, park setup: 1, location: 2, path schema: 2, ρ: 2.4, step: 500

Figure 9 shows the optimal path schema when the entrances are in the corners of
the park.

Figure 10: adjustment: 0, park setup: 1, location: 1, path schema: 2, ρ: 1.6, step: 500

If we set another location and keep the kiosk setup it does not change anything

16

(see Figure 10). As a consequence we do not have to change ρ in this case.

(a) adjustment: 0, park setup: 2, location: 2,
path schema: 2, ρ: 0.8, step: 500

(b) adjustment: 0, park setup: 2, location: 2,
path schema: 2, ρ: 1.6, step: 500

Figure 11

The lake setup is not as interesting as the kiosk setup (see Figure 11). This is
why we do not observe this case in the future analysis. We will focus on the kiosk
setup and the second location.

5.2 Entrances shifted 25% of the edges length

The entrances of the park are now shifted towards the centre of the park edges.

17

Figure 12: adjustment: 25, park setup: 1, location: 2, path schema: 1, ρ: 0.8, step: 500

For ρ equal to 0.8 there are a lot of places where the pedestrians are trapped (see
Figure 12). This is the case because the direction has a low weight. We can not
explain why there are such places on the diagonal paths. If we increase ρ more and
more grassland is destroyed by the pedestrians (see Figure 13).

18

(a) adjustment: 25, park setup: 1, location: 2,
path schema: 1, ρ: 1.2, step: 500

(b) adjustment: 25, park setup: 1, location: 2,
path schema: 1, ρ: 1.6, step: 500

(c) adjustment: 25, park setup: 1, location: 2,
path schema: 1, ρ: 2.0, step: 500

(d) adjustment: 25, park setup: 1, location: 2,
path schema: 1, ρ: 2.4, step: 500

Figure 13

19

Figure 14: adjustment: 25, park setup: 1, location: 2, path schema: 2, ρ: 0.8, step: 500

For the second path schema and little values of ρ there are also places where the
pedestrians are trapped (see Figure 14). If we increase ρ the pedestrians walk a lot
over the grassland again (see Figure 15).

20

(a) adjustment: 25, park setup: 1, location: 2,
path schema: 2, ρ: 1.2, step: 500

(b) adjustment: 25, park setup: 1, location: 2,
path schema: 2, ρ: 1.6, step: 500

(c) adjustment: 25, park setup: 1, location: 2,
path schema: 2, ρ: 2.0, step: 500

(d) adjustment: 25, park setup: 1, location: 2,
path schema: 2, ρ: 2.4, step: 500

Figure 15

For both path schemas there are a lot of small trails. Each trail can be dedicated
to a destination and a starting point of the pedestrian.

21

5.3 Entrances in the middle of the park edges

The entrances of the park are now shifted to the centre of the park edges.

(a) adjustment: 50, park setup: 1, location: 2,
path schema: 1, ρ: 0.8, step: 500

(b) adjustment: 50, park setup: 1, location: 2,
path schema: 1, ρ: 1.2, step: 500

Figure 16

Figure 17: adjustment: 50, park setup: 1, location: 2, path schema: 1, ρ: 1.6, step: 500

22

The results for ρ equals to 1.2 are not how we expected them (see Figure 16). If
we set a high value for ρ we get what we expected (see Figure 18).

(a) adjustment: 50, park setup: 1, location: 2,
path schema: 1, ρ: 2.0, step: 500

(b) adjustment: 50, park setup: 1, location: 2,
path schema: 1, ρ: 2.4, step: 500

Figure 18

23

(a) adjustment: 50, park setup: 1, location: 2,
path schema: 2, ρ: 0.8, step: 500

(b) adjustment: 50, park setup: 1, location: 2,
path schema: 2, ρ: 1.2, step: 500

(c) adjustment: 50, park setup: 1, location: 2,
path schema: 2, ρ: 1.6, step: 500

(d) adjustment: 50, park setup: 1, location: 2,
path schema: 2, ρ: 2.0, step: 500

Figure 19

In this set of figures (see Figure 19) we can see how the pedestrians walk more
and more over the grassland for increasing ρ until they walk the shortest way to their
destination. This leads to the optimal path schema for this case (see Figure 20).

24

Figure 20: adjustment: 50, park setup: 1, location: 2, path schema: 2, ρ: 2.4, step: 500

5.4 Alternative path schemas

(a) adjustment: 30, park setup: 1, location: 2,
path schema: 3, ρ: 1.6, step: 500

(b) adjustment: 50, park setup: 1, location: 2,
path schema: 4, ρ: 1.6, step: 500

Figure 21

25

We experimented with alternative path schemas. But they do not differ much from
the already discussed results, but these figures are illustrative.

6 Summary and Outlook

It can be easily seen that the pedestrians never leave the paths with path schema
1, a kiosk and zero adjustment. The extended model works fine but there are still
problems in some cases. However, a combination of this model with a path finding
algorithm would solve most of them. With such a combination it is possible to
simulate more complex environments. Nevertheless, we got reasonable results and
we could find optimal path schemas for different entrances.

