
Lecture with Computer Exercises:
Modelling and Simulating Social Systems with MATLAB

Project Report

Pedestrian Dynamics
Airplane Evacuation Simulation

Philipp Heer & Lukas Bühler

Zurich
May 2011

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Philipp Heer Lukas Bühler

2

Declaration of Originality

This sheet must be signed and enclosed with every piece of written work submitted at ETH.

I hereby declare that the written work I have submitted entitled

is original work which I alone have authored and which is written in my own words.*

Author(s)

Supervising lecturer

*Co-authored work: The signatures of all authors are required. Each signature attests to the originality of the
entire piece of written work in its final form.

Last name First name

Last name First name

 With the signature I declare that I have been informed regarding normal academic citation rules
and that I have read and understood the information on 'Citation etiquette' (http://www.ethz.ch/
students/exams/plagiarism_s_en.pdf). The citation conventions usual to the discipline in question
here have been respected.

The above written work may be tested electronically for plagiarism.

Place and date Signature

Print form

Contents

1 Individual contributions 5

2 Introduction and Motivations 6
2.1 Fundamental Questions: . 7
2.2 Expected Results . 7
2.3 Research Methods . 7

3 Description of the Model 8

4 Implementation 9
4.1 Initialisation . 10

4.1.1 Importing an airplane Model 10
4.1.2 Path finding algorithm . 11

4.2 Running Simulation . 13
4.2.1 Generation of Interaction forces 13

4.3 Output . 14

5 Simulation Results and Discussion 15
5.1 Parameter identification . 15
5.2 Influence of Social force . 15
5.3 Simulated situations . 16

5.3.1 Airbus A380 . 17
5.3.2 Embraer 190 . 17

5.4 Results . 18
5.4.1 Positioning of the flight attendants 18
5.4.2 Hesitation at the exits . 19

5.5 Comparison to real live experiments 20

6 Summary and Outlook 21
6.1 Identification of parameters . 21
6.2 Adapted social force . 21
6.3 Simulation . 21
6.4 Conclusions . 21

A Research Plan 23

4

B Matlab program code 25
B.1 pedest.m . 25
B.2 init.m . 29
B.3 getFile.m . 32
B.4 gradient_special.m . 33
B.5 computeGradientField1.m . 37

5

1 Individual contributions

The following Tasks were performed:

Task Responsibility
Converting image files to matrices (file getFile.m) Lukas Bühler
Redrawing of seating plans Lukas Bühler
Generation of the vector field containing the short-
est path to an emergency exit (file computeGradient-
Field1.m)

Lukas Bühler

Analysis of the simulation results with different posi-
tions of the flight attendants

Lukas Bühler

Calculation of acting forces on passengers (file pedest.m) Philipp Heer
Programming of Simulation-Algorithm (file pedest.m) Philipp Heer
Converting matrices from getFile.m into a usable form
(file init.m)

Philipp Heer

Analysis of the simulation results with parameters Philipp Heer

6

2 Introduction and Motivations

Figure 1: Evacuation of an Airbus A320 after the successful emergency landing in the
Hudson River, Source: (3)

In January 2009 an Airbus was forced to land in the Hudson River in New York. At
this event 150 persons had to leave the plane before it sank to the ground of the river.
In this project the evacuation of airplanes is analyzed. After a crash it is possible
for an airplane to explode due to ignited fuel or after a water landing to sink. Dur-
ing such an emergency situation it is important to evacuate all passengers and crew
members of an airplane in a very short amount of time in order to maintain their
survival. Evacuation scenarios were studied before. Emerging fires or earthquakes
lead to similar situations in buildings. Even the evacuation of airplanes has already
been researched because hundreds of lives could be at stake. The International Civil
Aviation Organization (ICAO) limited the maximum time of evacuation to 90 sec-
onds for each plane. This time reference has to be proved by each manufacturer
before a plane can go into service.

Especially the newer airplaes have even higher decks than older ones. This raises
the question whether people fear to jump down the slides in an emergency situation.

7

Is there a psychological aspect that is not answered by normal pedestrian dynamics
adapted on the space of an airplane in an emergency situation? This question led to
the fundamental questions for this Project:

2.1 Fundamental Questions:

Is this model suitable for the evacuation situation of an airplane or should there be
done changes in order to get reliable results? Example: Do people hesitate to jump
down the slides at the exits and does the social force model fail there?

Could suitable instructions of the cabin personal be simulated in the model and
how does it affect the performance of the scenario?

2.2 Expected Results

There is data of evacuation experiments with real aircrafts available. This will help
to verify and test the model. The answer of the question will be the confirmation
of the test results by the model or a succession to improve the model. If there are
differences of our model to the original social force model, they should be pointed
out and explained.

We expect the instructions of the personal to be a positive effect on performance.
To simulate this, there will be changes in the original social force model.

2.3 Research Methods

Continuous Modeling by implementing the social force model.
The model time step dt will be defined. The performance of the model will be mea-
sured by counting the time steps. By counting the amount of time steps, the model
is validated relatively and can not be compared to a real time value. Nevertheless,
this allows us to compare adaptations of our model.

8

3 Description of the Model

It was the aim to implement an easy adaptable model of an aircraft in which the
simulations of pedestrian dynamics in an emergency situation could be performed.
Therefore, a slightly reworked seat plan image of the airplane can be imported into
Matlab to generate the environment of the simulation. Walls, space, passengers,
flight attendants, emergency exits and special zones are drawn with different colors
in this image. Matlab first generates the shortest path from every point to an exit
and generates therefore a vector field in the space of the airplane. Every passenger
basically follows this path to the next emergency exit from his position.

The main simulation is then performed with a implementation of the social force
model described in (1).

During a simulation passengers interact with each other and can therefore not follow
the shortest path given by the vector field. These interacting forces consist of basi-
cal phisical principles (e.g. that passengers cannot walk through walls or that two
passengers cannot stand too close to each other) and social interactions which are
introduces because generally persons try to have a free region of space around them
to feel comfortable.

