
Lecture with Computer Exercises:
Modelling and Simulating Social Systems with MATLAB

Project Report

Evacuation Bottleneck:
Simulation and analysis of an evacuation of a

lecture room with MATLAB

Dario Biner & Noé Brun

Zurich
May 2011

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code is
written by ourselves and is not violating any copyright restrictions.

Dario Biner Noé Brun

2

Contents

1 Introduction and Motivations 5

2 Description of the Model 6

3 The Room 8
3.1 Room drawing . 8
3.2 Room Design . 10
3.3 Room plotting . 11

4 The Path 12
4.1 Path Design . 12

4.1.1 PMatrix . 12
4.1.2 PAMatrix . 13
4.1.3 PE Matrix . 13

4.2 Add Exit Algorithm . 15
4.3 Path Optimization . 15

5 The Agent 16
5.1 Matrix A . 16
5.2 Agent Algorithm . 17

5.2.1 Agent and Density . 17
5.2.2 Agent and Exits . 17

5.3 Agent Initializing . 17
5.4 Velocities . 18

6 Main Program 19
6.1 Initialization . 19
6.2 Loop . 19
6.3 Computations . 19

7 Simulation, Results and Discussion 20
7.1 Analysis of the impact of certain variables 20

7.1.1 MATLAB’s random function in PriorityUpdate and Movement 20
7.1.2 Different Values for MaxDensity and MaxOutflow 21
7.1.3 Velocity . 22

7.2 Simulation of the ETA F5 lecture hall 23
7.2.1 Various crowd size . 23
7.2.2 Different exit activity . 23

3

7.2.3 Discussion . 24

8 Summary 26

References 27

Appendix 28

4

1 Introduction and Motivations

At the start of this course, one is given a selection of topics on which MATLAB simulations
can be done and investigated. Our topic is about Evacuation Bottleneck. We chose this
topic because while reading literature, we asked ourselves ”How save are our lecture halls
really?” and ”What happens, if a fire breaks out during a lecture with a big audience?”,
”Could we get out in time?”.

So we decided to do our project about an evacuation event of a lecture room. The
simulation should be able to determine how fast people could get out through the given
exits. The goal is to determine the seats with the longest getting out time and to visualize
the bottleneck regions.

Crucial parameters such as the amount and the location of the exits (potential bottle-
necks), the amount of people, the size of the room and the distribution of the seats will be
taken into account.

Figure 1: Scherrer lecture hall ETA F5 [2]

5

2 Description of the Model

For our main simulation we decided to investigate the Scherrer Hörsaal ETA F5. It is one
of the largest lecture halls of the ETHZ with about 600 seats, 455.55m2 of area and six
exits. We decided to design our simulation environment in such a way that other rooms
and settings could be evaluated as well which makes it more flexible and more useful.

In order to describe the “architecture” of the room in MATLAB we had to introduce
key values which correspond to a certain object kind in real life, i.e. walls, seats, tables
etc. With these key values we can parse our matrices and find ways for the agents to get
out and determine were they can’t go.

It seems obvious that it would be very hard work and very time consuming to “draw”
this matrices into MATLAB directly. We had to come up with a way to do this fast, easily
and graphically.

For the MATLAB-implementation the main idea was to store all the information be-
longing to one task in one matrix. So we introduced three main matrices: one for the room,
one for the paths and one for the agents. It’s clear that we have some other matrices as
well because some data has to be saved differently or the size of the matrix doesn’t fit with
the main one. Another reason for this is keeping order and hence not losing the overview.

With this concept we don’t have too much variables and we can declare them globally.
Another advantage of this implementation is that we have all the variables dynamically
available such that we can add, remove or change easily the data and MATLAB supports
it very well with the intrinsic matrix functions.

The basic idea of the simulation is quite simple. In a way, we create a “game field” in
matrix form with as many details as needed. The key objects we add are quite the most
important and obvious ones we observe in the room: location of the exits, seats, paths etc.

Then we add an autonomous agent which should of course be as human as possible
and we place it in the “room”. When pressing the “start button” the system begins to run
and the agents autonomoulsy find their way out and make their own decisions while doing
so.

Finally one is presented the results and analyzing plots.

6

Room

Room Information

Path

Exits Density

Decision

Agent

Autonomous Agent Nr. 1

Display

Controller

Simulation
Data

Display

Map

A A

A

A A

Exit 1 Exit 2

Evaluation

Figure 2: Simple schematic of the simulation

7

3 The Room

Since MATLAB will be our simulation platform it is clear that we will use the strengths
of MATLAB, namely matrices and their manipulations, to realize our model. The room
will be discretized into small areas which are stored in the matrix R ∈ Nm×n×i where the key
values represent certain objects which will be explained later. It depends on the simulation
complexity how fine-grained this discretization is.

The transition between continuous space (fig 4) and discrete matrices (fig 5) will make
us lose some information. For example the space between two seats which in our case is
omitted. The approximation of the real life causes further problems for example an exit
consists of one door while widthwise it must be represented by two discretization units.
The algorithm thus reads this as two exits close to each other which doesn’t make much
sense. This problem can either be treated in the code or in the discretization step. Both
approaches might eventually compromise the simulation results or the generic application
of the system. Details follow in sec.4.3.

For modeling the room we introduced the following objects:

Object Keyvalue
Walls & unsurmount-
able objects

-inf

Fillups -2
Tables -1
Seats 0
Paths 1
Exits inf

With these values it should be possible to represent the room under test in cartesian
grids like matrices. In fig.3 one can see a small example of how the values are distributed.
For design reasons the surrounding border (walls) was not drawn, but would be mandatory
for a simulation!

The reason why we added the table keyword (we could also be using the walls keyword
for example) is to create a more realistic representation of the room i.e. keep the all options
open for the algorithm. One can imagine that certain people might need to jump over tables
if the way was blocked for example.

3.1 Room drawing

For high flexibility of the whole system we tried to find a way to feed MATLAB easily
with a new room architecture. The ability of MATLAB to import CSV files lead us to the
idea to ”draw” the room in a spreadsheet application like in our case Numbers from apple.

8

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

inf

-inf

1

1

1

-inf

-11

11

Walls

Exit

Path Tables

Seats

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

10

-inf

1

1

1

-inf

-11

11

01 1 0 0

1

1

1

-1

1

-inf

1

1

-19

10

-inf

1

9

1

-inf

-11

11

68 7 5 4

4

6

5

-1

2

-inf

4

6

-19

10

-inf

3

9

5

-inf

-18

78

Rm

n

n

m }P
i

Figure 3: Example of the value distribution and discretization

With the export option it is possible to convert the spreadsheet into a CSV file which can
be easily imported by MATLAB.

Figure 4: Floor-plan of the ETAF5 lecture hall [3]

In fig.5 is our version of the lecture hall we wanted to inspect, realized in a spreadsheet
structure.

As can be seen in fig.5 there is a key value “fill-up”. These fields should be “ignored”
by the agent algorithm i.e. jumped over without time costs. Those fields only exist so
that we can fit a not rectangular room into a (obviously rectangular) matrix. This isn’t the
case for most of the rooms of course but with this feature almost every floor-plan can be
realized.

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

1 -inf 1

2 -inf 0 0 0 0 0 0 0 0 0 inf inf 0 inf inf 0 0 0 0 0 0 0 0 0 -inf 2

3 -inf -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -inf 3

4 -inf 0 0 0 0 0 0 0 0 0 1 1 0 -2 1 1 0 0 0 0 0 0 0 0 0 -inf 4

5 -inf -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -inf 5

6 -inf 0 0 0 0 0 0 0 0 0 1 1 -2 0 -2 1 1 0 0 0 0 0 0 0 0 0 -inf 6

7 -inf -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -inf 7

8 -inf 0 0 0 0 0 0 0 0 0 1 1 -2 0 -2 -2 1 1 0 0 0 0 0 0 0 0 0 -inf 8

9 -inf -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -inf 9

10 -inf -inf -inf -inf 0 0 0 0 0 0 1 1 -2 -2 0 -2 -2 1 1 0 0 0 0 0 0 -inf -inf -inf -inf 10

11 -inf inf inf -inf -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -inf inf inf -inf 11

12 -inf 1 1 -inf 0 0 0 0 0 0 1 1 -2 -2 0 -2 -2 1 1 0 0 0 0 0 0 -inf 1 1 -inf 12

13 -inf 1 1 -inf -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -inf 1 1 -inf 13

14 -inf 1 1 -inf 0 0 0 0 0 0 1 1 -2 -2 -2 0 -2 -2 -2 1 1 0 0 0 0 0 0 -inf 1 1 -inf 14

15 -inf 1 1 -inf -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -inf 1 1 -inf 15

16 -inf 1 1 -inf 0 0 0 0 0 0 1 1 -2 -2 -2 0 -2 -2 -2 -2 1 1 0 0 0 0 0 0 -inf 1 1 -inf 16

17 -inf 1 1 -inf -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -inf 1 1 -inf 17

18 -inf 1 1 -inf 0 0 0 0 0 0 1 1 -2 -2 -2 -2 0 -2 -2 -2 -2 1 1 0 0 0 0 0 0 -inf 1 1 -inf 18

19 -inf 1 1 -inf -1 -1 -1 -1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 -1 -inf 1 1 -inf 19

20 -inf 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 1 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 -inf 20

21 -inf 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 1 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 -inf 21

22 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -inf -inf -inf -inf -inf -inf -inf -inf -inf -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 22

23 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 0 0 0 0 -inf -inf -inf -inf -inf -inf -inf -inf -inf 0 0 0 0 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 23

24 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 24

25 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 25

26 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 26

27 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 27

28 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 28

29 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 29

30 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 30

31 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 31

32 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 32

33 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 -2 -2 0 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 33

34 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 34

35 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 35

36 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 36

37 -inf 1 1 0 0 0 0 0 0 0 -2 -2 -2 -2 -2 -2 1 1 -2 -2 -2 0 0 0 0 0 0 0 0 0 0 0 -2 -2 -2 1 1 -2 -2 -2 -2 -2 0 0 0 0 0 0 0 1 1 -inf 37

38 -inf 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 -inf 38

39 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 39

40 -inf inf 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 inf -inf 40

41 -inf inf 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 -inf -inf -inf -inf -inf -inf -inf -inf -inf 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 inf -inf 41

42 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 -inf -inf -inf -inf -inf -inf -inf -inf -inf 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 -inf -inf 1 1 1 1 1 1 1 -inf 42

43 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 -inf -inf -inf -inf -inf -inf -inf -inf -inf 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 -inf -inf 1 1 1 1 1 1 1 -inf 43

44 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 44

45 -inf 1 1 1 1 1 1 -inf -inf 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 45

46 -inf 1 1 1 1 1 1 -inf -inf 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 46

47 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 47

48 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 48

49 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 49

50 -inf 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 1 1 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 -inf 50

51 -inf 51

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Wall / no go -inf

Path 1

Seats 0

table -1

exit inf

fillup -2

Figure 5: Spreadsheet representation of the lecture hall ETA F5

3.2 Room Design

The room matrix R has a third dimension as seen in the introduction. With this structure
we can store more information and reduce computation time during the simulation loop.