An interesting enhancement of the project would be an easy visualisation of which
routes have changed which ground. Moreover to visualize the usage of the paths.
Furthermore our simulation was related to the different values of ρ. But it would
also be very interesting to change the durability and intensity. Another possible
interesting extension would be that the paths’ ground structure does not change
abruptly.

7 References

[HKM97] Dirk Helbing, Joachim Keltsch & Peter Molnar: Modeling the evolution
of human trail systems, Nature 388 (1997), 47-50

[PP10] Jonas Pfefferle & Nicholas Pleschko: Simulation of Human Trail Sys-
tems, Modelling and Simulating Social Systems with MATLAB, ETH
Project Report HS2010, December 13, 2010

A MATLAB code

A.1 start.m

1 function start()
2 %starts all simulation which are defined in simMatrix and saves the
3 %results in the folder ./output

26

4

5 close all hidden;
6 clear;
7

8 %first parameter: ParkSetup; second parameter: Location; third
9 %parameter: PathSchema 4. Adjustment 5. rho

10

11 simMatrix = [
12 1,1,1,0,1.2;
13 1,1,1,0,1.6;
14 1,1,2,0,1.6;
15 1,2,1,0,0;
16 1,2,1,0,5;
17 1,2,2,0,0.4;
18 1,2,2,0,0.8;
19 1,2,2,0,0;
20 1,2,2,0,1.2;
21 1,2,2,0,1.6;
22 1,2,2,0,2.4;
23 1,2,2,0,2.0;
24 2,2,1,0,0.8;
25 2,2,2,0,0.8;
26 2,2,1,0,1.2;
27 2,2,2,0,1.2;
28 2,2,1,0,1.6;
29 2,2,2,0,1.6;
30 2,2,1,0,5;
31 1,2,1,25,0.8;
32 1,2,1,25,1.2;
33 1,2,1,25,1.6;
34 1,2,1,25,2;
35 1,2,1,25,2.4;
36 1,2,2,25,0.8;
37 1,2,2,25,1.2;
38 1,2,2,25,1.6;
39 1,2,2,25,2;
40 1,2,2,25,2.4;
41 1,2,1,50,0.8;
42 1,2,1,50,1.2;
43 1,2,1,50,1.6;
44 1,2,1,50,2;
45 1,2,1,50,2.4;
46 1,2,2,50,0.8;
47 1,2,2,50,1.2;
48 1,2,2,50,1.6;
49 1,2,2,50,2;
50 1,2,2,50,2.4;
51 1,2,3,30,1.2;
52 1,2,3,30,1.6;
53 1,2,3,30,2.0;

27

54 1,2,3,50,1.2;
55 1,2,3,50,1.6;
56 1,2,3,50,2.0;
57 1,2,4,30,1.2;
58 1,2,4,30,1.6;
59 1,2,4,30,2.0;
60 1,2,4,50,1.2;
61 1,2,4,50,1.6;
62 1,2,4,50,2.0
63];
64

65 for i = 1:size(simMatrix,1)
66 simulation = Simulation(simMatrix(i,1), simMatrix(i,2), ...

simMatrix(i,3) , simMatrix(i,4), simMatrix(i,5));
67 simulation.start()
68 end
69

70 clear;
71 end

A.2 Simulation.m

1 classdef Simulation < handle
2 %SIMULATION controls the simulation
3 %
4

5 properties
6 park;
7 printInterval = 50;
8 numberOfSteps = 500;
9 pedRate = 0.4; %in this number of steps is one pedestrian ...

entering the park, set 0 for only one pedestrian (testing)
10 location;
11 parkSetup;
12 pathSchema
13 step = 0;
14 seedValue;
15 adjustment;
16 rho;
17 end
18

19 properties(Constant = true)
20 DAY LENGTH = 100;
21

22 end
23

24 methods

28

25 function this = Simulation(simParkSetup, simLocation, ...
simPathSchema, simAdjustment, simRho)

26

27 %Set random seed
28 this.seedValue = 4242;
29 RandStream.setDefaultStream(RandStream('mt19937ar', 'seed', ...

this.seedValue));
30

31 this.parkSetup = simParkSetup;
32 this.location = simLocation;
33 this.pathSchema = simPathSchema;
34 this.adjustment = simAdjustment;
35 this.rho = simRho;
36

37 init = Initialisation(simParkSetup, simPathSchema, ...
this.adjustment);

38 this.park = init.getPark();
39 end
40

41 function start(this)
42 this.saveData();
43

44 disp('Simulation started');
45

46 for step = 1:this.numberOfSteps
47 this.step = step;
48

49 %Information
50 %{
51 disp(strcat('SIMULATION STEP ', num2str(this.step)));
52 disp('number of pedestrians =');
53 disp(length(this.park.pedestrians));
54 %}
55