Figure 2: Outputframe of a simulation

9

4 Implementation

The whole program is gouped into two major parts as shown in Figure 3. First the
init.m file is executed in which the airplane picture can be choosen and the path
finding algorithm runs. Also each a matrice for the passengers, the flightattendants
and the wallobjects is generated. Secondly, the pedest.m file computes the time it-
eration and generates the output.

Figure 3: Flow chart of the initialization file (init.m) and the time iteration file (pedest.m)

10

4.1 Initialisation

On initialization, the space for the simulation containing walls, exits, passengers,
special areas and the vector field with the shortest path is generated. These processes
are separated in different matlab files. First, an image file is loaded and processed by
the file getFile.m. It generates a matrix. In the computeGradientField1.m file, this
matrix is searched for walls and exits and the shortest path from every point to the
next exit is generated in a vector field. The passengers in the following simulation
basically follow this field.

4.1.1 Importing an airplane Model

There are many so called seating plans of aircrafts available on the internet. They
are mostly provided by airlines for their customers in order to choose a seat while
booking. Those images are used to generate a realistic model of the environment in a
short time in order to perform many simulations with different shapes and conditions
of the environment. Adobe Fireworks was used to rework the seating plan. Figure 4
shows a seating plan and the reworked image to import into Matlab. Matlab offers
functions to convert an image file into a matrix with every entry representing a pixel
of the image.

Figure 4: Airplane seating plan and reworked image file to import into Matlab

The image file (bitmap) must contain the in Figure 5 listed colors in order to recog-
nise the different regions.

In the getFile.m file, every blue pixel is recognised als a passenger at its start position.
The dark green zone is influenced positively by a flight attendant. In yellow areas,

11

Color Hex triplet Description
White FFFFFF Space in which the passengers can freely walk
Black 000000 Walls
Red FF0000 Emergency exit (drain which attracts the passengers)
Blue 0000FF Every blue pixel is recognised as a passenger
Dark green 009900 Zone which is influenced by the flight attendant
Yellow FFFF00 Area in which pessangers struggle to continue walking

Figure 5: Colors of the image file and their meaning

passengers walk slower because they struggle to jump down the emergency slides.
The output of getFile.m is a matrix which contains different numbers for walls,
space, exits, passengers and zones.

4.1.2 Path finding algorithm

Every passenger must be guided along the shortest way to the next emergency exit.
A vector field has to be found to get the direction to the next exit at every point of
the space. Therefore, a fast marching algorithm is used which calculates the distance
between every point and the next exit around every obstacle. Hence the problem of
finding the shortest way between two points in space is similar to wave propagation
problems or spreading fluid, there could be found a suitable implementation in the
internet. A toolbox was found from Mathworks.
http://www.mathworks.com/matlabcentral/fileexchange/6110
The fast marching algorithm generates a potential field in the space, which contains
the distance of every point to the next drain (emergency exit).

Figure 6: Developement of the vector field containing the shortest path to the next emer-
gency exit

12

Figure 6 shows the generation of the vector field with the shortest path to an exit.
The first image is the image file imported into Matlab with space (white), drain
(emergency exit, red) and walls (black). With the fast marching algorithm a poten-
tial field is generated. Red represents the closest region to the exit and blue is the
furthest. Via the calculation of the gradient of this potential field, the vector field in
the right image is generated. The arrows point in the direction of the shortest path
from every point to the emergency exit.

For the calculation of the gradient field, the matlab function gradient_special.m was
written. The standard Matlab function gradient(X) could not have been used because
of the exeptions it had to consider for walls. The function gradient(X) considers the
whole matrix and calculates wrong values next to walls, because the distance entry
of a wall is 0 in the matrix.
At the end of the calculation, all vectors are normalized to a constant length of 1
because only their direction is being used.

Figure 7 shows the fast marching algorithm applied on an imported aircraft model.
It is assumed that the way to the emergency exit in an aircraft is marked so that
a passenger always takes the nearest exit from his seat. With this assumption, the
fast marching algorithm suits for generating the vector field in an airplane.

Figure 7: Visualized matrix that contains the distance to the next emergency exit in a
Boeing 737

13

4.2 Running Simulation

After the initialisation the simulation beginns to run until every passenger has es-
caped the airplane.Each iteration step can be devided into three groups.
First - for each passenger - its actual position is analized. If it is in a zone which is
influenced by a flight attendant it will behave differently from being in an area close
to an exit. If the passenger is in an exit area it will be taken out of the simulation
and is "free".
Secondly, the new position is calculated. For that wall elements and other passengers
close to it self are looked at.

4.2.1 Generation of Interaction forces

These forces are divided into three parts. The first force to introduce is the so called
physical force. It allows each passenger to have an area of space in which no one
else can enter. It states for the body volume of a passenger. It is implemented as
exponential function which decays fast and only is taken into consideration if two
passengers are situated closer than one meter from each other.
Secondly, a social force is introduced which is over all weaker than the physical force
but it decays slower and has a radius of action of six meters. Furthermore it is not
isotrop. With an increasing variable λ the passanger reacts stonger to intrusions in
front of it than behind of it.
Basically both the physical and the social force base on the principle the force in-
creases the closer two passengers are together. This is achieved by using an expo-
nential approach:
For the physical force between passenger a and b applied to a

~F phy
a−b = Aphy

a · e
ra+rb−da−b

B
phy
a · ~na−b

is applied and for the social force

~F soc
a−b = (λ+ (1− λ)1 + cosφa−b

2
) · Asoc

a · e
ra+rb−da−b

Bsoc
a · ~na−b

holds true, where ~na−b =
~ra−~rb
||~ra−~rb||

. φa−b is the angle between ~na−b and the direction
of movment of a. Aa is the interaction strength and Ba the range of the interaction
force. Both Aa and Ba depend on a as these parameters depend on the passenger
e.g. on the size age, cultural background and so forth.
Figure 8 shows the equiforcelines of a passengers social force located at (0,0) headed
in y-direction with a λ < 1.
As a third essential element a force has to be introduced which unables passengers
to walk through walls. Whereas the forcefield generated by the pathfinder does not

14

Figure 8: Unisotropic social force

point towards an obsticle as a wall but the other two mentioned forces could force a
passenger rigth through a wall. For that reason each passenger too close to a wall
element is pushed in normal direction to the orientation of the wall.
In a next step the new position of each passenger is calculated with Eulers Method
applied on Newtons Laws of Motion.