The first layer a) (see fig.6) is the architectural information as explained earlier. The
second layer b) stores the accumulation of the crowd density at each coordinate. The third
layer c) stores the accumulated waiting time at each coordinate. And lastly the fourth
layer d) tracks the time needed for getting out for each starting point. This additional data

10

is finally used for the simulation results.

n
m }

P(m,n,j)

a) architectural data

b) crowd density

c) crowd waiting time

d) seats waiting time

m
n

}

path values for exit 1

path values for exit 2

a) path values for last exit k

i

j

a| max
x,y,a≤k

P (x, y, a)

max
x,y,a≤k

P (x, y, a)

A(m,n,r,MaxPersonPerUnit)

m
n

} r

a) presence of an agent (0/1)

c) direction of the last move

d) waiting counter

b) max value of the paths

e) active exit

f) starting position

g) loop counter

h) velocity

b) index of max value

c) max value

R(m,n,i)

Figure 6: Structure of the room matrix R

3.3 Room plotting

For verification whether the room was correctly exported and imported we implemented a
MATLAB function PlotRoom which draws the room matrix R as a plot (see fig.7).

0 10 20 30 40 50 60
0

10

20

30

40

50

60
plot of the room matrix. Exit value = Inf

Walls
Paths
Tables
Exits
Fills

Figure 7: MATLAB version of the ETAF5 lecture hall

11

4 The Path

After we got the room structure right and well defined we had to come up with ideas on
how to find a way out of the room. As explained earlier we don’t want to do all the heavy
computation like the complex human behaviour and decision making in the simulation
loop, so we tried to do as much as possible in the initialization (or even offline and save the
variables from the MATLAB workspace to the disk). This allows to do possibly even more
complex computations during the loop while maintaining reasonable simulation time.

4.1 Path Design

In order for the agents to find their way out it is necessary to implement a structure with
which the agents can determine in what direction they should go and whether they can go
at all. This is implemented as follows: in a matrix ∈ Nm×n (the same size as R) an exit
is assigned the maximum value maxval = m · n at its coordiantes ((1,3) in the example
of fig.8). Every step one goes further away from the exit in this discrete grid results in a
decrement of 1 and gets saved. Of course the ”rules” on how to fill this matrix must be
read from R (i.e. where the paths and the seats are). Our MATLAB-function AddExit
does exactly this task. Once the whole grid is filled according to the constraints of R one
can find out in what direction the exit is, namely in the direction of the next higher value.
This path matrix is initialized with zeroes and hence where there is no path, seat or exit
the value 0 remains.

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

inf

-inf

1

1

1

-inf

-11

11

Walls

Exit

Path Tables

Seats

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

10

-inf

1

1

1

-inf

-11

11

01 1 0 0

1

1

1

-1

1

-inf

1

1

-19

10

-inf

1

9

1

-inf

-11

11

68 7 5 4

4

6

5

-1

2

-inf

4

6

-19

10

-inf

3

9

5

-inf

-18

78

Rm

n

n

m }P
i

Figure 8: Simple example of the algorithm of the AddExit function

4.1.1 PMatrix

To cope with various exits, we introduced a tensor P ∈ Nm×n× j where we store every exit’s
value matrix mentioned above in the first two dimensions. The third dimension then stands
for one of the k exits.

12

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

inf

-inf

1

1

1

-inf

-11

11

Walls

Exit

Path Tables

Seats

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

10

-inf

1

1

1

-inf

-11

11

01 1 0 0

1

1

1

-1

1

-inf

1

1

-19

10

-inf

1

9

1

-inf

-11

11

68 7 5 4

4

6

5

-1

2

-inf

4

6

-19

10

-inf

3

9

5

-inf

-18

78

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

64 5 5 4

-inf

-inf

-inf

5

-inf

-inf

10

8

65

-inf

9

-inf

-inf

9

-inf

76

78

53 4 6 5

-inf

-inf

-inf

6

-inf

-inf

9

9

74

-inf

8

-inf

-inf

10

-inf

65

87

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

-inf wall

5

10 exit

-inf wall

5 path with agent

10 exit

path

(a) P(x,y,k-1)

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

inf

-inf

1

1

1

-inf

-11

11

Walls

Exit

Path Tables

Seats

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

10

-inf

1

1

1

-inf

-11

11

01 1 0 0

1

1

1

-1

1

-inf

1

1

-19

10

-inf

1

9

1

-inf

-11

11

68 7 5 4

4

6

5

-1

2

-inf

4

6

-19

10

-inf

3

9

5

-inf

-18

78

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

64 5 5 4

-inf

-inf

-inf

5

-inf

-inf

10

8

65

-inf

9

-inf

-inf

9

-inf

76

78

53 4 6 5

-inf

-inf

-inf

6

-inf

-inf

9

9

74

-inf

8

-inf

-inf

10

-inf

65

87

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

-inf wall

5

10 exit

-inf wall

5 path with agent

10 exit

path

(b) P(x,y,k)

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

inf

-inf

1

1

1

-inf

-11

11

Walls

Exit

Path Tables

Seats

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

10

-inf

1

1

1

-inf

-11

11

01 1 0 0

1

1

1

-1

1

-inf

1

1

-19

10

-inf

1

9

1

-inf

-11

11

68 7 5 4

4

6

5

-1

2

-inf

4

6

-19

10

-inf

3

9

5

-inf

-18

78

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

64 5 5 4

-inf

-inf

-inf

5

-inf

-inf

10

8

65

-inf

9

-inf

-inf

9

-inf

76

78

53 4 6 5

-inf

-inf

-inf

6

-inf

-inf

9

9

74

-inf

8

-inf

-inf

10

-inf

65

87

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

-inf wall

5

10 exit

-inf wall

5 path with agent

10 exit

path

(c) P(x,y,k+2)

Figure 9: Three different layers of the P matrix

The second last matrix entry (P(:,:,k+1)) is not an exit layer. We use this layer to
store the index with the highest value at the given coordinate. Mathematically this results
in

P(x, y, k + 1) = a | max
a≤k

P(x, y, a) (1)

In the last matrix entry (P(:,:,k+2)) we store the actual maximum value over all the
exit levels. Namely:

P(x, y, k + 2) = max
a≤k

P(x, y, a) (2)

These two additional matrices can be computed at the beginning and hence reduce the
computation time during the simulation loop. In fig.9 an example for the different layer
values of P is shown.

4.1.2 PAMatrix

The matrix PA (Path Arrows) basically carries the same information as P but in vector
form. This means that the k exit layers contain the direction to the next exit instead of
just the values. This helps speeding up the loop and can also be used for verification and
analysis. It will also come in handy in the path finding algorithm explained later.

We used imaginary numbers to represent the directions. The real part (±1) is used for
the rows and the imaginary part (±i) is used for the columns.

4.1.3 PE Matrix

The PE (Path Exit) matrix was introduced for several reasons. Firstly the agents algorithm
will make use of it for deciding which direction to take. Secondly it stores information

13

about the density evolution around the exits.
The structure of PE is rather particular. The values around an exit is cone shaped

distributed (see fig.11). With this shape one can determine how many people are in the
close neighborhood area of the exit. This zones are the most interesting ones for bottleneck
analysis as well. Further, the decision algorithm can easily track very crowded exits and
can thus influence the behaviour of the agents.

n
m }

P(m,n,j)

a) architectural data

b) crowd density

c) crowd waiting time

d) seats waiting time

m
n

}

path values for exit 1

path values for exit 2

a) path values for last exit k

i

j

a| max
x,y,a≤k

P (x, y, a)

max
x,y,a≤k

P (x, y, a)

A(m,n,r,MaxPersonPerUnit)

m
n

} r

a) presence of an agent (0/1)

c) direction of the last move

d) waiting counter

b) max value of the paths

e) active exit

f) starting position

g) loop counter

h) velocity

b) index of max value

c) max value

R(m,n,i)

}
a) cone presence

b) cones

PE(m,n,s+2)

s

c) local density: loop 1

d) local density: last loop

Figure 10: Matrix structure of PE

In the layer b) the exit is at the tip of the cone with the highest value which can be set
by a parameter. Then the values decrease until the number 1 is reached which is also the
indicator for the end of the cone.

In the first layer a) the value distribution is the same as in the second layer but the
values are only boolean indicators whether there is a value (1) in the second layer or not
(0). This allows to easily mask out the agents in the cone from the A matrix. The upper
levels are for saving the density near the exits for every simulation loop. For example
PE(:,:,3) stores the density after the first loop. Naturally the matrix PE grows quite fast
but allows precise analysis of the bottleneck densities.

00 0 0 0

3

1

2

0

2

2

4

3

10

0

3

3

1

4

1

10

22

}exit

Figure 11: Example for an exit with it’s “cone”

14

4.2 Add Exit Algorithm

The [P] = AddExit(R, P, c, value, depth) function is recursive and “pours” val-
ues into a matrix starting from the point c. It follows the accessible paths given in the
matrix R and counts the value down by 1 when going one step further. See fig.8 for refer-
ence. We had to introduce the depth parameter because MATLAB is very inefficient with
recursion (especially with increasing data stack for big matrices). It counts the recursion
depth and stops at a certain (hardcodeable) value. This value should be large enough in
order to allow the AddExit function to cover all the paths.

The function P = PourPathValues(R) retrieves the indices of all the exits from the
matrix R and starts the AddExit function with the appropriate arguments.

4.3 Path Optimization

Since we’re mainly looking at one particular lecture room we want to optimize our algo-
rithms for this exact case. A particular problem that one wide exit in reality results in two
distinct exits in our matrix sytem mentioned above, had to be solved. An agent usually
aims for a higher value than the one “he’s standing on”. Since on two parallel running
paths the perpendicular value is the same as the actual one the agent won’t change “the
lane” although there might be space and better chance to get out. In fig.12 such a situation
is shown. The right lane (to the very same exit) is free and in a primitive algorithm “go to
the next higher value” this would stay so. One optimization we did is to define which two
distinct exits are in fact the same in real life and take the maximum of the two values and
add it to both of the exit layers in P.