56 %generate pedestrians and put them in the park
57 if isequal(this.pedRate, 0)
58 this.generatePedestrian();
59 this.pedRate = 2;
60

61 elseif rand(1) <= this.pedRate && this.pedRate <= 1
62 this.generatePedestrian(this.adjustment);
63

64 end
65

66 %make a simulation step for de park
67 %pedestrians will be updated in this function
68 this.park.step();
69

70 if mod(step, this.printInterval) == 0
71 % print groundstructure and attractivness

29

72 this.saveData();
73 end
74

75 end
76

77

78 disp('Simulation completed');
79 return
80 end
81

82 function generatePedestrian(this, adjus)
83 %generates the pedestrians and adds them to the park
84

85 %set entrances and exits of the park
86 entrance1 = [1,1+adjus];
87 entrance2 = [length(this.park.groundStructure)−adjus,1];
88 entrance3 = [1+adjus, length(this.park.groundStructure)];
89 entrance4 = [length(this.park.groundStructure), ...

length(this.park.groundStructure)−adjus];
90 kioskPosition = [length(this.park.groundStructure)/2, ...

length(this.park.groundStructure)/2];%when change ...
remember to change also in the park

91

92 %generate pedestrian for the different simulation types
93 ped = Pedestrian();
94 ped.setRho(this.rho);
95 ped.setPark(this.park);
96

97 if this.location == 1
98 %At this location, in the morning all people want to ...

walk from
99 %South to North (from the 2 entrances in the South (each ...

50%)
100 %to the entrances in the North (each 50%) because ...

there's a
101 %living district in the south and and work space in the ...

north.
102 %In the evening vice versa.
103

104 %in the morning the pedestrians walk from one side to the
105 %other
106 if this.isMorning()
107

108 %set start place of the pedestrian
109 if rand(1) <= 0.5
110 ped.setStart(entrance1);
111 else
112 ped.setStart(entrance2);
113 end
114

30

115 %there is a lake in the center
116 if this.parkSetup == 2
117

118 %there is a kiosk in the center
119 elseif this.parkSetup == 1
120 %set the kiosk as destination
121 if rand(1) <= 0.2
122 ped.addDestination(kioskPosition);
123 end
124 else
125 assert(false)
126 end
127

128 %set destination of the pedestrian
129 if rand(1) <= 0.5
130 ped.addDestination(entrance3);
131 else
132 ped.addDestination(entrance4);
133 end
134

135 %in the evening the pedestrains walk in the other direction
136 else
137 %set start place of the pedestrian
138 if rand(1) <= 0.5
139 ped.setStart(entrance3);
140 else
141 ped.setStart(entrance4);
142 end
143

144 if this.parkSetup == 2
145

146 elseif this.parkSetup == 1
147 %set the kiosk as destination
148 if rand(1) <= 0.2
149 ped.addDestination(kioskPosition);
150 end
151 else
152 assert(false)
153 end
154

155 %set destination of the pedestrian
156 if rand(1) <= 0.5
157 ped.addDestination(entrance1);
158 else
159 ped.addDestination(entrance2);
160 end
161

162 end
163

164 elseif this.location == 2

31

165 %At this location, people are coming from every entrance
166 %(each 25%) and they leave the park on every entrance with
167 %probability 25%, because it's in the middle of the city.
168

169 prob = rand(1);
170

171 %set start place of the pedestrian
172 if prob <= 0.25
173 ped.setStart(entrance1);
174 %disp('START AT [1,1]');
175 elseif prob > 0.25 && prob <= 0.5
176 ped.setStart(entrance2);
177 %disp('START AT [length(this.park.groundStructure), ...

1]');
178 elseif prob > 0.5 && prob <= 0.75
179 ped.setStart(entrance3);
180 %disp('START AT [1,length(this.park.groundStructure)]');
181 else
182 ped.setStart(entrance4);
183 %disp('START AT [length(this.park.groundStructure), ...

length(this.park.groundStructure)]');
184 end
185

186 %there is a lake in the center
187 if this.parkSetup == 2
188

189 %there is a kiosk in the center
190 elseif this.parkSetup == 1
191 %set the kiosk as destination
192

193 if rand(1) <= 0.2
194 ped.addDestination(kioskPosition);
195 end
196 else
197 assert(false)
198 end
199

200 prob = rand(1);
201

202 %set destination of the pedestrian
203 if prob <= 0.25
204 ped.addDestination(entrance1);
205

206 elseif prob > 0.25 && prob <= 0.5
207 ped.addDestination(entrance2);
208

209 elseif prob > 0.5 && prob <= 0.75
210 ped.addDestination(entrance3);
211

212 else

32

213 ped.addDestination(entrance4);
214

215 end
216

217 else
218 assert(false)
219 end
220

221 %add pedestrian to the park
222 this.park.pedestrians = [this.park.pedestrians ped];
223

224 end
225

226 function val = isMorning(this)
227 %return: true or false
228 %calculation: we set true if test is even, otherwise false
229