~Ftotal =
∑
i

~Fi = m · ~a = m · ~̈r ≈ m · ṙ(kT)− ṙ(T (k − 1))

dt

with ṙ(kT) = r(kT)−r(T (k−1))
dt

; r(kT) =
(
x(kT)

y(kT)

)
; k ∈ N and T = dt

After that the new positions are plotted and - if there are still passengers fleeing - a
next iteration is executed.

4.3 Output

In each time step the plotted passengerformation is as a frame added to a moviestream.
After the sumulation finished the result can be watched as ".avi"-moviefile.

15

5 Simulation Results and Discussion

For the sake of analyzing diffrent scenarios in simulations the system is built up
(mostly) deterministic. The only random generated value is the weigth of each pas-
senger. A (more) real system would embody much more uncertanties. For example
the decay rate and the amplification of the social force would vary due to diffrent
cultural backgrounds or behaviours. This is similarly true for the parameter tuple for
the physical force where varying volumina of people would lead to varying parameters
but not necessarily corresponding masses.

5.1 Parameter identification

The aim of the first simulations was to figure out phisically correct parameters. And
there were alot of parameters to define among them obvious ones like the size of one
time step dt or the wheigthing of each force ~Fi. But on the other hand there are
such subtle parameters as the decay rates of the wall-, social-, and pysical-forces or
the radius of influence for these forces.
For a "smooth" simulation a small step size close to zero would be optimal. But
for the sake of computational effort a value of dt = 0.3 is choosen. Other variables
regarding smoothnes are decayrate of forces and radius of influence of these forces. If
a passenger enters an area of influence in which it suddently will experience a strong
change of forces, the passenger could behave "instable" in the sense of being pushed
through walls.
If those two tuples are set the other parameters can be choosen relarively freely.

5.2 Influence of Social force

The social force model was introduced to describe the behaviour of pedestrians on
pavement or in rooms. Airplanes could be considered very small rooms or better
corridors. Beforehand there was the concern that this force applied on alot of pas-
sengers concentrated in a small area could lead to an unnatural behaviour during
simulation. This turned out to be partially true.

As the social force tendencially unables a passenger to follow its shortest path to an
exit one can expect a longer lasting evacuation than whitout an implemented force.
Several runs of the simulation confirmed this.
The intoduction of the social force let also to a more "decent" behaviour of the
passengers. The passengers lined up in a row and fewer tries to overturn others were
attempted. This can be seen in Figure 9 and Figure 10.

16

Figure 9: Simulation without social force

Figure 10: Simulation with social force

5.3 Simulated situations

There were different simulations performed to analyze and verify the model. Two
different airplanes were simulated: A smaller Embraer 190 with 100 passengers and
an Airbus 380. For the Airbus, only the lower economy class deck with 402 passengers
was simulated.
Usually, bigger aircrafts are more difficult to evacuate simply because of the many
passengers to be brought out of the airplane within the required 90 seconds. To see
the differences, the smaller Embrear 190 and the biggest passenger jet of the world,
the A380 were simulated.

17

Figure 11: Embraer 190 and Airbus A380, Source: (4)

5.3.1 Airbus A380

Figure 12 shows the model of the Airbus A380. Flight attendants marked with
green were placed either at the exits or in the corridor. At the exits where no flight
attendant is, the area is marked yellow which means that passengers there hesitate
to jump and therefore walk slower within this area.

Figure 12: A380 Model

5.3.2 Embraer 190

For the model of the smaller Embraer 190, two simulations were performed. The
initial situation is shown in Figure 13. In the first simulation (SIM 1), the flight
attendants were placed in the corridor. For the second simulation (SIM 2), they
were placed next to the emergency exit on the left side of the plane. At exits where
no flight attendant is, the area is again marked yellow meaning that the passengers
walk slower there.

18

SIM 1:

SIM 2:

Figure 13: Embraer 190 Model

5.4 Results

5.4.1 Positioning of the flight attendants

SIM 1 SIM 2

Evacuation time: 360 steps Evacuation time: 428 steps
Frame No. 108: Frame No. 108:

Figure 14: Embraer 190 results

Figure 14 compares the simulated situation for the Embraer 190. The simulation SIM
1 takes 360 steps compared to 428 steps for SIM 2. This means that the evacuation
takes about 1.4 times longer in SIM 2. The reason for that is obvious to see in Frame
108. The flow in SIM 1 is heavily improved by the presence of a flight attendant
in the corridor in the center of the plane. There are about 56 passengers willing to
leave the plane through the exits in the middle. The exits themselves are much wider
than the corridor of the plane. The most critical point is at the center of the plane
where passengers turn to the exits.
The presence of flight attendants optimises the flow at this point as seen in SIM 1.
The passengers in SIM 1 are grouped more in a column than in a crowd which means
that they don’t obstruct each other too much. This results in a constant flow and
hence a faster evacuation.
The evacuation of the Airbus A380 is shown in Figure 15. It showed up that the

19

Figure 15: A380 Simulation frame No. 120 and frame No. 236

center exits had to swallow the most passengers. The last passenger that leaves the
rear exit does that after 220 time steps while the last passenger over all leaves the
plane after 428 time steps through the second exit from the front.
By looking at frame No. 120 and 236 shown in Figure 15, one can see that a flight
attendant at a wide exit has hardly any effect, whereas a flight attendant at the sec-
ond exit from the front on the right really brings a benefit. The passengers leaving
the plane through this exit are faster than on the left side.