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

inf

-inf

1

1

1

-inf

-11

11

Walls

Exit

Path Tables

Seats

01 1 0 0

1

1

1

-1

1

-inf

1

1

-11

10

-inf

1

1

1

-inf

-11

11

01 1 0 0

1

1

1

-1

1

-inf

1

1

-19

10

-inf

1

9

1

-inf

-11

11

68 7 5 4

4

6

5

-1

2

-inf

4

6

-19

10

-inf

3

9

5

-inf

-18

78

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

64 5 5 4

-inf

-inf

-inf

5

-inf

-inf

10

8

65

-inf

9

-inf

-inf

9

-inf

76

78

53 4 6 5

-inf

-inf

-inf

6

-inf

-inf

9

9

74

-inf

8

-inf

-inf

10

-inf

65

87

64 5 6 5

-inf

-inf

-inf

6

-inf

-inf

10

9

75

-inf

9

-inf

-inf

10

-inf

76

88

-inf wall

5

10 exit

-inf wall

5 path with agent

10 exit

path

Figure 12: Example of a parallel path situation.

15

5 The Agent

Like for the room and for the paths we’d like to have a similar system to keep track of
the agents. We thus have decided to introduce the matrix A. The choice on how to handle
an agent is very important. There are essentially two kind of approaches: the first uses
one controlling unit which supervises all the agents or agent groups. The second approach
is the autonomous agent. Every agent is represented by its own program instance and
acts on its own. It’s obvious that on one hand this choice is closer to reality and offers
many options but will consume a lot more resources on the other hand. We chose the
autonomous agent in the end.

5.1 Matrix A

The Amatrix holds all the data needed for representing the agent states. The exact descrip-
tion can be seen in fig.13.

n
m }

P(m,n,j)

a) architectural data

b) crowd density

c) crowd waiting time

d) seats waiting time

m
n

}

path values for exit 1

path values for exit 2

a) path values for last exit k

i

j

a| max
x,y,a≤k

P (x, y, a)

max
x,y,a≤k

P (x, y, a)

A(m,n,r,MaxPersonPerUnit)

m
n

} r

a) presence of an agent (0/1)

c) direction of the last move

d) waiting counter

b) max value of the paths

e) active exit

f) starting position

g) loop counter

h) velocity

b) index of max value

c) max value

R(m,n,i)

}
a) significant coordinate

b) cones

PE(m,n,s)

s

Figure 13: Agent matrix A

a) indicates whether an agent is at this coordiante (1) or not (0)
b) duplicate of the P(:,:,k+2)
c) stores the direction of the last move of the agent in complex coordinates (see PA)
d) accumulates the waiting time of the agent
e) saves the exit the agent is headed to
f) starting position of the agent (for analysis)
g) counts how many loops it takes until this agent has left the room
h) set the velocity of the agent (for more realistic behavior)

16

5.2 Agent Algorithm

The agent system bases upon two main quantities: the density at the exits and the proximity
of an exit. These quantities can either endorse each other (the closest exit has also the
fewest people nearby) or diverge (the closest exit has the most people nearby).

Our system already “knows” where the closest exit is and will therefore retrieve the
density values for comparison. When the decision is made for which exit an agent is
headed, the system then looks for the next free unit.

5.2.1 Agent and Density

The agent fetches the information about the density of his current targeted exit in the PE
matrix and decides then whether he continues to this exit or rather looks for another one
with less people. This choice is based on a density threshold. If the density is higher than
a certain value another exit is chosen. Because there are always two parallel exits in our
room, we had to code a function which takes the density between adjoining paths and exits
into account.

5.2.2 Agent and Exits

Once an agent has made his decision to what exit he’s heading to he’ll try to get there. The
function GetNextMove looks for the closest free position by looking for a higher value in
P. Important is that the direction is right, so that they don’t start to oscillate. This is where
our prepared matrix PA comes in handy. If an agent can’t find a free spot with higher value,
then the higher value condition gets ignored.

Should all fail, the agent will just wait. This waiting state is tracked and if he has to
wait quite some time it will influence the decision for chosing another exit.

5.3 Agent Initializing

The initial conditions of the simulation are obviously quite important. That’s why we
implemented three versions to start with:

• fill all the seats

• fill the seats randomly with predefined amount of people

• fill all the seats and even the paths

We didn’t want to invest into a complex algorithm for placing the agents since it heavily
depends on the kind and the amount of the participating people. The random functions of
MATLAB gives us an easy and efficient way of creating semi-realistic situations.

17

5.4 Velocities

Until now the idea was to update every agent in one loop cycle which results in the same
movement velocity of all the agents. Since in real life this is rarely the case we imple-
mented a velocity term for each agent.

The idea is quite simple. Every agent gets a velocity value. The lower the value the
faster he’s able to move. The value basically states how many loops he must “ wait” until
he can make the next move.

To distribute the velocities amongst the agents we decided to use the Gauss window
function since its results are often quite realistic. There are other window functions which
can be selected for example Chebischew, Turkey or Kaiser. One can then set up how many
different velocities there should be. This highly influences the speed and the outcome of
the whole simulation, so this value has to be chosen carefully. Also try to use an odd
number since this results in a single main velocity. Of course the standard derivation σ2

can be chosen as well.

2 4 6 8
0

20

40

60

80

100
Gauss Distribution for 9 Different Velocities

Velocity

Pe
rc

en
t o

f P
eo

pl
e

sigma2 1
sigma2 3
sigma2 5
sigma2 7
sigma2 9

Figure 14: Gauss distribution of 9 different velocities

18

6 Main Program

The main program SecuritySimulation starts and controls the whole simulation. It
gathers all the set parameters, loads the given room from a file and sets up all the needed
matrices before starting the loop and ultimately producing the output plots and statistics.

6.1 Initialization

With the LoadRoom function one can choose between two rooms. The first one is the
lecture hall ETA F5 and the second one is a fictitious room. It is also possible to add a
complete different room from a .csv file which will take longer though since all the path
values have to be calculated.

The second part of the initialization places the agents and adjusts all the variables
needed for the main loop.

6.2 Loop

The main loop primarily updates the agents. The function AgentUpdate(x,y) is called
to move the agent at (x,y). There are many ways of selecting the update sequence of the
agents as seen in the lecture. We chose to update the agents closest to the exits first in
order to make room for the ones behind them. If multiple agents are “affected” and about
to be updated we chose their sequence randomly with a Permutation function.

It is basically not correct to say “an agent is beeing updated” yet. The algorithm ex-
plained only defines what coordinate gets updated first and not the agent since there can
be multiple agents at one coordiante (density!). But once the position to update is chosen
AgentUpdate selects the agent lowest in the matrix and moves him, which then defines a
clear order.

6.3 Computations

At the end we preprocess all the data needed for the analysis and plots like the density per
exit, waiting time per exit etc. (see sec.7)

19

7 Simulation, Results and Discussion

We had to go through several steps in the development of the simulation in order to get
correct results. We had to analyze the influence of every parameter and variable on the
outcome of the simulation. For example the implementation of pseudo random functions
or different movement velocities caused difficulties in the verification of their correct be-
haviour. In the following we’ll concentrate on the impact of several parameters on the
simulation outcome.

7.1 Analysis of the impact of certain variables

In order to analyze an impact correctly we strongly related to our main lecture hall. Since
the parameters we have to set up rely on interactions between agents we had to maximize
these confrontations. This is obviously granted if we fill the room entirely (561 agents).
With this setup we then “calibrate” our parameters to fit the room realistically. This step
is also needed because of the discretization of the room.

7.1.1 MATLAB’s random function in PriorityUpdate and Movement

We use the MATLAB function randperm in Permutation and randi in GetNextMove.
One can see in fig.15 that there’s quite a difference in the number of loops needed depend-
ing on whether there was some random function used or not.

5 10 15 20
60

70

80

90

100
Impact of Permutation function : 20 simulations

Simulation Nr.

N
um

be
r o

f L
oo

ps
 n

ee
de

d

Without Permutation Function
With Permutation Function

Figure 15: Impact of permutation function on number of loops in multiple simulations (MaxPer
=1, MaxOut =1, Velocity =1)

The impact of random functions seems quite striking and has to be considered. To make
better analysis it is therefore recommended to do several runs and average the outcomes.

20

7.1.2 Different Values for MaxDensity and MaxOutflow

The parameters MaxDensity and MaxOutflow are also important to evaluate beforehand.
We had to find the right ratio between the maximum amount of people in one unit and the
maximum outflow of an exit. We figured that on one unit which is about 0.5m2 about five
people could be at the same time.

The MaxOutflow parameter plays a crucial role on the outcome of the simulation. It is
influenced by the agents in the following way: if there’s low density but high velocity of the
agents the outflow is more important than in the case of high density and low velocity[1].

The velocity has small relevance in the case of low density situations because peo-
ple can leave without confronting each other which would produce a bottleneck situation
whereas in high density regimes it becomes quite relevant (see fig.16).

Since the “throughput” of an exit is limited and a crowd approaches with high velocity,
a bottleneck situation will occur. This results in a shock wave effect near the exit. To
simulate this effect in a simple way we introduced the limit of the outflow. For a short
time a blockade will build up which then makes the agents have to wait a bit until they can
force out again.

In fig.16 the simulation has been run with different MaxDensity and MaxOutflow
values. Each parameter was swept from 1 to 10.

From now on we’ll use MaxPer =4 and MaxOut = 2.

0

5

10

0

5

10

0

50

100

Max OutFlow

Without Permutation

Max Density

Nu
m

be
r o

f L
oo

ps

40

50

60

70

80

0

5

10

0

5

10

0

50

100

Max OutFlow

With Permutation

Max Density

Nu
m

be
r o

f L
oo

ps

40

50

60

70

80

90

Figure 16: Maximum density vs. maximum outflow

21

7.1.3 Velocity

For the analysis of the different velocities we ran the simulation with randomly selected
exits to update from and with a deterministic order of updating. We see a slight difference
in the results (fig.17) and most notably we get “better” results with the randomized version.

The results are very comprehensible because the larger the derivations of the velocity
the longer it takes to evacuate compared to a unified velocity (the diagonal in fig.17) which
manifests itself in lower evacuation times.

In order to have interesting simulations in reasonable times we chose 7 different veloc-
ities and σ=3 for our lecture hall.

12345678913579
0

20

40

60

sigma2

Without Permutation

Number of Velocities

N
um

be
r o

f L
oo

ps

12345678913579
0

20

40

60

sigma2

With Permutation

Number of Velocities

N
um

be
r o

f L
oo

ps

Figure 17: Velocity distribution with the gaussian window

22

7.2 Simulation of the ETA F5 lecture hall

We now concentrate more in our lecture hall the ETA F5. We’ll try different initial com-
binations of the active exits. This should show us the potentially dangerous seats and the
most probable bottleneck locations.

7.2.1 Various crowd size

In this test we varied the number of persons in the room and ran the simulation with
randomly distributed people and increased the amount steadily and noted the number of
loops until every agent has left the room. The results can be seen in fig.18. Since the initial
placement is still random we ran the test several times.