230 test = floor(this.step/this.DAY LENGTH);
231

232 if (rem(test,2) == 0)
233 val = true;
234 else
235 val = false;
236 end
237

238 end
239

240 function saveData(this)
241 fig = figure(1);
242 clf('reset');
243

244 this.park.printMaps();
245

246 filenamePart = strcat('v1 ', 'adjustment', ...
int2str(this.adjustment) ,' setup', ...
int2str(this.parkSetup), ' loc', int2str(this.location), ...
' path', int2str(this.pathSchema), ' rho', ...
num2str(this.rho), ' step', num2str(this.step));

247

248 saveas(fig, ['output/', filenamePart, '.png'])
249 clf('reset')
250 %close 1;
251

252 end
253

254 end
255

256 end

33

A.3 Initialisation.m

1 classdef Initialisation < handle
2 %INITIALISATION initialises the simulation
3

4 properties (GetAccess = 'private', SetAccess = 'private')
5 pathSchema;
6 parkSetup;
7 park;
8 end
9

10 properties (Constant = true)
11 PARK SETUP OBSTACLE SIDELENGTH = [10, 50] % value has to be even
12 PATH WIDTH = 4
13 PATH GROUND STRUCTURE = 150
14 PARK SIDE LENGTH = 100
15 KIOSK GROUND STRUCTURE = 150
16 end
17

18 methods
19 function this = Initialisation(initParkSetup, initPathSchema, adjus)
20 this.parkSetup = initParkSetup;
21 this.pathSchema = initPathSchema;
22 this.park = Park(this.PARK SIDE LENGTH, adjus);
23 end
24

25 function park = getPark(this)
26

27 this.buildPathSchema();
28 this.buildParkSetup();
29 park = this.park;
30 return
31 end
32 end
33

34 methods(Access = private)
35

36 function buildParkSetup(this)
37 mid = floor(this.PARK SIDE LENGTH/2);
38 obstacleHalfLength = ...

floor(this.PARK SETUP OBSTACLE SIDELENGTH(this.parkSetup)/2);
39 switch this.parkSetup
40 case 1
41 %A square kiosk in the middle of the park.
42 this.constructRectangle((mid−obstacleHalfLength):(mid+obstacleHalfLength),(mid−obstacleHalfLength):(mid+obstacleHalfLength), ...

this.KIOSK GROUND STRUCTURE);
43 case 2
44 %A square lake in the middle of the park.

34

45 this.constructRectangle((mid−obstacleHalfLength):(mid+obstacleHalfLength),(mid−obstacleHalfLength):(mid+obstacleHalfLength), ...
−1);

46 otherwise
47 assert(false);
48 end
49

50

51 end
52

53

54 function buildPathSchema(this)
55

56 % draw path around park
57 this.constructRectangle(1:this.PARK SIDE LENGTH, ...

1:this.PATH WIDTH, this.PATH GROUND STRUCTURE);
58 this.constructRectangle(1:this.PARK SIDE LENGTH, ...

this.PARK SIDE LENGTH−this.PATH WIDTH:this.PARK SIDE LENGTH, ...
this.PATH GROUND STRUCTURE);

59 this.constructRectangle(1:this.PATH WIDTH, ...
1:this.PARK SIDE LENGTH, this.PATH GROUND STRUCTURE);

60 this.constructRectangle(this.PARK SIDE LENGTH−this.PATH WIDTH:this.PARK SIDE LENGTH, ...
1:this.PARK SIDE LENGTH, this.PATH GROUND STRUCTURE);

61

62 % draw path around obstacle
63 p = ...

floor(this.PATH WIDTH+this.PARK SETUP OBSTACLE SIDELENGTH(this.parkSetup)/2);
64 mid = floor(this.PARK SIDE LENGTH/2);
65 this.constructRectangle((mid−p):(mid+p), (mid−p):(mid+p), ...

this.PATH GROUND STRUCTURE);
66

67

68 switch this.pathSchema
69 case 1
70 %path around the obstacle in the middle. A path around
71 %the park and a path from the corners of the park to
72 %the corresponding corner of the obstacle.
73

74 for i = 1:(this.PARK SIDE LENGTH−this.PATH WIDTH)
75 this.constructRectangle(i:i+this.PATH WIDTH,i:i+this.PATH WIDTH,this.PATH GROUND STRUCTURE)
76 this.constructRectangle(this.PARK SIDE LENGTH+1−i−this.PATH WIDTH:this.PARK SIDE LENGTH+1−i,i:i+this.PATH WIDTH,this.PATH GROUND STRUCTURE)
77 end
78

79

80 case 2
81 %path around the obstacle in the middle. A path around
82 %the park and in the middle of the sides we dig a path
83 %to the middle of the corresponding middle of the side
84 %of the obstacle
85 halfPathWidth = floor(this.PATH WIDTH/2);