As already seen in the simulation of the Embraer 190, the flight attendants are the
most efficient if they were placed at bottle necks.

5.4.2 Hesitation at the exits

The question was raised whether the social force model is reliable to simulate the
situation in which passengers hesitate to jump down the slides at the exits. In nearly
all simulated situations, the most critical parts were not the exits themselves, but
the narrow corridors or corners. It showed up that the flow got slow always where
passengers of many rows had to leave through a narrow bottle neck. Even with
more hesitation time at exits meaning slower speed of passengers in yellow zones,
the problem kept at the narrow bottle necks. The social force model is suitable to

20

simulate this situation although it might be slightly different to the reality at the
exits. The much bigger problem showed up at narrow bottlenecks. Eventually, the
construction of the airplane seemed to be the much bigger problem then the aspect
of hesitation with respect to the efficiency of evacuation.

5.5 Comparison to real live experiments

If one analyzes the real live experiments made with an Airbus A380 (5) that there
are several diffrences to the resulted simulations.
Firstly, some of the personel in the experiment does not have a constant position as
in the simulation. Also there is an attendant at each exit preventing a "bottleneck"
situation. Further on, one can conclude that real live personal can intervene more
diversly than simulated staff.
But apart from the dynamic behaviour of the staff their influence is very similar to the
simulated one. Also the behaviour of the passengers diverges very little admittedly
with fewer influence as expected of social force attributes.

21

6 Summary and Outlook

6.1 Identification of parameters

The parameters mentiond in 5.1 can be further optimized to complete the model.
Further on, the implementation of individually behaviours of forces could lead to a
more realistic model.

6.2 Adapted social force

Another possible extention could a speed dependent social force model be. Similarly
to cars - where one also tries to have a free region of space in front of/around one to
feel comfortable in - the effect could weaken at increased speeds e.g. when fluently
driving on the autobahn fewer space is tolerated.

6.3 Simulation

The simulation showed that the social force model suits well for the simulation of an
airliner. The effect of hesitation at the exits was overestimated. It showed up that
the flow of people is mostly disturbed by bottle necks due to the construction of the
aircraft. If flight attendants were placed there, the flow could be optimised which
resulted in an overall better performance.
For further simulations, an interesting field of studies would be to perform tests with
different shapes of corridors and eliminated bottle necks. For airplane manufacturers,
there is always the balancing act between building jets carrying as many passengers
as possible and safety aspects.

6.4 Conclusions

Over all one can say that the fundamental questions raised in ?? were answerded by
running simulations described in ?? and in ??.
Also one refered to the expected results stated in ?? by comparing real live experi-
ments with the gained insigths of the simulation in 5.5. The analysis of the influence
of the personal is stated in section ??.

22

References

[1] D. Helbing, L. Buzna, A. Johansson, T. Werner. Self-Organized Pedestrian
Crowd Dynamics: Experiments, Simulations, and Design Solution. informs,
Germany, 2005

[2] Mohecine Chraibi. Systeme gewöhnlicher Differentialgleichungen zur Beschrei-
bung von Fussgängerdynamik. Diplomarbeit, Technische Universität Hamburg,
November 2008

[3] Picture Souce: http://www.wikipedia.ch

[4] Picture Souce: http://www.time.com

[5] http://www.youtube.com/watch?v=_gqWeJGwV_U&feature=related

23

A Research Plan

MATLAB	 FS11	 –	 Research	 Plan	
	
	
Document	 Version:	 2	 	
Group	 Name:	 lost	 pedestrians	
Group	 participants	 names:	 Bühler	 Lukas,	 Heer	 Philipp	
	
	
COMMENTS:	
	

• Overall,	 the	 plan	 is	 interesting	 and	 well	 structured.	 It	 tries	 to	 answer	 more	
real-‐world,	 rather	 than	 fundamental	 questions,	 but	 it	 is	 perfectly	 fine.	

• The	 only	 thing	 tyou	 could	 add	 is	 an	 explicit	 reference	 to	 the	 benchmarks	 you	
want	 to	 validate	 your	 model	 against	 (eg.	 the	 90	 seconds?)	

	
General	 Introduction	
	
In	 January	 2009	 an	 Airbus	 was	 forced	 to	 land	 in	 the	 Hudson	 River	 in	 New	 York.	 At	
this	 event	 150	 persons	 had	 to	 leave	 the	 plane	 before	 it	 sank	 to	 the	 ground	 of	 the	
river.	 	
In	 this	 project	 the	 evacuation	 of	 airplanes	 is	 analyzed.	 After	 a	 crash	 it	 is	 possible	 for	
an	 airplane	 to	 explode	 due	 to	 ignited	 fuel	 or	 after	 a	 water	 landing	 to	 sink.	 During	
such	 an	 emergency	 situation	 it	 is	 important	 to	 evacuate	 all	 passengers	 and	 crew	
members	 of	 an	 airplane	 in	 a	 very	 short	 amount	 of	 time	 in	 order	 to	 maintain	 their	
survival.	
Evacuation	 scenarios	 were	 studied	 before.	 Emerging	 fires	 or	 earthquakes	 lead	 to	
similar	 situations	 in	 buildings.	 Even	 the	 evacuation	 of	 airplanes	 has	 already	 been	
researched	 because	 hundreds	 of	 lives	 could	 be	 at	 stake.	 The	 “International	 Civil	
Aviation	 Organization”	 (ICAO)	 limited	 the	 maximum	 time	 of	 evacuation	 to	 90	
seconds	 for	 each	 plane.	 This	 time	 reference	 has	 to	 be	 proved	 by	 each	 manufacturer	
before	 a	 plane	 can	 go	 into	 service.	 	 	
	