100 200 300 400 5000

10

20

30

40

50

60

70
Random Placement

Number of Persons

N
um

be
r o

f L
oo

ps

Without Permutation Test 1
Without Permutation Test 2
With Permutation Test 1
With Permutation Test 2

Figure 18: Evolution of random placement with more people, MaxPer=4, MaxOut=2,
]Velocities=7, σ=3

One can see that the derivation of the several simulation results vary in a constant
intervall of about 15 loops. This “error” is only due to the random initial placing.

7.2.2 Different exit activity

We now want to look at the influence of the individual exits. We ran the simulation for each
exit once with the maximum amount of agents and always keep one exit closed (fig.19).

23

0 2 4 6 8 10 1240

50

60

70

80

90

100

Exit Deleted

N
um

be
r o

f L
oo

ps
Delete Exits

Without Permutation
With Permutation
Value with all Exits Without Permutation
Value with all Exits With Permutation

0 1 2 3 4 5 6 740

50

60

70

80

90

100

Exit Deleted, 1 == Exit 1 and 2

N
um

be
r o

f L
oo

ps

Delete Neighbour Exits

Without Permutation
With Permutation
Value with all Exits Without Permutation
Value with all Exits With Permutation

Figure 19: Simulation runs with full room, left away one exit at a time. Single exits (means one
door closed) and entire exits

7.2.3 Discussion

Intuitively one would think that the amount of loops needed should increase with the
amount of people respectively decrease with less people (fig.18).

Also from fig.19 one would expect fewer differences and more symmetry in the number
of loops. What is the problem? To find an answer to this we had to do some more analysis.
We plotted therefore how many agent needed a certain amount of steps (fig.20).

0 10 20 30 40 50
0

5

10

15

20
Number of steps needed to get out

Number of Steps

N
um

be
r o

f P
er

so
ns

Figure 20: Time distribution over all agents, MaxPer=4, MaxOut=2,]Velocities=7, σ=3

From this we can see that the problem comes from very few people who have a long

24

time to get out. This means that in fig.18 we basically plot the time of the slowest agent
and his time is more or less always the same since he’s not affected by the bottleneck
effect.

0 100 200 300 400 500
0

10

20

30

40

50
Number of steps needed to get out

Person Nr.

N
um

be
r o

f S
te

ps

Person
pchip of Person

Figure 21: Differently sorted time distribution, MaxPer=4, MaxOut=2,]Velocities=7, σ=3

In fig.21 we see that there’s a linear evolution at the beginning which then turns into
an exponential (at around 35 steps). That means that the slowest agents have a striking
influence on the final evacuation time.

25

8 Summary

After all those simulations we conclude that the bottleneck effect has not always a big
influence. Especially if the velocity differs a lot amongst the agents (i.e. there are some
quite slow people). Fig.20 shows that the majority of the people is able to leave the room
quite quickly. But in almost every plot we evaluate the time until every agent got out. This
means that if we simulate with different velocities and analyze the overall time needed we
basically only look at the slowest agent. This is not a bad result because if the goal is to
save everybody we have to look at the worst case.

To have realistic results, we need to set the parameters right. In order to do this we need
a lot of information about the crowd to simulate (maximum density, velocity distribution,
etc.).

While working on this project we found out that it is very difficult to get good results.
So we decided to spend a lot of time on programming in order to get a generic system
which can be set up for many different scenarios.

We can, for example, simulate an evacuation of young, athletic people or older and
slower people. One only needs to feed in the right data that corresponds to one’s situation.

Since in this thesis we concentrated on the lecture hall ETA F5, it is self-evident that
the code is automatically optimized for this kind of room setting. For another room there
must be some slight adaptation. One can imagine that keeping all the algorithms as generic
as possible is a lot of work and would go beyond the scope of this thesis.
In the end every room and every simulation needs special attention to its very own charac-
teristics anyway.

26

References

[1] Anders Johansson Dirk Helbing. Analytical approach to continuous and intermittent
bottleneck flows. PHYSICAL REVIEW LETTERS, 2006.

[2] ETHBIB.Bildarchiv. Vorlesung im hörsaal des instituts für physik, paul scherrer, 02
2005.

[3] ETHZ. Floorplan of eta f5 www.rauminfo.ethz.ch.

27

Appendix

28

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 1 of 38

%This is the print file to export the project as .ps

%%
%script

%Main Program
%control the simulation
%Define the parameter
%Written by Dario Biner & Noe Brun
%ETH May 2011
%feel free to use, improve and enjoy it
%%
%prepare the workspace
clear all;
clc;
clf;
close all;
tic
RandStream.setDefaultStream(RandStream(’mt19937ar’,’seed’,0))
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Define your Values for the Simulation
ActRoom =1;
DeleteExit1 = [1,1,1,1,1,1,1,1,1,1,1,1];

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 2 of 38

DeleteExit2 = [1 1 1 1];
ActRand = 1;
PlotData = [1,1]; %first for the PrintAgent, second for last plots
PFS = 1;
MyPause = 0;
MaxPersonPerUnit = 4;
MaxOutFlow = 2;
ThreshNear = 10; %this threshold is for room 1
ThreshDens = 20*MaxPersonPerUnit; %optimized for room 1
ExitConeR = 8;
NumVelo = 3;
Sigma = 2;
LimitLoop = 500;
%%
if PFS == 1
 scrsz = get(0,’Screensize’) [0 0 0 100];
end
%%
%load Room architectur from csv file
LoadRoom(ActRoom);
%%
%Place the Crowd (a,b)
%a = style : 1==Full,2==Random
%b = amount of people (only for style 2)
PlaceAgentIni(1,1);
PlaceAgentVelocity(NumVelo,’gauss’,Sigma);
GetNearestExit();
%%
%Prepare for simulation
%Set Priority update
MyMin = PriorityUpdate();
%Initializing integration Matrize
R(:,:,3) = A(:,:,4);
R(:,:,2) = sum(A(:,:,1,:),4);
%Print Mains figure
if PlotData(1) == 1
 PrintAgent(2);
end
%%
%Simulation Loop
MyCounter = 0;
PECounter = 1;
PPCounter = 1;
while N > 0
 i = MyMax;
 %Loop for Crowd Update
 while(i >= MyMin)
 if find(A(:,:,2,1)==i)
 [Fx,Fy] = find(A(:,:,2,1)==i);
 [Fx,Fy] = Permutation(Fx,Fy); %mixing the orders
 l = length(Fx);
 %update every agent
 for k=1:l
 AgentUpdate(Fx(k),Fy(k));
 end
 end
 i = i 1;
 end
 MyCounter = MyCounter + 1;
 PPCounter = PPCounter + 1;
 No = N;

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 3 of 38

 %Count all the person still in the room
 N = sum(sum(sum(A(:,:,1,:))));
 %readapt priority
 MyMin = PriorityUpdate();
 %Integrate density of persons
 R(:,:,2) = R(:,:,2) + sum(A(:,:,1,:),4);
 %integrate waitings time of people
 R(:,:,3) = real(R(:,:,3))+real(A(:,:,4,1));
 %Prepare People Counters
 GetAgentDensity();
 if (PlotData(1) == 1)
 PrintAgent(2);
 end
 CounterUpdate();
 %Security
 Test = No N;
 if Test > (sum(DeleteExit1)*MaxOutFlow)
 disp(’ERROR 201:Too many got out!!!’);
 end
 if (LimitLoop == MyCounter)
 break;
 end
 clc;
 disp([’Steps : ’ num2str(MyCounter/MyNorm)])
end
%%
%Last plots
if MyPause == 1
 pause()
end
if PlotData(2) == 1
%Plot Density
figure()
set(gca,’FontSize’,16)
if PFS
 set(gcf,’Position’,scrsz)
end
B = (R(:,:,2));
h = bar3(B);
%Source from http://efreedom.com/Question/1 2050367/Hide Zero Values Bar3
Plot MATLAB
for i = 1:numel(h)
 zData = get(h(i),’ZData’);
 index = logical(kron(zData(2:6:end,2) == 0,ones(6,1)));
 zData(index,:) = nan;
 set(h(i),’ZData’,zData);
end
title(’Integration of density of persons’)
xlabel(’x’)
ylabel(’y’)
zlabel(’Number of persons’)
%Plot Wait postion
figure()
set(gca,’FontSize’,16)
if PFS
 set(gcf,’Position’,scrsz)
end
B = (R(:,:,3)./MyNorm);
imagesc(B);
title(’Integration of Waiting times of persons’)
colorbar

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 4 of 38

xlabel(’x’)
ylabel(’y’)
zlabel(’Steps’)
%Plot the time Wait value
figure()
set(gca,’FontSize’,16)
if PFS
 set(gcf,’Position’,scrsz)
end
B = (R(:,:,4)./MyNorm);
imagesc(B);
title(’Time needed to go to the nearest exit per seat’)
colorbar
xlabel(’x’)
ylabel(’y’)
zlabel(’Steps’)
%Plot Time
TimeAnlysis();
save Simulation_Data
end

%%
%functions

function [P] = AddExit_v2(R, P, c, value, depth)
%Adds exit at ’c’ with value ’value’ and path values to room
%matrix R

 if depth == 90 % to prevent the recursion to get too far
 return
 end
 [m,n] = size(R);
 x = c(1);
 y = c(2);
 newcoords = [];
 coordcount = 0;

 % "check" directions: left, down, right, up
 % plot(y,x,’marker’,’.’);
 % pause(0.001)

 %check left
 cx = x;
 cy = y 1;
 if cy > 0 % still in matrix range
 while R(cx,cy) == 2
 cy = cy 1;
 end
 if (value > P(cx, cy) && R(cx,cy) >= 0) %if its path
 newcoords = [newcoords; cx cy];
 coordcount = coordcount+1;
 P(cx, cy) = value;
 end
 end

 %check down
 cx = x 1;
 cy = y;
 if cx > 0 % still in matrix range
 while R(cx,cy) == 2

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 5 of 38

 cx = cx 1;
 end
 if (value > P(cx, cy) && R(cx,cy) >= 0) %if its path
 newcoords = [newcoords; cx cy];
 coordcount = coordcount+1;
 P(cx, cy) = value;
 end
 end

 %check right
 cx = x;
 cy = y+1;
 if cy <= n % still in matrix range
 while R(cx,cy) == 2
 cy = cy+1;
 end
 if (value > P(cx, cy) && R(cx,cy) >= 0) %if its path
 newcoords = [newcoords; cx cy];
 coordcount = coordcount+1;
 P(cx, cy) = value;
 end
 end