35

86 this.constructRectangle((mid−halfPathWidth):(mid+halfPathWidth),1:this.PARK SIDE LENGTH, ...
this.PATH GROUND STRUCTURE)

87 this.constructRectangle(1:this.PARK SIDE LENGTH,(mid−halfPathWidth):(mid+halfPathWidth), ...
this.PATH GROUND STRUCTURE)

88 case 3
89 % only one diagonal
90 for i = 1:(this.PARK SIDE LENGTH−this.PATH WIDTH)
91 this.constructRectangle(i:i+this.PATH WIDTH,i:i+this.PATH WIDTH,this.PATH GROUND STRUCTURE)
92 end
93 case 4
94 u = 0;
95

96 l = ceil(2*sqrt(this.PATH WIDTH/4));
97 for i = ...

(2*this.PATH WIDTH)+1:(this.PARK SIDE LENGTH−this.PATH WIDTH)
98 if u == 0
99

100 this.constructRectangle(i:i+2*this.PATH WIDTH,i:i+l,this.PATH GROUND STRUCTURE)
101 this.constructRectangle(i:i+l,i−2*this.PATH WIDTH:i,this.PATH GROUND STRUCTURE)
102 end
103

104

105

106 u=u+1;
107 u = mod(u, 2*this.PATH WIDTH);
108 end
109

110

111

112 otherwise
113 assert(false);
114 end
115

116 end
117

118 function constructRectangle(this, rows, columns, value)
119 this.park.groundStructure(rows, columns) = value;
120 this.park.groundStructureInit(rows, columns) = value;
121 this.park.groundStructureMax(rows, columns) = value;
122 end
123

124 end
125

126 end

A.4 Park.m

36

1 classdef Park < handle
2 %Park organises all informations about the Park.
3 % the function updateGroundStructure() updates the groundStructure
4

5 properties %(SetAccess = private)
6 groundStructure; % G(r, now)
7 groundStructureMax; % G max(r)
8 groundStructureInit; % G 0(r) = G(r,0)
9 intensity; % I(r)

10 durability; % T(r)
11 visibility; % (r)
12 pedestrians = [];%vector which contains all pedestrians
13 currentStep = 0;
14 adjustment;%only important for drawing the entrances on the map
15 end
16

17 properties(Constant = true)
18 STANDARD MAX GROUNDSTRUCTURE = 100;
19 STANDARD VISIBILITY = 2;
20 STANDARD INTENSITY = 10;
21 STANDARD DURABILITY = 200;
22 end
23

24 methods
25

26 function this = Park(dimension, adjus)
27 this.groundStructure = ones(dimension);
28 this.groundStructureInit = ones(dimension);
29 this.groundStructureMax = ones(dimension) * ...

this.STANDARD MAX GROUNDSTRUCTURE;
30 this.intensity = ones(dimension) * this.STANDARD INTENSITY;
31 this.durability = ones(dimension) * this.STANDARD DURABILITY;
32 this.visibility = ones(dimension) * this.STANDARD VISIBILITY;
33 this.adjustment = adjus;
34 end
35

36 function setPedestrianGenerationRate(this,rate)
37 this.pedestrianGenerationRate = rate;
38 end
39

40 function addPedestrian(this, object)
41 object.setPark(this);
42 object.setRho(this.STANDARD RHO);
43 this.pedestrians = [this.pedestrians object];
44 end
45

46

47 function updateGroundStructure(this)
48 %updates the ground structure. The formula is separated into 2
49 %parts.

37

50

51 %change ground structure of every position in the park ...
(regeneration)

52 for i = 1:max(size(this.groundStructure))
53 for j = 1:max(size(this.groundStructure))
54

55 this.groundStructure(i,j) = ...
this.groundStructure(i,j) + ...
1/this.durability(i,j) * ...
(this.groundStructureInit(i,j)−this.groundStructure(i,j));

56 end
57 end
58

59 %iterate over all pedestrians and add their footprints ...
(destruction)

60 for n = 1:length(this.pedestrians)
61 pos = this.pedestrians(n).currentPosition;
62

63 this.groundStructure(pos(1),pos(2)) = ...
this.groundStructure(pos(1),pos(2)) + ...
this.intensity(pos(1),pos(2)) * (1 − ...
this.groundStructure(pos(1),pos(2))/this.groundStructureMax(pos(1),pos(2)));

64

65 end
66 end
67

68 function printGroundStructureMap(this)
69 title(['ground structure (step ' int2str(this.currentStep) ...