	
Fundamental	 Questions	
	
The	 aim	 is	 to	 implement	 the	 social	 force	 model	 and	 to	 simulate	 the	 evacuation	 of	 an	
airplane.	 In	 specific,	 the	 following	 question	 should	 be	 answered:	

1) Is	 this	 model	 suitable	 for	 the	 evacuation	 situation	 of	 an	 airplane	 or	 should	
there	 be	 done	 changes	 in	 order	 to	 get	 reliable	 results?	 Example:	 Do	 people	
hesitate	 to	 jump	 down	 the	 slides	 at	 the	 exits	 and	 does	 the	 social	 force	 model	
fail	 there?	 	

2) Could	 suitable	 instructions	 of	 the	 cabin	 personal	 be	 simulated	 in	 the	 model	
and	 how	 does	 it	 affect	 the	 performance	 of	 the	 scenario?	

	

24

	
Expected	 Results	
	

1) There	 is	 data	 of	 evacuation	 experiments	 with	 real	 aircrafts	 available.	 This	
will	 help	 to	 verify	 and	 test	 the	 model.	 The	 answer	 of	 the	 question	 will	 be	 the	
confirmation	 of	 the	 test	 results	 by	 the	 model	 or	 a	 succession	 to	 improve	 the	
model.	 If	 there	 are	 differences	 of	 our	 model	 to	 the	 original	 social	 force	 model,	
they	 should	 be	 pointed	 out	 and	 explained.	

2) We	 expect	 the	 instructions	 of	 the	 personal	 to	 be	 a	 positive	 effect	 on	
performance.	 To	 simulate	 this,	 there	 will	 be	 changes	 in	 the	 original	 social	
force	 model.	

	
	
References	 	
	
Paper	 provided	 by	 the	 course:	 Self-‐Organized	 Pedestrian	 Crowd	 Dynamics:	
Experiments,	 Simulations,	 and	 Design	 Solutions	
	
Diplomarbeit	 TU	 Hamburg:	 Systeme	 gewöhnlicher	 Differentialgleichungen	 zur	
Beschreibung	 von	 Fußgängerdynamik,	 Mohcine	 Chraibi	 2008	
	
	
	
Research	 Methods	
	
Continuous	 Modeling	 by	 implementing	 the	 social	 force	 model.	
	
The	 model	 time	 step	 dt	 will	 be	 defined.	 The	 performance	 of	 the	 model	 will	 be	
measured	 by	 counting	 the	 time	 steps.	 By	 counting	 the	 amount	 of	 time	 steps,	 the	
model	 is	 validated	 relatively	 and	 can	 not	 be	 compared	 to	 a	 real	 time	 value.	
Nevertheless,	 this	 allows	 us	 to	 compare	 adaptations	 of	 our	 model.	
	

25

B Matlab program code

B.1 pedest.m

26.05.11 14:42 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\pedest.m 1 of 4

%Lecture with Computer Exercises
%Modelling and Simulating Social Systems

%Projects: Pedestrian Dynamics
%Lukas Bühler Heer Philipp
%file: pedest.m

%run matrix description
 run init

 mov1 = avifile('planeS_1new.avi');

%time loop
for t=0:dt:T
 %reset seen phy_, obi_& soc_forces
 pasMat(1:NrOfpassenger,8:11)=0;
 pasMat(1:NrOfpassenger,17:20)=0;

 %passenger loop
 for i=1:NrOfpassenger
 if pasMat(i,3)==1

 %calculation integer matrix indices
 xint=real(int16(pasMat(i,1)));
 yint=real(int16(pasMat(i,2)));
 %errorcatcher
 if xint<=0 || xint >= n || yint <=0 || yint >=m
 pasMat(i,3)=0;
 end
 end
 if pasMat(i,3)==1
 %passenger in exit-area
 if f(yint,xint)==Inf || f(yint+1,xint)==Inf ||f(yint-1,xint)==Inf || f(yint+2,xint)==Inf ||f(yint-2,xint)==Inf
 pasMat(i,3)=0;
 pasMat=sortrows(pasMat,3);
 passengerfleed=passengerfleed+1;
 end

 %passenger in "about to leave the plane"-area
 if f(yint,xint)==3 && crewflee==0
 pasMat(i,12)=FX(yint,xint)*fear_force_factor;
 pasMat(i,13)=FY(yint,xint)*fear_force_factor;

 %passenger in flightattendant-area
 elseif f(yint,xint)==6 && crewflee==0
 pasMat(i,12)=FX(yint,xint)*flee_force_factor;
 pasMat(i,13)=FY(yint,xint)*flee_force_factor;

 %passenger in no special area
 else
 pasMat(i,12)=FX(yint,xint)*force_factor;
 pasMat(i,13)=FY(yint,xint)*force_factor;
 end

26

26.05.11 14:42 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\pedest.m 2 of 4

 e_a=pasMat(i,12:13)/norm(pasMat(i,12:13)+[epsilon 0]);

 %influence of other passenger
 for j=1:NrOfpassenger
 if i~=j && pasMat(j,3)==1
 fv=[pasMat(i,1)-pasMat(j,1);pasMat(i,2)-pasMat(j,2)];
 if norm(fv)<pas_soc_influence_area
 n_ab=(pasMat(i,1:2)-pasMat(j,1:2))./norm(pasMat(j,1:2)-pasMat(i,1:2));

 %calculation f_phy
 if norm(fv)<pas_phy_influence_area
 pasMat(i,8:9)=pasMat(i,8:9)+A_phy*exp((1-norm(pasMat(i,1:2)-pasMat(j,1:2)))/B_phy).*n_ab;
 end

 %calculation f_soc
 %phi_alphabeta = angle between passenger i and j
 phi_alphabeta=acos(dot(e_a,n_ab));
 pasMat(i,10:11)=pasMat(i,10:11)+((lamda+(1-lamda)*(1+cos(phi_alphabeta))/2))*A_soc*exp(1-norm
(pasMat(i,1:2)-pasMat(j,1:2))/B_soc).*n_ab;
 end
 end
 end

