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1 Individual contributions

The following Tasks were performed:

Task Responsibility
Converting image files to matrices (file getFile.m) Lukas Bühler
Redrawing of seating plans Lukas Bühler
Generation of the vector field containing the short-
est path to an emergency exit (file computeGradient-
Field1.m)

Lukas Bühler

Analysis of the simulation results with different posi-
tions of the flight attendants

Lukas Bühler

Calculation of acting forces on passengers (file pedest.m) Philipp Heer
Programming of Simulation-Algorithm (file pedest.m) Philipp Heer
Converting matrices from getFile.m into a usable form
(file init.m)

Philipp Heer

Analysis of the simulation results with parameters Philipp Heer
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2 Introduction and Motivations

Figure 1: Evacuation of an Airbus A320 after the successful emergency landing in the
Hudson River, Source: (3)

In January 2009 an Airbus was forced to land in the Hudson River in New York. At
this event 150 persons had to leave the plane before it sank to the ground of the river.
In this project the evacuation of airplanes is analyzed. After a crash it is possible
for an airplane to explode due to ignited fuel or after a water landing to sink. Dur-
ing such an emergency situation it is important to evacuate all passengers and crew
members of an airplane in a very short amount of time in order to maintain their
survival. Evacuation scenarios were studied before. Emerging fires or earthquakes
lead to similar situations in buildings. Even the evacuation of airplanes has already
been researched because hundreds of lives could be at stake. The International Civil
Aviation Organization (ICAO) limited the maximum time of evacuation to 90 sec-
onds for each plane. This time reference has to be proved by each manufacturer
before a plane can go into service.

Especially the newer airplaes have even higher decks than older ones. This raises
the question whether people fear to jump down the slides in an emergency situation.
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Is there a psychological aspect that is not answered by normal pedestrian dynamics
adapted on the space of an airplane in an emergency situation? This question led to
the fundamental questions for this Project:

2.1 Fundamental Questions:

Is this model suitable for the evacuation situation of an airplane or should there be
done changes in order to get reliable results? Example: Do people hesitate to jump
down the slides at the exits and does the social force model fail there?

Could suitable instructions of the cabin personal be simulated in the model and
how does it affect the performance of the scenario?

2.2 Expected Results

There is data of evacuation experiments with real aircrafts available. This will help
to verify and test the model. The answer of the question will be the confirmation
of the test results by the model or a succession to improve the model. If there are
differences of our model to the original social force model, they should be pointed
out and explained.

We expect the instructions of the personal to be a positive effect on performance.
To simulate this, there will be changes in the original social force model.

2.3 Research Methods

Continuous Modeling by implementing the social force model.
The model time step dt will be defined. The performance of the model will be mea-
sured by counting the time steps. By counting the amount of time steps, the model
is validated relatively and can not be compared to a real time value. Nevertheless,
this allows us to compare adaptations of our model.
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3 Description of the Model

It was the aim to implement an easy adaptable model of an aircraft in which the
simulations of pedestrian dynamics in an emergency situation could be performed.
Therefore, a slightly reworked seat plan image of the airplane can be imported into
Matlab to generate the environment of the simulation. Walls, space, passengers,
flight attendants, emergency exits and special zones are drawn with different colors
in this image. Matlab first generates the shortest path from every point to an exit
and generates therefore a vector field in the space of the airplane. Every passenger
basically follows this path to the next emergency exit from his position.

The main simulation is then performed with a implementation of the social force
model described in (1).

During a simulation passengers interact with each other and can therefore not follow
the shortest path given by the vector field. These interacting forces consist of basi-
cal phisical principles (e.g. that passengers cannot walk through walls or that two
passengers cannot stand too close to each other) and social interactions which are
introduces because generally persons try to have a free region of space around them
to feel comfortable.

Figure 2: Outputframe of a simulation
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4 Implementation

The whole program is gouped into two major parts as shown in Figure 3. First the
init.m file is executed in which the airplane picture can be choosen and the path
finding algorithm runs. Also each a matrice for the passengers, the flightattendants
and the wallobjects is generated. Secondly, the pedest.m file computes the time it-
eration and generates the output.