')'])
70 axis([1 size(this.groundStructure,1) 1 ...

size(this.groundStructure,2)])
71 caxis([0, max(max(this.groundStructureMax))])
72

73

74 %shading interp;
75 pc = pcolor(this.groundStructure);
76 set(pc,'edgecolor','none');
77

78

79

80 end
81

82

83 function printPedestriansMap(this)
84 pedestriansPositions = zeros(length(this.pedestrians),2);
85 for i=1:length(this.pedestrians)
86 pedestriansPositions(i,:) = ...

this.pedestrians(i).getPosition();
87 end
88

38

89 if ˜isempty(pedestriansPositions)
90 plot(pedestriansPositions(:,2),pedestriansPositions(:,1),'gx');
91 end
92

93 %plot the entrances of the park and kiosk position
94 entrance1 = [1,1+this.adjustment];
95 entrance2 = [length(this.groundStructure)−this.adjustment,1];
96 entrance3 = [1+this.adjustment, length(this.groundStructure)];
97 entrance4 = [length(this.groundStructure), ...

length(this.groundStructure)−this.adjustment];
98 kioskPosition = [length(this.groundStructure)/2, ...

length(this.groundStructure)/2];
99 plot(entrance1(2), entrance1(1), 'o');

100 plot(entrance2(2), entrance2(1), 'o');
101 plot(entrance3(2), entrance3(1), 'o');
102 plot(entrance4(2), entrance4(1), 'o');
103 plot(kioskPosition(2), kioskPosition(1), 'yo');
104

105 end
106

107 function printMaps(this)
108 hold on;
109 axis square
110 axis off
111 this.printGroundStructureMap();
112 this.printPedestriansMap();
113 hold off;
114 end
115

116 function deleteArrivedPedestrians(this)
117 numberOfPed = length(this.pedestrians);
118 numberOfErasedPed = 0;
119

120 for i = 1:numberOfPed
121 if this.pedestrians(i−numberOfErasedPed).hasArrived()
122 this.pedestrians(i−numberOfErasedPed) = [];
123 numberOfErasedPed = numberOfErasedPed + 1;
124 end
125 end
126

127 end
128

129 function step(this)
130 %Updates the states
131 this.currentStep = this.currentStep + 1;
132

133 %Iterate over all pedestrians
134 for i=1:length(this.pedestrians)
135

136 %update the pedestrian

39

137 if ˜(this.pedestrians(i).hasArrived())
138 this.pedestrians(i).step();
139 end
140

141 end
142

143 %update ground structure
144 this.updateGroundStructure();
145

146 this.deleteArrivedPedestrians();
147

148 end
149

150 end
151

152 end

A.5 Pedestrian.m

1 classdef Pedestrian < handle
2 %PEDESTRIAN contains the simulation logic
3 % the function step() and subfunctions contain the logic for deciding
4 % which position should be chosen as next step
5

6

7 properties
8 currentPosition;
9 park;

10 currentDestination = 1; %index for the variable "destinations"
11 arrived = false; % true after visited all destinations
12 destinations = []; %matrix; lines: different destinations; first ...

row: x−coordinates; second row: y−coordinates
13 rho;%float value; used and explained in function ...

calculateNewDirection
14 lastPosition = [];
15 end
16

17 methods
18

19 function this = Pedestrian()
20 return
21 end
22

23 function setStart(this, start)
24 this.currentPosition = start;
25 end
26

40

27 function setRho(this, rho)
28 this.rho = rho;
29 end
30

31 function printValues(this)
32 %For debuging
33 %prints some values of the pedestrian
34 disp('currentPosition =');
35 disp(this.currentPosition);
36 disp('currentDestination = ');
37 disp(this.currentDestination);
38 disp('destinations = ');
39 disp(this.destinations);
40 disp('arrived = ')
41 disp(this.arrived)
42 end
43

44 function setPark(this, park)
45 this.park = park;
46 end
47

48 function val = hasArrived(this)
49 val = this.arrived;
50 end
51

52 function addDestination(this, position)
53 this.destinations = [this.destinations; position];
54 end
55

56 function dest = getDestination(this)
57 dest = this.destinations(this.currentDestination,:);
58 end
59

60 function vMatrix = calculateVMatrix(this)
61 vMatrix = zeros(3);
62

63 for i = −1:1
64 for j = −1:1
65 if this.currentPosition(1)+i >= 1 && ...

this.currentPosition(2)+j >= 1 && ...
this.currentPosition(1)+i <= ...
max(size(this.park.groundStructure)) && ...
this.currentPosition(2)+j <= ...
max(size(this.park.groundStructure)) && ...
not(isequal(i,j,0))

66

67 vMatrix(i + 2, j + 2) = ...
this.calculateV([this.currentPosition(1)+i, ...
this.currentPosition(2)+j]);

68

41

69 end
70 end
71 end
72

73 end
74

75 function v = calculateV(this, position)
76 %input: 2 dimensional vector
77 %returns the value of V on position
78

79 %The true size of omega woud be (2*zizeOfOmega + 1)
80 sizeOfOmega = 8;
81

82 maxSize = max(size(this.park.groundStructure));
83

84 sum = 0;
85

86 %check if position is inside a lake => v=−1
87 if this.park.groundStructure(position(1),position(2)) < 0
88 v = −1;
89 return
90 end
91

92 %i is on x axis; j is on y axis
93 for i = −sizeOfOmega:sizeOfOmega
94 for j = −sizeOfOmega:sizeOfOmega
95