 %check up
 cx = x+1;
 cy = y;
 if cx <= m % still in matrix range
 while R(cx,cy) == 2
 cx = cx+1;
 end
 if (value > P(cx, cy) && R(cx,cy) >= 0) %if its path
 newcoords = [newcoords; cx cy];
 coordcount = coordcount+1;
 P(cx, cy) = value;
 end
 end

 depth = depth + 1;
 for i=1:coordcount
 P = max(AddExit_v2(R,P,newcoords(i,:),value 1,depth),P);
 end

end

function AddExitCones()
%Define cones near the exit
%l have been optimized for the room 1
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 6 of 38

GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
%Initialize
[m,n] = size(P(:,:,1));
PE = zeros(m,n,2+LimitLoop);
PP = zeros(m,n,LimitLoop);
l = ExitConeR; %length of the cones
for k=0:l 1
 if (find(P(:,:,end)==MyMax k))
 [x,y] = find(P(:,:,end)==MyMax k);
 for i=1:length(x)
 if (PE(x(i),y(i),2)< l k)
 PE(x(i),y(i),2) = l k;
 PE(x(i),y(i),1) = 1;
 end
 end
 end
end
end

function AgentUpdate(xM,yM)
%Move Agent to next place
%call function to search next position
%erase last position and shows with an arrows where he cames from
%the layers get updated from the lowest to the highest
%%
%Globals

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 7 of 38

global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
 %if there is an Person try to update position
 for g=1:MaxPersonPerUnit
 if (A(xM,yM,1,g) == 1) && (mod(MyCounter,A(xM,yM,8,g)) == 0)
 [xN,yN,temp,MyUp,gg] = GetAgentMove(xM,yM,g,A(xM,yM,5,g));
 l = length(A(1,1,:,g));
 %if he is next to the exit, he will be erased
 %(g<=MaxOutFlow) limit the output flow
 if (temp == MyMax)&& (g<=MaxOutFlow)
 %Save the number of loop needed in the first position
 R(real(A(xM,yM,6,g)),imag(A(xM,yM,6,g)),4) = A(xM,yM,7,g);
 A(xM,yM,:,g) = zeros(1,1,l);
 PP(xM,yM,PPCounter) = PP(xM,yM,PPCounter)+1; %for
outputflow plot
 elseif (temp == MyMax)&& (g>MaxOutFlow) %shift down
 A(xM,yM,:,g MaxOutFlow) = A(xM,yM,:,g);
 A(xM,yM,:,g) = zeros(1,1,l);
 %normal update
 elseif (xM xN ~= 0) || (yM yN ~= 0)
 A(xN,yN,:,gg) = A(xM,yM,:,g);
 A(xN,yN,4,gg) = 0;
 A(xN,yN,3,gg) = MyUp(1)+MyUp(2)*1i; %save direction
 A(xM,yM,:,g) = zeros(1,1,l);
 %Wait Counter

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 8 of 38

 elseif (xM xN == 0) && (yM yN == 0)
 A(xM,yM,4,g) = A(xM,yM,4,g)+1;
 mn = 1;
 %Layer down shift
 while (mn<g)
 if A(xM,yM,1,mn) == 0
 A(xM,yM,:,mn) = A(xM,yM,:,g);
 A(xM,yM,:,g) = zeros(1,1,l);
 mn = g;
 end
 mn = mn+1;
 end
 end
 end
 end

end

function CorrRoom1()
%Hard correction on Room ETA F5
% this Correction is for optimising the crowd distribution
% it’s because 2 entrance are next to each other
% on a room with no exit next to each other it’s useless only the exit
% delete part will be still needed
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 9 of 38

global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
%Switching layers to have it in the same order than the exits
temp = P(:,:,1);
P(:,:,1) = P(:,:,3);
P(:,:,3) = temp;
%Delete the exits
if DeleteExit1(1) == 0
P(:,:,1) = 0.*P(:,:,1);
end
if DeleteExit1(2) == 0
P(:,:,2) = 0.*P(:,:,2);
end
if DeleteExit1(3) == 0
P(:,:,3) = 0.*P(:,:,3);
end
if DeleteExit1(4) == 0
P(:,:,4) = 0.*P(:,:,4);
end
if DeleteExit1(5) == 0
P(:,:,5) = 0.*P(:,:,5);
end
if DeleteExit1(6) == 0
P(:,:,6) = 0.*P(:,:,6);
end
if DeleteExit1(7) == 0
P(:,:,7) = 0.*P(:,:,7);
end
if DeleteExit1(8) == 0
P(:,:,8) = 0.*P(:,:,8);
end
if DeleteExit1(9) == 0
P(:,:,9) = 0.*P(:,:,9);
end
if DeleteExit1(10) == 0
P(:,:,10) = 0.*P(:,:,10);
end
if DeleteExit1(11) == 0
P(:,:,11) = 0.*P(:,:,11);
end
if DeleteExit1(12) == 0
P(:,:,12) = 0.*P(:,:,12);
end
%Optimising path for two exits next to each other
[m,n] = size(P(:,:,1));
vec = [1,3,5,7,9,11];
for i=1:6
 for j=1:m
 for k=1:n
 P(j,k,vec(i)) = max(P(j,k,vec(i):vec(i)+1));
 P(j,k,vec(i)+1) = max(P(j,k,vec(i):vec(i)+1));
 end
 end
end
%Prepare Matrix for making lose priority to people between banks
R(:,:,5) = 0.*P(:,:,1);
[x,y] = find(R(:,:,1)== 1);
for i=1:length(x)

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 10 of 38

 R(x(i),y(i),5) = R(x(i),y(i),1);
end
[x,y] = find(R(:,:,1)==1);
for i=1:length(x)
 R(x(i),y(i),5) = R(x(i),y(i),1);
end
end

function CorrRoom2()
%Hard correction on Room ETA F5
% delete part will be still needed
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
%Delete the exits
if DeleteExit2(1) == 0
P(:,:,1) = 0.*P(:,:,1);
end
if DeleteExit2(2) == 0
P(:,:,2) = 0.*P(:,:,2);
end

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 11 of 38

if DeleteExit2(3) == 0
P(:,:,3) = 0.*P(:,:,3);
end
if DeleteExit2(4) == 0
P(:,:,4) = 0.*P(:,:,4);
end
end

function CounterUpdate()
%Updates by every person the loop counter
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
ll = length(A(1,1,1,:));
for k=1:ll
 if find(A(:,:,1,k)==1)
 [x,y] = find(A(:,:,1,k)==1);
 for i=1:length(x)
 A(x(i),y(i),7,k) = A(x(i),y(i),7,k)+1;
 end
 end
end

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 12 of 38

function GetAgentDensity()
%Calculate the amount of people situate in the exit cones,
%the evoluation is saved in the matrix PE
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
PD(1:NrExits) = 0;
for i=1:NrExits
 for m=1:length(A(1,1,1,:))
 AA = PE(:,:,1).*A(:,:,5,m); %analyze only exit cones
 if (find(AA==i))
 [x,y] = find(AA==i);
 for h=1:length(x)
 PD(i) = PD(i)+(1&&AA(x(h),y(h)));
 end
 end
 end
end
if ActRoom == 1
PD(1) = PD(1)+PD(2);
PD(2) = PD(1)+PD(2);

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 13 of 38

PD(3) = PD(3)+PD(4);
PD(4) = PD(3)+PD(4);
PD(5) = PD(5)+PD(6);
PD(6) = PD(5)+PD(6);
PD(7) = PD(7)+PD(8);
PD(8) = PD(7)+PD(8);
PD(9) = PD(9)+PD(10);
PD(10) = PD(9)+PD(10);
PD(11) = PD(11)+PD(12);
PD(12) = PD(11)+PD(12);
end

PE(:,:,PECounter+1) = PE(:,:,PECounter).*sum(A(:,:,1,:),4);
PECounter = PECounter + 1;
end

function [xN,yN,temp,MyUp,gg] = GetAgentMove(x,y,Layer,Exit)
%Checks the density in the exits cones only if not situated in
%one
%then search the best next position
%TreshNear equaliz the flow between 2 exits next to each other
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 14 of 38

%%
%Code
%if waiting too long go back to nearest exit
if A(x,y,4,Layer) >2
 A(x,y,5,Layer) = P(x,y,end 1);
 A(x,y,4,Layer) = 0;
end
%if not in exit cone check density
if PE(x,y,1,1) == 0
 %if between seats break;
 if ActRoom == 1
 bobo = (sum(sum(R(x 1:x+1,y 1:y+1,5)))>0);
 else
 bobo = 1;
 end
 if (PD(Exit) >ThreshDens) && bobo
 a= 1;
 Exit = GetOnBetterExit(x,y,Layer,Exit,a);
 end
 if (PD(Exit) >ThreshNear) && (ActRoom == 1)
 a=2;
 Exit = GetOnBetterExit(x,y,Layer,Exit,a);
 end
end
%search next position
[xN,yN,temp,MyUp,gg] = GetNextMove(x,y,Layer,Exit);
end

function GetNearestExit()
%Save Active Exit Layer in Agent Matrix
%for the first time caled it saves the Layer for the nearest exit
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 15 of 38

global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
[x,y] = find(A(:,:,1,1)==1);
for i=1:length(x)
 A(x(i),y(i),5,1) = P(x(i),y(i),end 1);
end
end

function [xN,yN,temp,MyUp,gg] = GetNextMove(x,y,Layer,Exit)
%Search a path following the arrows defined for the active
%exit layers, look first in front and side ways and then backwards
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 16 of 38

global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
temp = P(x,y,Exit);
MyUp = [0,0];
PathSearching = 1;
gg = 1;
%define search order
SearchOrder = [1,2,3,4,5,6,7,8];
Direc = PA(x,y,Exit);
if ActRand == 1
 MyRan = randi([0,1],1); %if MyRan ==1 first check left
else
 MyRan = 0;
end
%Define Search order
switch Direc
 case 1
 if MyRan == 1
 SearchOrder = [1,5,2,8,4,7,3,6];
 else
 SearchOrder = [1,8,4,5,2,6,3,7];
 end
 case 1i
 if MyRan == 1
 SearchOrder = [2,6,3,5,1,8,4,7];
 else
 SearchOrder = [2,5,1,6,3,7,4,8];
 end
 case 1
 if MyRan == 1
 SearchOrder = [3,7,4,6,2,5,1,8];
 else
 SearchOrder = [3,6,2,7,4,8,1,5];
 end
 case 1i
 if MyRan == 1
 SearchOrder = [4,8,1,7,3,6,2,5];
 else
 SearchOrder = [4,7,3,8,1,5,2,6];
 end
 case 1+1i
 if MyRan == 1
 SearchOrder = [5,2,6,1,8,4,7,3];
 else
 SearchOrder = [5,1,8,2,6,3,7,4];
 end
 case 1+1i
 if MyRan == 1
 SearchOrder = [6,3,7,2,5,1,9,4];
 else
 SearchOrder = [6,2,5,3,7,4,8,1];
 end
 case 1 1i
 if MyRan == 1
 SearchOrder = [7,4,8,3,6,2,5,1];
 else
 SearchOrder = [7,3,6,4,8,1,5,2];
 end
 case 1 1i
 if MyRan == 1