 %influence of wall_objects
 for j=1:NrOfObi
 %fv=vector between pas and wallelement
 fv=[pasMat(i,1)-obiMat(j,1);pasMat(i,2)-obiMat(j,2)];

 if norm(fv)<wall_influence_area
 wall_force=A_wall*exp(-norm(fv)/B_wall);

 if abs(obiMat(j,19))< abs(obiMat(j,20)) % wall in y-direction
 if obiMat(j,20)==[2.2] %only a wallelem above
 if pasMat(i,2)< obiMat(j,2)
 pasMat(i,12)=pasMat(i,12)+3*FX(yint-1,xint)*force_factor;
 else
 pasMat(i,17)=pasMat(i,17)+1.5*sign(fv(1))*wall_force;
 end
 pasMat(i,18)=-100;

 elseif obiMat(j,20)==[-3.3] %only a wallelem below
 if pasMat(i,2) > obiMat(j,2)
 pasMat(i,12)=pasMat(i,12)+3*FX(yint+1,xint)*force_factor;
 else
 pasMat(i,17)=pasMat(i,17)+1.5*sign(fv(1))*wall_force;
 end
 pasMat(i,18)=100;

 else
 pasMat(i,17)=pasMat(i,17)+1.5*sign(fv(1))*wall_force;
 end

 else % wall in x-direction

27

26.05.11 14:42 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\pedest.m 3 of 4

 if obiMat(j,19)==[2.2] %only a wallelem on the rigth
 if pasMat(i,1)< obiMat(j,1)
 pasMat(i,13)=pasMat(i,13)+3*FY(yint,xint-1)*force_factor;
 else
 pasMat(i,18)=pasMat(i,18)+1.5*sign(fv(2))*wall_force;
 end
 pasMat(i,17)=-100;

 elseif obiMat(j,19)==[-3.3] %only a wallelem on the left
 if pasMat(i,1) > obiMat(j,1)
 pasMat(i,13)=pasMat(i,13)+3*FY(yint,xint+1)*force_factor;

 else
 pasMat(i,18)=pasMat(i,18)+1.5*sign(fv(2))*wall_force;
 end
 pasMat(i,17)=100;

 else
 pasMat(i,18)=pasMat(i,18)+1.5*sign(fv(2))*wall_force;
 end
 end
 break;%only look at one wall-obj
 end
 end

 else
 pasMat(i,8:15)=0;
 pasMat(i,4:5)=0;
 end
 end

 %calculate f_tot
 pasMat(1:NrOfpassenger,14:15)=(pasMat(1:NrOfpassenger,8:9)+pasMat(1:NrOfpassenger,10:11)+...
 pasMat(1:NrOfpassenger,12:13)+pasMat(1:NrOfpassenger,17:18)+pasMat(1:NrOfpassenger,19:20));

 %calculate x'' and x'
 pasMat(1:NrOfpassenger,4:5)=dt.*pasMat(1:NrOfpassenger,14:15)./[pasMat(1:NrOfpassenger,16) pasMat(1:
NrOfpassenger,16)];

 %calculate x
 pasMat(1:NrOfpassenger,6:7)=pasMat(1:NrOfpassenger,1:2);
 pasMat(1:NrOfpassenger,7)=pasMat(1:NrOfpassenger,7)+epsilon;
 pasMat(1:NrOfpassenger,1:2)=dt.*pasMat(1:NrOfpassenger,4:5)+pasMat(1:NrOfpassenger,1:2);
 pasMat(1:NrOfpassenger,4)=pasMat(1:NrOfpassenger,4)+epsilon;
 allMat=[pasMat;obiMat2];

 %newplot
 plot(allMat(NrOfpassenger+1:NrOfpassenger+NrOfObi2,1),allMat(NrOfpassenger+1:NrOfpassenger+NrOfObi2,
2),'.k','MarkerSize', 20);
 hold on
 plot(exiMat(:,1),exiMat(:,2),'.r','MarkerSize', 20);
 plot(allMat(1+passengerfleed:NrOfpassenger,1),allMat(1+passengerfleed:NrOfpassenger,2),'.bl','MarkerSize', 30);
 xlim([000 n]);
 ylim([0 m]);

28

26.05.11 14:42 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\pedest.m 4 of 4

 %handle movie
 FF1 = getframe(gca);
 mov1=addframe(mov1,FF1);

 clf('reset')

 %if all passengers are gone -> allow crew to flee
 if sum(pasMat(1:NrOfpassenger,3))==0
 break;
 end
end
%end movie
mov1=close(mov1);

29

B.2 init.m
26.05.11 14:49 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\init.m 1 of 3

%Lecture with Computer Exercises
%Modelling and Simulating Social Systems

%Projects: Pedestrian Dynamics
%Lukas Bühler Heer Philipp
%file: init.m

%Init
clear all;
clc

%variable definition
pas_phy_influence_area=3;
pas_soc_influence_area=10;
att_soc_influence_area=10;
A_phy=80;
A_soc=40;
A_wall=1000;
B_phy=1;
B_soc=2;
B_wall=.5;
lamda=0.2;
dt=0.3;
epsilon=1e-10;
T=200/dt;
wall_influence_area=1.2;
wallrelevance_area=10;
heavy=1e10;
fear_force_factor=20;
force_factor=40;
flee_force_factor=60;
walelem=1;
paselem=1;
exielem=1;
crewflee=0;
passengerfleed=0;
gone=0;

%allocation of matrices
pasMat=zeros(10,20);
obiMat=zeros(700,20);
obiMat2=[];

%read picture/generate forcefield
 f = getFile();
[FX,FY]=computeGradientField1(f);
[m n]=size(FX);

%integration into matrices
for mm=1:m
 for nn=1:n
 %pas integration
 if f(mm,nn)==2;
 pasMat(paselem,2)=mm;

30

26.05.11 14:49 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\init.m 2 of 3

 pasMat(paselem,1)=nn;
 paselem=paselem+1;
 end

 %wall integration
 if f(mm,nn)==0;
 obiMat(walelem,2)=mm;
 obiMat(walelem,1)=nn;
 walelem=walelem+1;
 end
 %exit integration
 if f(mm,nn)==Inf;
 exiMat(exielem,2)=mm;
 exiMat(exielem,1)=nn;
 exielem=exielem+1;
 end
 end
end