96 distance = max(abs(i),abs(j));
97

98 %check if the place where we want to calculate V is
99 %inside the park

100 if position(1)+i <= maxSize && position(1)+i >= 1 && ...
position(2)+j <= maxSize && position(2)+j >= 1

101

102 %for the case when a lake is at this position, ...
if a

103 %lake is at this position: set the groundStructure
104 %of a street
105 if this.park.groundStructure(position(1)+i, ...

position(2)+j) > 0
106 sumPart = ...

exp(−distance/this.park.visibility(position(1)+i, ...
position(2)+j))*this.park.groundStructure(position(1)+i, ...
position(2)+j);

107

108 else
109 sumPart = ...

exp(−distance/this.park.visibility(position(1)+i, ...
position(2)+j))*150;

110

42

111 end
112

113 elseif position(1)+i > maxSize && position(2)+j > ...
maxSize

114 sumPart = ...
exp(−distance/this.park.visibility(maxSize, ...
maxSize))*this.park.groundStructure(maxSize, ...
maxSize);

115

116 elseif position(1)+i > maxSize && position(2)+j < 1
117 sumPart = exp(−distance/this.park.visibility(1, ...

maxSize))*this.park.groundStructure(1, maxSize);
118

119 elseif position(1)+i < 1 && position(2)+j < 1
120 sumPart = exp(−distance/this.park.visibility(1, ...

1))*this.park.groundStructure(1, 1);
121

122 elseif position(1)+i < 1 && position(2)+j > maxSize
123 sumPart = ...

exp(−distance/this.park.visibility(maxSize, ...
1))*this.park.groundStructure(maxSize, 1);

124

125 elseif position(1)+i < 1 && (position(2)+j <= ...
maxSize && position(2)+j >= 1)

126 sumPart = exp(−distance/this.park.visibility(1, ...
position(2)+j))*this.park.groundStructure(1, ...
position(2)+j);

127

128 elseif position(2)+j < 1 && (position(1)+i >= 1 && ...
position(1)+i <= maxSize)

129 sumPart = ...
exp(−distance/this.park.visibility(position(1)+i, ...
1))*this.park.groundStructure(position(1)+i, 1);

130

131 elseif position(1)+i > maxSize && (position(2)+j >= ...
1 &&position(2)+j <= maxSize)

132 sumPart = ...
exp(−distance/this.park.visibility(maxSize, ...
position(2)+j))*this.park.groundStructure(maxSize, ...
position(2)+j);

133

134 elseif position(2)+j > maxSize && (position(1)+i >= ...
1 && position(1)+i <= maxSize)

135 sumPart = ...
exp(−distance/this.park.visibility(position(1)+i, ...
maxSize))*this.park.groundStructure(position(1)+i, ...
maxSize);

136

137 end
138

43

139 sum = sum + sumPart;
140

141 end
142 end
143

144 v = sum/(2*sizeOfOmega + 1)ˆ2;
145

146 end
147

148

149 function direction = calculateNewDirection(this)
150 %returns the direction in a vector with norm(vector)=1
151 maxVDirection = this.getMaxVDirection();
152

153 firstPart = ...
(this.getDestination()−this.currentPosition)/norm(this.getDestination()−this.currentPosition);

154

155 secondPart = maxVDirection/norm(maxVDirection);
156

157 direction = this.rho*firstPart + secondPart;
158

159 direction = direction/norm(direction);
160

161 end
162

163 function maxVDirection = getMaxVDirection(this)
164 %returns the direction of the maximal V arround the ...

currentPosition
165

166 vMatrix = calculateVMatrix(this);
167

168 maxVDirectionMatrix = [];
169 onStreetMatrix = [];
170 maxV = −1;
171

172 epsilon = 0.0001;
173

174 for i = 1:3
175 for j = 1:3
176

177 try
178 isOnStreet = ...

isequal(this.park.groundStructure(this.currentPosition(1)+i−2, ...
this.currentPosition(2)+j−2), 150);

179 catch
180 isOnStreet = false;
181 end
182

183 if isOnStreet && (˜isequal(i,j,2))
184 onStreetMatrix = [onStreetMatrix; [i−2, j−2]];

44

185

186 if vMatrix(i,j) >= maxV+epsilon
187 maxV = vMatrix(i,j);
188 maxVDirectionMatrix = [];
189 end
190

191 elseif vMatrix(i,j) >= maxV−epsilon
192

193 %a bigger value was found, we reset count and
194 %maxVDirectionMatrix
195 if vMatrix(i,j) >= maxV+epsilon
196 maxVDirectionMatrix = [];
197

198 end
199

200 maxV = vMatrix(i,j);
201 maxVDirectionMatrix = [maxVDirectionMatrix; ...