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 17 of 38

 SearchOrder = [8,1,5,4,7,3,6,2];
 else
 SearchOrder = [8,4,7,1,5,2,6,3];
 end
end

%%
%Find next move according to search order priority
%if no move is found, then wait
h = 1;
while (h<6) && (PathSearching == 1)
 [MyUp,PathSearching,gg] = SearchMe(x,y,Exit,temp,gg,MyUp,
PathSearching,SearchOrder(h));
 h = h+1;
 end
h = 6;
while (h<9) && (PathSearching == 1)
 [MyUp,PathSearching,gg] = SearchMe(x,y,Exit,temp,gg,MyUp,
PathSearching,SearchOrder(h));
 h = h+1;
 end
%if no way found with greater value, search for the same value
if PathSearching == 1
 temp = temp 1;
 h = 1;
 while (h<6) && (PathSearching == 1)
 [MyUp,PathSearching,gg] = SearchMe(x,y,Exit,temp,gg,MyUp,
PathSearching,SearchOrder(h));
 h = h+1;
 end
 h = 6;
 while (h<9) && (PathSearching == 1)
 [MyUp,PathSearching,gg] = SearchMe(x,y,Exit,temp,gg,MyUp,
PathSearching,SearchOrder(h));
 h = h+1;
 end
 temp = temp+1;
end
aa = [x,y]+MyUp;
MyUp = [sign(MyUp(1)),sign(MyUp(2))]; %for saving direction in C
xN = aa(1);
yN = aa(2);
end

function Exit = GetOnBetterExit(x,y,Layer,Exit,a)
%Search the best alternative to avoid the crowd near the
%exits
%The second part for the near exits have to be only used for room 1
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 18 of 38

global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
Pt = P;
temp = P(x,y,Exit);
Cor = Exit;
if a ==1
 while PD(Cor) > ThreshDens
 Pt(x,y,Cor) = 0;
 [Val,Cor] = max(Pt(x,y,1:end 2));
 while Val >= temp
 Pt(x,y,Cor) = 0;
 [Val,Cor] = max(Pt(x,y,1:end 2));
 end
 end
 Exit = Cor;
 A(x,y,5,Layer) = Cor;
else
 if (Exit==1)
 if PD(Exit)>PD(2)
 Exit = 2;
 A(x,y,5,Layer) = 2;
 end
 elseif (Exit==2)
 if PD(Exit)>PD(1)
 Exit = 1;
 A(x,y,5,Layer) = 1;
 end
 elseif (Exit==3)
 if PD(Exit)>PD(4)
 Exit = 4;
 A(x,y,5,Layer) = 4;
 end
 elseif (Exit==4)
 if PD(Exit)>PD(3)

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 19 of 38

 Exit = 3;
 A(x,y,5,Layer) = 3;
 end
 elseif (Exit==5)
 if PD(Exit)>PD(6)
 Exit = 6;
 A(x,y,5,Layer) = 6;
 end
 elseif (Exit==6)
 if PD(Exit)>PD(5)
 Exit = 5;
 A(x,y,5,Layer) = 5;
 end
 elseif (Exit==7)
 if PD(Exit)>PD(8)
 Exit = 8;
 A(x,y,5,Layer) = 8;
 end
 elseif (Exit==8)
 if PD(Exit)>PD(7)
 Exit = 7;
 A(x,y,5,Layer) = 7;
 end
 elseif (Exit==9)
 if PD(Exit)>PD(10)
 Exit = 10;
 A(x,y,5,Layer) = 10;
 end
 elseif (Exit==10)
 if PD(Exit)>PD(9)
 Exit = 9;
 A(x,y,5,Layer) = 9;
 end
 elseif (Exit==11)
 if PD(Exit)>PD(12)
 Exit = 12;
 A(x,y,5,Layer) = 12;
 end
 elseif (Exit==12)
 if PD(Exit)>PD(11)
 Exit = 11;
 A(x,y,5,Layer) = 11;
 end
 end
end
end

function LoadRoom(a)
%Load Room Variable in Workspace
%a==0 load from csv || Take a long time
%specify in wich folder is situated the file
%example: room(’Documents/.../Room Room.csv’)
%a==1 load the room 1 from mat file P.mat and R.mat
%a==2 load the room 2 from mat file P2.mat and R2.mat
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 20 of 38

global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
if a == 0
 [R, P] = room();
elseif a == 1
 load R
 load P
 %delete the wanted exits
 CorrRoom1();
elseif a == 2
 load R2
 load P2
 %delete wanted exits
 CorrRoom2();
end
%Intializing
R(:,:,2:4) = 0;
MyMax = max(max(P(:,:,end)));
temp = P(:,:,end);
NrExits = numel(temp(temp == MyMax));
%Calculate shortest Path for every position
ShortestPathLink();
PD(1:NrExits) = 0; %Initialize
AddExitCones(); %Prepare Exit cones
PlacePathArrows(); %Calculate and save Arrows for the Pathes
%%
%Plots
%Room

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 21 of 38

if PlotData(1) == 1
 figure(1)
 if PFS
 set(gcf,’Position’,scrsz)
 end
 PlotRoom(R(:,:,1));
end
end

function [xN,yN] = Permutation(xO,yO)
%Permutate randomly one vector and adjust the second
%xO,yO have to be the same length
%%
%Globals
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
%%
%Code
l = length(xO);

if ActRand == 1
 vR = randperm(l);
else
 vR = linspace(1,l,l);
end

for i=1:l
 xN(i) = xO(vR(i));
 yN(i) = yO(vR(i));
end
end

function PlaceAgentIni(PlaceStyle,n)
%Give out the crowd initial state of the room A and the amount of people
%PlaceStyle give differents way of placement
%PlaceStyle==1 is the full version of the room
%PlaceStyle==2 is a random placement of maximum n people
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 22 of 38

global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
%Find free places (R(...)==0)
[m1,l1] = size(R(:,:,1));
[m,l] = find(R(:,:,1)==0);
[m2,l2] = find(R(:,:,1)==1);
A = zeros(m1,l1,7,MaxPersonPerUnit);
%%
%Fill up
switch PlaceStyle
 case 1
 %whole room
 for j=1:length(m)
 A(m(j),l(j),1,1) = 1;
 A(m(j),l(j),6,1) = m(j)+sqrt(1)*l(j); %save first position in
C
 end
 case 2
 %random
 ff = length(m);
 vR = randperm(ff);
 for i=1:ff
 mt(i) = m(vR(i));
 lt(i) = l(vR(i));
 end
 m = mt;
 l = lt;
 for j=1:n
 A(m(j),l(j),1,1) = 1;
 A(m(j),l(j),6,1) = m(j)+sqrt(1)*l(j); %save first position in
C
 end
 case 3
 %with path
 for j=1:length(m)
 A(m(j),l(j),1,1) = 1;
 A(m(j),l(j),6,1) = m(j)+sqrt(1)*l(j); %save first position in
C
 end
 for j=1:length(m2)
 A(m2(j),l2(j),1,1) = 1;

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 23 of 38

 A(m2(j),l2(j),6,1) = m2(j)+sqrt(1)*l2(j); %save first
position in C
 end
end

%%
%calculate number of persons
N = sum(sum(A(:,:,1)));
end

function PlaceAgentVelocity(NV,WinN,Q)
%Make a distribution of velocities
%NV are the different velocities
%Win is the distribution style
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
if NV>2
 if WinN == ’gauss’
 Win = gausswin(NV,Q);
 elseif WinN == ’cheb’

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 24 of 38

 Win = chebwin(NV,Q);
 elseif WinN == ’kaiser’
 Win = kasier(NV,Q);
 elseif WinN == ’tukey’
 Win = tukeywin(NV,Q);
 else
 disp(’ERROR666: No such Window’)
 disp(’default use : gauss’)
 Win = gausswin(NV,Q);
 end
 WinNorm = Win./sum(Win);
 AgWin = fix(N.*WinNorm);
 AgWin(fix(length(AgWin)/2)+1) = AgWin(fix(length(AgWin)/2)+1)+N sum
(AgWin);
 MyMod = [];
 for i=1:NV
 for k=1:AgWin(i)
 MyMod = [MyMod;i];
 end
 end
 if find(A(:,:,1,1))
 [x,y] = find(A(:,:,1,1)==1);
 [x,y] = Permutation(x,y);
 for i=1:length(x);
 A(x(i),y(i),8,1) = MyMod(i);
 end
 end

else
 AgWin = N;
 if find(A(:,:,1,1))
 [x,y] = find(A(:,:,1,1)==1);
 [x,y] = Permutation(x,y);
 for i=1:length(x);
 A(x(i),y(i),8,1) = 1;
 end
 end
end
if mod(NV,2) == 0
 MyNorm = NV/2+0.5;
else
 MyNorm = fix(NV/2)+1;
end
end

function PlacePathArrows()
%Calculate the direction to the nearest exit and save it in
%complex number to be ploted as arrows
%the layer order for PA is the same as P
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 25 of 38

global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
PA = 0.*P;
[m,n] = size(PA(:,:,1));
temp = 0;
for h=1:length(P(1,1,1:end 2))
 for j=2:n 1
 for i=2:m 1
 k=1;
 if(R(i+k,j,1)== 2)
 while(R(i+k,j,1)== 2)
 k=k+1;
 end
 end
 if (P(i,j,h) < P(i+k,j,h)) && (P(i,j,h) > 0) && (temp < P(i+k,j,
h))
 temp = P(i+k,j,h);
 PA(i,j,h) = 1;
 end
 k=1;
 if(R(i,j+k,1)== 2)
 while(R(i,j+k,1)== 2)
 k=k+1;
 end
 end
 if (P(i,j,h) < P(i,j+k,h)) && (P(i,j,h) > 0) && (temp < P(i,j+k,
h))
 temp = P(i,j+k,h);
 PA(i,j,h) = 1i;
 end
 k=1;