%IT'S ALIVE MUAHAHAH!!
pasMat(:,3)=1;

%'previous' place
pasMat(:,6)=pasMat(:,1);
pasMat(:,7)=pasMat(:,2)+epsilon;
pasMat(:,4)=epsilon;
[NrOfpassenger entries]=size(pasMat);
[NrOfObi Obientries]=size(obiMat);
%random weigth
pasMat(:,16)=unidrnd(70,NrOfpassenger,1)+50;
obiMat(:,16)=heavy;

%set walldirection
for mn=2:NrOfObi

 %there is a wallelem above
 if f(obiMat(mn,2)+1,obiMat(mn,1))==0
 obiMat(mn,20)=[2.2];
 end
 %there is a wallelem below
 if f(obiMat(mn,2)-1,obiMat(mn,1))==0
 obiMat(mn,20)=obiMat(mn,20)-3.3;
 end
 %there is a wallelem on the rigth
 if f(obiMat(mn,2),obiMat(mn,1)+1)==0
 obiMat(mn,19)=[2.2];
 end
 %there is a wallelem on the left
 if f(obiMat(mn,2),obiMat(mn,1)-1)==0
 obiMat(mn,19)=obiMat(mn,19)-3.3;
 end
end

31

26.05.11 14:49 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\init.m 3 of 3

%simplify obiMat -> leave out useless wall elements
for j=1:exielem-1
 obiMat1=obiMat;
 [NrOfObi Obientries]=size(obiMat);
 gone=0;
 for i=1:NrOfObi
 fv=abs([obiMat1(i-gone,1)-exiMat(j,1);obiMat1(i-gone,2)-exiMat(j,2)]);
 NrOfObi=NrOfObi-gone;
 if abs(obiMat1(i-gone,19)) > abs(obiMat1(i-gone,20))
 if abs(norm(fv)) > wallrelevance_area
 obiMat1(i-gone,:)=[];
 gone=gone+1;
 end
 end
 end
 obiMat2=[obiMat2;obiMat1];
end

obiMat3=unique(obiMat2,'rows');
clear obiMat2;

[NrOfObi Obientries]=size(obiMat);
for i=1:NrOfObi
 if abs(obiMat(i,19)) > abs(obiMat(i,20))
 if obiMat(i,2) < 7 || obiMat(i,2) > m-7
 else
 obiMat3=[obiMat3;obiMat(i,:)];
 end
 end
end
obiMat2=obiMat;
obiMat=obiMat3;
clear obiMat4;
clear obiMat1;
clear obiMat3;
[NrOfObi Obientries]=size(obiMat);
[NrOfObi2 Obientries2]=size(obiMat2);

32

B.3 getFile.m

24.05.11 08:48 /Users/lukasbuehler/ETH/Sem2/Simulat.../getFile.m 1 of 1

function [F] = getFile()
%getFile: Convertion of an bmp image to a matrix
% This function converts a bmp file to a matrix and returns it. There
are
% only the following colors with their corresponding interpretation
% allowed:
%
% Color Hex triplet Description
% White FFFFFF Space in which the passengers can freely
% walk
% Black 000000 Walls
% Red FF0000 Emergency exit
% Blue 0000FF Every blue pixel is recognised as a
% pessanger
% Light green 00FF00 Every light green pixel is recognised as
a
% flight attendant
% Dark green 009900 Zone which is influenced by the flight
% attendant
% Yellow FFFF00 Special zones, in which pessangers
% struggle to continue walking
%
% The output matrix contains the following entries:
% 0=wall, 1=space, 2=passenger, 3=hesitation area, 4=flightattendant,
% 6=flightattendantarea, Inf=emergency exit

exit=0;
while exit==0
 [FileName,PathName] = uigetfile(’*.bmp’, ’Select a Bitmap File’)
 I=imread(strcat(PathName,FileName));
 exit=1;
 if (find(I>6))
 exit=0;
 uiwait(msgbox(’Wrong file’));
 end
end

space=find(I==5);
goSlow=find(I==4);
exit=find(I==2);
passenger=find(I==1);
flightattendant=find(I==3);
flightattendantarea=find(I==6);
wall=find(I==0);
[n,m]=size(I);
F=zeros(n,m);
F(space)=1;
F(goSlow)=3
F(exit)=Inf;
F(passenger)=2;
F(flightattendant)=4;
F(wall)=0;
F(flightattendantarea)=6;
F=flipud(F)

end

33

B.4 gradient_special.m

24.05.11 09:14 /Users/lukasbuehler/ETH/Sem.../gradient_special.m 1 of 4

function [FFX FFY] = gradient_special(M)
%GRADIENT_SPECIAL Special gradient function which excludes matrix entries
%which are Inf
% Input is a matrix m with a potential field and Inf entries
representing
% walls. This function generates a vector field representing the
gradient
% field of m, but ignores all Inf entries.
[a b]=size(M);

FX=zeros(a,b);
FY=zeros(a,b);
caseX=0;
caseY=0;

%Cases: W=Wall °=Point to be handled
% 1. W ° W
% 2. W ° °

for m = 1:a %y direction
 for n = 1:b %x direction

 %X Direction
 if (M(m,n)~=Inf) %Point is no wall element
 if(n>1 && n<b) %No element at the boarder of the matrix
 if(M(m,n 1)==Inf && M(m,n+1)==Inf)
 caseX=1;
 elseif (M(m,n 1)==Inf)
 caseX=2;
 elseif (M(m,n+1)==Inf)
 caseX=3;
 else
 caseX=4;
 end
 elseif (n<b) %Element at the lower boarder of the matrix
 if(M(m,n+1)==Inf)
 caseX=1;
 else
 caseX=2;
 end
 else %Element at the upper boarder of the matrix
 if(M(m,n 1)==Inf)
 caseX=1;
 else
 caseX=3;
 end
 end

 else %Point is a wall element
 if(n>1 && n<b) %No element at the boarder of the matrix
 if(M(m,n 1)==Inf && M(m,n+1)==Inf)
 caseX=5;
 elseif (M(m,n 1)==Inf)
 caseX=6;
 elseif (M(m,n+1)==Inf)
 caseX=7;
 else
 caseX=8;