[i−2, j−2]];
202 end
203 end
204 end
205

206 maxVDirectionMatrix = [maxVDirectionMatrix; onStreetMatrix];
207

208

209 %Choose right direction if we have the same value more
210 %than once in the VMatrix
211

212 if length(maxVDirectionMatrix) >= 2
213 compare = −1;
214 walkDirection = ...

(this.getDestination()−this.currentPosition)/norm(this.getDestination()−this.currentPosition);
215 walkDirection = walkDirection/norm(walkDirection);
216 maxSize = size(maxVDirectionMatrix);
217

218 for n = 1:maxSize(1,1)
219 value = ...

maxVDirectionMatrix(n,:)/norm(maxVDirectionMatrix(n,:))*transpose(walkDirection);
220

221 if value >= compare
222 maxVDirection = maxVDirectionMatrix(n,:);
223 compare = value;
224 end
225 end
226

227 else
228 maxVDirection = maxVDirectionMatrix(1,:);
229

230 end
231

45

232 end
233

234 function setNewPosition(this)
235 directionToGo = this.calculateNewDirection();
236

237 epsilon = 0.0001;
238

239 bound = sqrt(sqrt(2.0)+2)/2.0 + epsilon;
240

241 move = [0,0];
242

243 if directionToGo*[1,0]'> bound
244 move = [1,0];
245 elseif directionToGo*[0,1]'> bound
246 move = [0,1];
247 elseif directionToGo*[−1,0]'> bound
248 move = [−1,0];
249 elseif directionToGo*[0,−1]'> bound
250 move = [0,−1];
251 elseif directionToGo*([1,1]/norm([1,1]))'> bound
252 move = [1,1];
253 elseif directionToGo*([−1,−1]/norm([−1,−1]))'> bound
254 move = [−1,−1];
255 elseif directionToGo*([−1,1]/norm([−1,1]))'> bound
256 move = [−1,1];
257 elseif directionToGo*([1,−1]/norm([1,−1]))'> bound
258 move = [1,−1];
259 end
260

261 %check if the new position would be inside a lake, we doesn't
262 %allow swimming
263 newPosition = this.currentPosition + move;
264 if this.park.groundStructure(newPosition(1),newPosition(2)) ...

< 0
265 %calculate better newPosition
266

267 %walkDirection = this.currentPosition−newPosition;
268

269 directionToDestination = ...
(this.getDestination()−this.currentPosition)/norm(this.getDestination()−this.currentPosition);

270

271 if isequal(move(1),0)
272 move1= [move(2),0];
273 move2= [−move(2),0];
274

275 if directionToDestination * move1' > ...
directionToDestination * move2'

276 move = move1;
277 elseif directionToDestination * move1' < ...

directionToDestination * move2'

46

278 move = move2;
279 else
280 move = [move(2),0];
281 end
282

283 elseif isequal(move(2),0)
284 move1 = [0,move(1)];
285 move2 = [0,−move(1)];
286

287 if directionToDestination * move1' > ...
directionToDestination * move2'

288 move = move1;
289 elseif directionToDestination * move1' < ...

directionToDestination * move2'
290 move = move2;
291 else
292 move = [0, move(1)];
293 end
294

295 elseif isequal(move(1),−1) && isequal(move(2),1)
296

297 if ...
this.park.groundStructure(newPosition(1)+1,newPosition(2)) ...
> 0

298 move = [0,1];
299 else
300 move= [−1,0];
301 end
302

303 elseif isequal(move(1),1) && isequal(move(2),1)
304

305 if ...
this.park.groundStructure(newPosition(1)−1,newPosition(2)) ...
> 0

306 move= [0,1];
307 else
308 move= [1,0];
309 end
310

311 elseif isequal(move(1),−1) && isequal(move(2),−1)
312

313 if ...
this.park.groundStructure(newPosition(1)+1,newPosition(2)) ...
> 0

314 move= [0,−1];
315 else
316 move = [−1,0];
317 end
318

319 elseif isequal(move(1),1) && isequal(move(2),−1)

47

320

321 if this.park.groundStructure(newPosition(1) − ...
1,newPosition(2)) > 0

322 move = [0,−1];
323 else
324 move = [1,0];
325 end
326 end
327

328 end
329

330

331 this.currentPosition = this.currentPosition + move;
332

333 end
334

335 function step(this)
336

337 destination = this.getDestination();
338

339 %if pedestrian is at his destination he doesn't need to move
340 %anymore (to avoid any error)
341 if this.arrived | | isequal(destination, this.currentPosition)
342 this.arrived = 1;
343 return
344 end
345

346 this.setNewPosition();
347

348 %update currentDestination if the pedestrian reached a ...
destination

349 if isequal(this.currentPosition, destination)
350 this.currentDestination = this.currentDestination + 1;
351 end
352

353 %check if pedestrian arrived at his final destination
354 if this.currentDestination > size(this.destinations,1)
355 this.arrived = true;
356 end
357

358 end
359

360 function position = getPosition(this)
361 position = this.currentPosition;
362 end
363

364 end
365

366 end

48