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 26 of 38

 if(R(i k,j,1)== 2)
 while(R(i k,j,1)== 2)
 k=k+1;
 end
 end
 if (P(i,j,h) < P(i k,j,h)) && (P(i,j,h) > 0) && (temp < P(i k,j,
h))
 temp = P(i k,j,h);
 PA(i,j,h) = 1;
 end
 k=1;
 if(R(i,j k,1)== 2)
 while(R(i,j k,1)== 2)
 k=k+1;
 end
 end
 if (P(i,j,h) < P(i,j k,h)) && (P(i,j,h) > 0) && (temp < P(i,j k,
h))
 temp = P(i,j k,h);
 PA(i,j,h) = 1i;
 end
 end
 end
end
end

function PlotArrows(An)
%Arrow Plot of a 2D matrix with complex numbers
%shows the last direction
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 27 of 38

global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
 [x0,y0] = find(A(:,:,3,1) == 1);
 [x1,y1] = find(A(:,:,3,1) == 1);
 [x2,y2] = find(A(:,:,3,1) == 1i);
 [x3,y3] = find(A(:,:,3,1) == 1i);
 [x4,y4] = find(A(:,:,3,1) == 1+1i);
 [x5,y5] = find(A(:,:,3,1) == 1 1i);
 [x6,y6] = find(A(:,:,3,1) == 1+1i);
 [x7,y7] = find(A(:,:,3,1) == 1 1i);
 x = [x0;x1;x2;x3;x4;x5;x6;x7];
 y = [y0;y1;y2;y3;y4;y5;y6;y7];
 l = length(x);
 if l >0
 for k=1:l
 m(k) = imag(A(x(k),y(k),3,1));
 n(k) = real(A(x(k),y(k),3,1));
 end

 quiver(y,x,m’,n’)
 end
 hold on
end

function PlotRoom(R)
%plots a room Matrix R a bit fancy (hopefully)

% define identifiers for the several objects

markersize = 20;

if nargin == 1

if find(R==0)

 Walls = inf;
 wallmarker = ’s’;
 wallmarkersize = markersize;
 walllinestyle = ’none’;
 wallcolor = [93 93 93]./256;

 [j, k] = find(R == Walls);
 plot(k,j,’marker’,wallmarker,’markersize’,wallmarkersize, ’linestyle’,
walllinestyle,’color’,wallcolor, ’MarkerFaceColor’,wallcolor);
 hold on;

 Paths = 1;
 pathmarker = ’s’;
 pathmarkersize = markersize;

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 28 of 38

 pathlinestyle = ’none’;
 pathcolor = [88 201 61]./256;

 [j, k] = find(R >= Paths);
 plot(k,j,’marker’,pathmarker,’markersize’,pathmarkersize, ’linestyle’,
pathlinestyle,’color’,pathcolor, ’MarkerFaceColor’,pathcolor);
 hold on;

 Seats = 0;
 seatsmarker = ’s’;
 seatsmarkersize = markersize;
 seatslinestyle = ’none’;
 seatscolor = [72 125 253]./256;

 [j, k] = find(R == Seats);
 plot(k,j,’marker’,seatsmarker,’markersize’,seatsmarkersize, ’linestyle’,
seatslinestyle,’color’,seatscolor,’MarkerFaceColor’,seatscolor);

 Tables = 1;
 tablesmarker = ’s’;
 tablesmarkersize = markersize;
 tableslinestyle = ’none’;
 tablescolor = [254 158 57]./256;

 [j, k] = find(R == Tables);
 plot(k,j,’marker’,tablesmarker,’markersize’,tablesmarkersize,
’linestyle’,tableslinestyle,’color’,tablescolor,’MarkerFaceColor’,
tablescolor);

 Exits = inf;
 exitsmarker = ’s’;
 exitsmarkersize = markersize;
 exitslinestyle = ’none’;
 exitscolor = [254 249 44]./256;
 [j, k] = find(R == Exits);
 plot(k,j,’marker’,exitsmarker,’markersize’,exitsmarkersize, ’linestyle’,
exitslinestyle,’color’,exitscolor,’MarkerFaceColor’,exitscolor);

 Fillups = 2;
 fillupsmarker = ’s’;
 fillupsmarkersize = markersize;
 fillupslinestyle = ’none’;
 fillupscolor = [254 93 104]./256;
 [j, k] = find(R == Fillups);
 plot(k,j,’marker’,fillupsmarker,’markersize’,fillupsmarkersize,
’linestyle’,fillupslinestyle,’color’,fillupscolor,’MarkerFaceColor’,
fillupscolor);

 legend(’Walls’, ’Paths’, ’Tables’,’Exits’,’Fills’);
 title(sprintf(’plot of the room matrix. Exit value = %d’, Exits));

else
 Walls = inf;
 wallmarker = ’s’;
 wallmarkersize = markersize;
 walllinestyle = ’none’;
 wallcolor = [93 93 93]./256;

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 29 of 38

 [j, k] = find(R == Walls);
 plot(k,j,’marker’,wallmarker,’markersize’,wallmarkersize, ’linestyle’,
walllinestyle,’color’,wallcolor, ’MarkerFaceColor’,wallcolor);
 hold on;

 Paths = 1;
 pathmarker = ’s’;
 pathmarkersize = markersize;
 pathlinestyle = ’none’;
 pathcolor = [88 201 61]./256;

 [j, k] = find(R >= Paths);
 plot(k,j,’marker’,pathmarker,’markersize’,pathmarkersize, ’linestyle’,
pathlinestyle,’color’,pathcolor, ’MarkerFaceColor’,pathcolor);
 hold on;

 Seats = 0;
 seatsmarker = ’s’;
 seatsmarkersize = markersize;
 seatslinestyle = ’none’;
 seatscolor = [72 125 253]./256;

 [j, k] = find(R == Seats);
 plot(k,j,’marker’,seatsmarker,’markersize’,seatsmarkersize, ’linestyle’,
seatslinestyle,’color’,seatscolor,’MarkerFaceColor’,seatscolor);

 Tables = 1;
 tablesmarker = ’s’;
 tablesmarkersize = markersize;
 tableslinestyle = ’none’;
 tablescolor = [254 158 57]./256;

 [j, k] = find(R == Tables);
 plot(k,j,’marker’,tablesmarker,’markersize’,tablesmarkersize,
’linestyle’,tableslinestyle,’color’,tablescolor,’MarkerFaceColor’,
tablescolor);

 Exits = max(R(:));
 exitsmarker = ’s’;
 exitsmarkersize = markersize;
 exitslinestyle = ’none’;
 exitscolor = [254 249 44]./256;
 [j, k] = find(R == Exits);
 plot(k,j,’marker’,exitsmarker,’markersize’,exitsmarkersize, ’linestyle’,
exitslinestyle,’color’,exitscolor,’MarkerFaceColor’,exitscolor);

 Fillups = 2;
 fillupsmarker = ’s’;
 fillupsmarkersize = markersize;
 fillupslinestyle = ’none’;
 fillupscolor = [254 93 104]./256;
 [j, k] = find(R == Fillups);
 plot(k,j,’marker’,fillupsmarker,’markersize’,fillupsmarkersize,
’linestyle’,fillupslinestyle,’color’,fillupscolor,’MarkerFaceColor’,
fillupscolor);

 legend(’Walls’, ’Paths’, ’Tables’,’Exits’,’Fills’);
 title(sprintf(’plot of the room matrix. Exit value = %d’, Exits));

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 30 of 38

end
else

end

end

function P = PourPathValues(R)
%Fills a tensor P with path values from room matrix R
% P = PourPathValues(R)
% Detects exits by ’inf’ and tries to "pour" the values through the paths

%get max possible value for a path (just to have enough overhead for
%filling the paths) = n*m

[m,n] = size(R);
maxval = m*n;

% locate every exit
[x,y] = find(R==inf);
P = zeros(m,n,length(x)); % tensor = matrix for each exit

for i=1:size(x,1);
 P(x(i),y(i), i) = maxval;
 P(1:end,1:end,i) = AddExit_v2(R, P(:,:,i), [x(i) y(i)], maxval 1, 0);
end
end

function PrintAgent(n)
%Plot the Room with actual Crowd placement and direction
%the first plot is the room(blue/red) with on it every position were are
%one or more people and the last direction of the person in Layer 1
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 31 of 38

global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
figure(n);
clf;
if PFS
 scrsz = get(0,’Screensize’) [0 0 0 100];
 set(gcf,’Position’,scrsz)
end
subplot(2,1,1)
surf(P(:,:,end))
hold on
set(gca,’FontSize’,16)
spy(A(:,:,1,1),’y’)
if N >0
PlotArrows(A)
%legend(’Room’,’People’,’Direction’)
end
title(’Agent Move : Red/Blue is Room Surface & yellow dot are agents’)
xlabel(’x’)
ylabel(’y’)
hold off
subplot(2,1,2)
hold on
set(gca,’FontSize’,16)
title(’Agent Density’)
xlabel(’x’)
ylabel(’y’)
zlabel(’Person Per Unit’)
hold off
h=bar3(sum(A(:,:,1,:),4));
for i = 1:numel(h)
 zData = get(h(i),’ZData’);
 index = logical(kron(zData(2:6:end,2) == 0,ones(6,1)));
 zData(index,:) = nan;
 set(h(i),’ZData’,zData);
end
[m,n] = size(R(:,:,1));
xlim([1 m])
ylim([1 n])
zlim([0 MaxPersonPerUnit])
hold off
if MyPause == 1
 pause()
end

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 32 of 38

end

function [MyMin] = PriorityUpdate()
%Calculate the priority of one person relativ of his
%position in the room (nearest to exit have the highest priority
% can be used once at the beginning and after every crowd update
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Update priority
i = MyMax;
while(i >= 0)
 if find(P(:,:,end)==i)
 [Fx,Fy] = find(P(:,:,end)==i);
 [Fx,Fy] = Permutation(Fx,Fy); %mixing the orders
 l = length(Fx);
 for h=1:MaxPersonPerUnit
 for k=1:l
 if A(Fx(k),Fy(k),1,h)==1
 A(Fx(k),Fy(k),2,h) = P(Fx(k),Fy(k),A(Fx(k),Fy(k),5,h));
 end
 end

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 33 of 38

 end
 i = i 1;
 else break;
 end
end
MyMin = min(min(A(:,:,2,1)));
end

function [R, P] = room(csvfile)
% [R] = room(csvfile) reads in a .csv file and generates a corresponding
% Matlab room Matrix R and exit path values in P.
%
% example call: [R, P] = room(’Documents/room_abstract/Room Room.csv’);
if nargin == 0
 R = csvread(’Documents/room_abstract/Room Room.csv’); % updated!
else
 R = csvread(csvfile);
end
R = R(2:end 1,2:end 1); % cut out the borders (coordinates from numbers.app
for better drawing)
P = PourPathValues(R);
% TODO: replace inf by maxval?
end

function [MyUp,PathSearching,gg] = SearchMe(x,y,Exit,temp,gg,MyUp,
PathSearching,i)
%Search the next best position
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 34 of 38

global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
switch i
 case 1
 k=1;
 if(R(x+k,y,1)== 2)
 while(R(x+k,y,1)== 2)
 k=k+1;
 end
 end
 for gg=1:MaxPersonPerUnit
 if (P(x+k,y,Exit)>temp) && (A(x+k,y,1,gg)==0)
 MyUp = [k,0];
 PathSearching = 0;
 break;
 end
 end
 case 2
 k=1;
 if(R(x,y+k,1)== 2)
 while(R(x,y+k,1)== 2)
 k=k+1;
 end
 end
 for gg=1:MaxPersonPerUnit
 if (P(x,y+k,Exit) >temp) && (A(x,y+k,1,gg)==0)
 MyUp = [0,k];
 PathSearching = 0;
 break;
 end
 end
 case 3
 k=1;
 if(R(x k,y,1)== 2)
 while(R(x k,y,1)== 2)
 k=k+1;
 end
 end
 for gg=1:MaxPersonPerUnit
 if (P(x k,y,Exit) >temp) && (A(x k,y,1,gg)==0)
 MyUp = [k,0];
 PathSearching = 0;
 break;
 end;
 end
 case 4
 k=1;
 if(R(x,y k,1)== 2)
 while(R(x,y k,1)== 2)
 k=k+1;
 end
 end