34

24.05.11 09:14 /Users/lukasbuehler/ETH/Sem.../gradient_special.m 2 of 4

 end
 elseif (n<b) %Element at the lower boarder of the matrix
 if(M(m,n+1)==Inf)
 caseX=5;
 else
 caseX=6;
 end
 else %Element at the upper boarder of the matrix
 if(M(m,n 1)==Inf)
 caseX=5;
 else
 caseX=7;
 end
 end

 end

 switch caseX
 case 1
 FX(m,n)=0;
 case 2
 FX(m,n)=(M(m,n) M(m,n+1));
 case 3
 FX(m,n)=(M(m,n 1) M(m,n));
 case 4
 FX(m,n)=(M(m,n 1) M(m,n+1))/2;
 case 5
 FX(m,n)=0;
 case 6
 FX(m,n)=0;
 case 7
 FX(m,n)=0;
 case 8
 FX(m,n)=0;
 end

 %FX(m,n)=caseX;

 %Y Direction
 if (M(m,n)~=Inf) %Point is no wall element
 if(m>1 && m<a) %No element at the boarder of the matrix
 if(M(m 1,n)==Inf && M(m+1,n)==Inf)
 caseY=1;
 elseif (M(m 1,n)==Inf)
 caseY=2;
 elseif (M(m+1,n)==Inf)
 caseY=3;
 else
 caseY=4;
 end
 elseif (m<a) %Element at the lower boarder of the matrix
 if(M(m+1,n)==Inf)
 caseY=1;
 else
 caseY=2;
 end

35

24.05.11 09:14 /Users/lukasbuehler/ETH/Sem.../gradient_special.m 3 of 4

 else %Element at the upper boarder of the matrix
 if(M(m 1,n)==Inf)
 caseY=1;
 else
 caseY=3;
 end
 end

 else %Point is a wall element
 if(m>1 && m<a) %No element at the boarder of the matrix
 if(M(m 1,n)==Inf && M(m+1,n)==Inf)
 caseY=5;
 elseif (M(m 1,n)==Inf)
 caseY=6;
 elseif (M(m+1,n)==Inf)
 caseY=7;
 else
 caseY=8;
 end
 elseif (m<a) %Element at the lower boarder of the matrix
 if(M(m+1,n)==Inf)
 caseY=5;
 else
 caseY=6;
 end
 else %Element at the upper boarder of the matrix
 if(M(m 1,n)==Inf)
 caseY=5;
 else
 caseY=7;
 end
 end

 end

 switch caseY
 case 1 % W ° W
 FY(m,n)=0;
 case 2 % W ° °
 FY(m,n)=(M(m,n) M(m+1,n));
 case 3 % ° ° W
 FY(m,n)=(M(m 1,n) M(m,n));
 case 4 % ° ° °
 FY(m,n)=(M(m 1,n) M(m+1,n))/2;
 case 5 % I I I
 FY(m,n)=0;
 case 6 % I I °
 FY(m,n)=0;
 case 7 % ° I I
 FY(m,n)=0;
 case 8 % ° I °
 FY(m,n)=0;
 end
 % Current Point: ° Wall: W Infinity:I

 %FX(m,n)=caseX;

36

24.05.11 09:14 /Users/lukasbuehler/ETH/Sem.../gradient_special.m 4 of 4

 end
end

%Normalization of the vector length
[a,b]=size(FX);

for m = 1:a
 for n = 1:b
 if (FX(m,n)~=0 && FY(m,n)~=0)
 FFX(m,n)=(FX(m,n)/(sqrt(FX(m,n)^2+FY(m,n)^2)));
 FFY(m,n)=(FY(m,n)/(sqrt(FX(m,n)^2+FY(m,n)^2)));
 elseif(FX(m,n)~=0)
 FFX(m,n)=(FX(m,n)/abs(FX(m,n)));
 FFY(m,n)=0;
 elseif(FY(m,n)~=0)
 FFX(m,n)=0;
 FFY(m,n)=(FY(m,n)/abs(FY(m,n)));
 end
 end
end

end

37

B.5 computeGradientField1.m
24.05.11 09:32 /Users/lukasbuehler/ET.../computeGradientField1.m 1 of 1

function [FX, FY] = computeGradientField1(F)
%UNTITLED2 This function computes the shortest path from every point to
the
%next emergency exit.
% The input matrix F contains a space described in the file getFile.m.
% This function calculates a vector field containing the shortest path
% from every point in the space to the next emergency exit.

%Find the Exits
[rowE,colE,v] = find(F==Inf);

%Create a new Space with only 1(Space) and 0(Wall) as entries
[sx,sy]=size(F);
NewF=ones(sx,sy);
Wall=find(F==0);
NewF(Wall)=0;

Exits(1,:)=rowE’;
Exits(2,:)=colE’;

options.nb_iter_max = Inf;
[D,S] = perform_fast_marching(NewF, Exits, options);
[FX,FY] = gradient_special(D);

D(D==Inf)=0; % Make infinity entries of D to 0

%Plot Contour
contour(D);
hold on;

%Plot Vectorfield
quiver(FX,FY,0.1);
hold on;

%Plot Walls
[rowW,colW,v] = find(NewF==0);
for n=1:1:size(rowW)
 h = plot(colW(n),rowW(n), ’.b’); set(h, ’MarkerSize’, 10);
end

%Plot Exits
for n=1:1:size(rowE)
 h = plot(colE(n),rowE(n), ’.r’); set(h, ’MarkerSize’, 20);
end

end

38