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 35 of 38

 for gg=1:MaxPersonPerUnit
 if (P(x,y k,Exit) >temp) && (A(x,y k,1,gg)==0)
 MyUp = [0, k];
 PathSearching = 0;
 break;
 end
 end
 case 5
 k=1;
 if(R(x+k,y+k,1)== 2)
 while(R(x+k,y+k,1)== 2)
 k=k+1;
 end
 end
 for gg=1:MaxPersonPerUnit
 if (P(x+k,y+k,Exit) >temp) && (A(x+k,y+k,1,gg)==0)
 MyUp = [k,k];
 PathSearching = 0;
 break;
 end
 end
 case 6
 k=1;
 if(R(x k,y+k,1)== 2)
 while(R(x k,y+k,1)== 2)
 k=k+1;
 end
 end
 for gg=1:MaxPersonPerUnit
 if (P(x k,y+k,Exit) >temp) && (A(x k,y+k,1,gg)==0)
 MyUp = [k,k];
 PathSearching = 0;
 break;
 end
 end
 case 7
 k=1;
 if(R(x k,y k,1)== 2)
 while(R(x k,y k,1)== 2)
 k=k+1;
 end
 end
 for gg=1:MaxPersonPerUnit
 if (P(x k,y k,Exit) >temp) && (A(x k,y k,1,gg)==0)
 MyUp = [k, k];
 PathSearching = 0;
 break;
 end
 end
 case 8
 k=1;
 if(R(x+k,y k,1)== 2)
 while(R(x+k,y k,1)== 2)
 k=k+1;
 end
 end
 for gg=1:MaxPersonPerUnit
 if (P(x+k,y k,Exit) >temp) && (A(x+k,y k,1,gg)==0)
 MyUp = [k, k];
 PathSearching = 0;
 break;

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 36 of 38

 end
 end
 end
end

function ShortestPathLink()
%link the shortest path information (Value and Layer
%Coordinate in the last 2 layers of P
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
P(:,:,end) = 0.*P(:,:,end);
P(:,:,end+1) = P(:,:,end);
[m,n] = size(P(:,:,1));
 for j=1:m
 for k=1:n
 [Val,Cor] = max(P(j,k,1:end 2));
 P(j,k,end 1) = Cor;
 P(j,k,end) = Val;
 end

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 37 of 38

 end
end

function TimeAnlysis()
%Analise the time needed to go out
%%
%Globals
global MyPause; %Activate pause in Simulation
global scrsz; %Your actual Screen Size
global PlotData; %Activate the plot functions [a,b]
global ActRand; %Activate the Random function in Permutation and
GetNExtMove
global PFS; %Plot full screen
global ActRoom; %Active Room Nr X

global MyCounter; %Main Loop Counter
global PECounter; %Counter for PE Matrix
global PPCounter; %Counter for PP Matrix
global LimitLoop; %Set a limit for the maximum numbers of loops

global MaxPersonPerUnit; %Define Maximum Person Density per Unit
global MaxOutFlow; %Define how much people can go out at one time
global DeleteExit1; %Define the exit to be deleted(0) in room 1
global DeleteExit2; %Define the exit to be deleted(0) in room 2
global MyMax; %Biggest value for the path search
global N; %Amount of people
global A; %Agent Matrix 4D
global R; %Room Matrix 3D
global P; %Path Matrix with integer value 3D
global PA; %Path Matrix with arrows 3D
global PE; %Information about Density near to the Exits
global PP; %Outputflow for each exit for all loops
global PD; %Outputflow for each exit
global ThreshNear; %for Room 1 for 2 exit aside
global ThreshDens; %Threshold for Density at exit cones
global ExitConeR; %Length of the exit corners
global AgWin; %Velocity distribution
global T; %Sorted Persons depending on time
global TT; %For each time numbers of people
global MyNorm; %Norming factor for Velocity Distribution
global NrExits; %Number of Exits
global NumVelo; %Number of Velocities
global Sigma; %Derivation factor for Velocity Distribution
%%
%Code
[m,n] = size(R(:,:,4));
cc = 1;
T = [];
for i=1:m
 for j=1:n
 if (R(i,j,4) ~= 0)
 T(cc) = R(i,j,4);
 cc = cc+1;
 end
 end
end
T = sort(T)./MyNorm; %in sec
figure()

5/30/11 11:05 PM /Users/MasterD/Dro.../Print.m 38 of 38

set(gca,’FontSize’,16)
if PFS
 scrsz = get(0,’Screensize’) [0 0 0 100];
 set(gcf,’Position’,scrsz)
end
hold on
plot(T,’x’)
title(’Time Analysis’)
if PFS
 set(gcf,’Position’,scrsz)
end
x = linspace(1,length(T),length(T));
t = 1:20:length(T);
plot(t,[pchip(x,T,t)],’r’)
legend(’Person’,’pchip of Person’,4)
title(’Number of steps needed to get out’)
xlabel(’Person Nr.’)
ylabel(’Number of Steps’)
Temp = T.*MyNorm;
TT = zeros(max(Temp),2);
while max(Temp) ~= 0
 TT(max(Temp)) = numel(Temp(Temp == max(Temp)));
 Temp(Temp == max(Temp))=0;
end
figure()
if PFS
 set(gcf,’Position’,scrsz)
end
set(gca,’FontSize’,16)
tt = linspace(1,length(TT),length(TT));
bar(tt./MyNorm,TT)
title(’Number of steps needed to get out’)
xlabel(’Number of Steps’)
ylabel(’Number of Persons’)
end

%%
%END

MATLAB	 FS11	 –	 Research	 Plan
(remove	 text	 between	 brackets)

• First,	 remove	 also	 the	 brackets	 and	 not	 only	 the	 text	 between	 the	
brackets	 J

• It’s	 a	 rather	 sketchy	 research	 plan,	 but	 clear	 in	 the	 aims.	 Please	
improve	 the	 General	 Introduction	 section.

• It’s	 important	 to	 compare	 different	 rooms	 scenario	 to	 gain	 insight	 of	
what	 are	 the	 parameters	 that	 matters

• Be	 more	 speciCic	 in	 what	 you	 want	 to	 explore	 (room	 squared	 meters/
number	 of	 	 people,	 particular	 displacement	 of	 desks,	 evacuation	
time…)

• As	 an	 extension	 to	 the	 basic	 case,	 are	 you	 going	 to	 consider	
heterogeneity	 in	 agents/evacuation	 routine?	 (e.g.	 some	 agents	 may	 be	
instructed/trained	 to	 deal	 with	 emergencies,	 others	 may	 be	 just	 be	
panicked	 …)

• Will	 you	 able	 	 to	 access	 real	 evacuation	 data?	 Real	 Evacuation	
Procedures?

• Research	 method:	 cellular	 automata
• Format	 the	 citation	 correctly

Document	 Version:	 (1.1b)	
Group	 Name:	 (dnB)

Group	 participants	 names:	 (Biner	 Dario,	 Brun	 Noé)

General	 Introduction

Our	 goal	 is	 to	 set	 up	 a	 simulation	 model	 of	 a	 lecture	 room	 through	 which	 we	 can	 ?ind	
out	 which	 seats	 have	 the	 higher	 survival	 chance	 in	 case	 of	 an	 emergency.	 Crucial	
parameters	 such	 as	 the	 amount	 and	 the	 location	 of	 the	 exits,	 the	 amount	 of	 people,	
the	 size	 of	 the	 room	 and	 the	 distribution	 of	 the	 seats	 will	 be	 taken	 into	 account.	 It	 is	
not	 our	 aim	 to	 improve	 the	 room	 whatsoever.	 We	 rather	 try	 to	 ?ind	 out	 how	 the	
actual	 lecture	 room	 is	 conceived	 regarding	 the	 emergency	 situation.
The	 results	 should	 be	 veri?ied	 with	 real	 life	 data	 if	 available,	 or	 at	 least	 be	 compared	
with	 the	 current	 worst	 case	 scenario	 of	 the	 security	 department.
If	 the	 time	 and	 complexity	 allow	 we’ll	 gladly	 extend	 the	 model	 so	 that	 additional	
paramters	 can	 be	 taken	 into	 account	 such	 as	 differently	 behaving	 agents,	 statistical	
behaviour	 or	 parametrized	 rooms	 etc.

Fundamental	 Questions

How	 much	 time	 do	 we	 need	 to	 get	 out	 from	 the	 lecture	 room	 depending	 on	 our	
initial	 seat?	 What	 seats	 turn	 out	 to	 be	 better?	 What	 are	 the	 consequences	 if	 one	 exit	
is	 blocked?

Depending	 on	 :
1	 the	 amount	 of	 exits
2	 the	 amount	 of	 people
3	 the	 initial	 crowd	 distribution

Expected	 Results

We	 hope	 that	 in	 the	 worst	 case	 everyone	 survives	 (if	 we	 set	 that	 after	 x	 minutes	
everyone	 left	 in	 the	 room	 dies).	 The	 results	 may	 be	 that	 the	 way	 out	 from	 seats	 in	
the	 middle	 of	 the	 room	 prevent	 people	 to	 get	 out	 fast	 enough.

References	

Analytical	 Approach	 to	 Continuous	 and	 Intermittent	 Bottleneck	 Flows;
Dirk	 Helbing	 and	 Anders	 Johansson

Research	 Methods

-‐	 Cellular	 automata
-‐	 Matrix	 representation	 of	 the	 room,	 matrix	 calculation	 to	 represent	 the	 	 crowd	
movement
-‐ real	 modeling	 sticking	 close	 to	 reality	 (amount	 of	 seats,	 geometry,	 exits,	 etc)
-‐ Information	 from	 the	 security	 department,	 if	 available

	Report
	EvacuationSimulation-Appendix
	Research_Plan_dnB