Figure 3: Flow chart of the initialization file (init.m) and the time iteration file (pedest.m)
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4.1 Initialisation

On initialization, the space for the simulation containing walls, exits, passengers,
special areas and the vector field with the shortest path is generated. These processes
are separated in different matlab files. First, an image file is loaded and processed by
the file getFile.m. It generates a matrix. In the computeGradientField1.m file, this
matrix is searched for walls and exits and the shortest path from every point to the
next exit is generated in a vector field. The passengers in the following simulation
basically follow this field.

4.1.1 Importing an airplane Model

There are many so called seating plans of aircrafts available on the internet. They
are mostly provided by airlines for their customers in order to choose a seat while
booking. Those images are used to generate a realistic model of the environment in a
short time in order to perform many simulations with different shapes and conditions
of the environment. Adobe Fireworks was used to rework the seating plan. Figure 4
shows a seating plan and the reworked image to import into Matlab. Matlab offers
functions to convert an image file into a matrix with every entry representing a pixel
of the image.

Figure 4: Airplane seating plan and reworked image file to import into Matlab

The image file (bitmap) must contain the in Figure 5 listed colors in order to recog-
nise the different regions.

In the getFile.m file, every blue pixel is recognised als a passenger at its start position.
The dark green zone is influenced positively by a flight attendant. In yellow areas,

11



Color Hex triplet Description
White FFFFFF Space in which the passengers can freely walk
Black 000000 Walls
Red FF0000 Emergency exit (drain which attracts the passengers)
Blue 0000FF Every blue pixel is recognised as a passenger
Dark green 009900 Zone which is influenced by the flight attendant
Yellow FFFF00 Area in which pessangers struggle to continue walking

Figure 5: Colors of the image file and their meaning

passengers walk slower because they struggle to jump down the emergency slides.
The output of getFile.m is a matrix which contains different numbers for walls,
space, exits, passengers and zones.

4.1.2 Path finding algorithm

Every passenger must be guided along the shortest way to the next emergency exit.
A vector field has to be found to get the direction to the next exit at every point of
the space. Therefore, a fast marching algorithm is used which calculates the distance
between every point and the next exit around every obstacle. Hence the problem of
finding the shortest way between two points in space is similar to wave propagation
problems or spreading fluid, there could be found a suitable implementation in the
internet. A toolbox was found from Mathworks.
http://www.mathworks.com/matlabcentral/fileexchange/6110
The fast marching algorithm generates a potential field in the space, which contains
the distance of every point to the next drain (emergency exit).

Figure 6: Developement of the vector field containing the shortest path to the next emer-
gency exit
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Figure 6 shows the generation of the vector field with the shortest path to an exit.
The first image is the image file imported into Matlab with space (white), drain
(emergency exit, red) and walls (black). With the fast marching algorithm a poten-
tial field is generated. Red represents the closest region to the exit and blue is the
furthest. Via the calculation of the gradient of this potential field, the vector field in
the right image is generated. The arrows point in the direction of the shortest path
from every point to the emergency exit.

For the calculation of the gradient field, the matlab function gradient_special.m was
written. The standard Matlab function gradient(X) could not have been used because
of the exeptions it had to consider for walls. The function gradient(X) considers the
whole matrix and calculates wrong values next to walls, because the distance entry
of a wall is 0 in the matrix.
At the end of the calculation, all vectors are normalized to a constant length of 1
because only their direction is being used.

Figure 7 shows the fast marching algorithm applied on an imported aircraft model.
It is assumed that the way to the emergency exit in an aircraft is marked so that
a passenger always takes the nearest exit from his seat. With this assumption, the
fast marching algorithm suits for generating the vector field in an airplane.

Figure 7: Visualized matrix that contains the distance to the next emergency exit in a
Boeing 737
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4.2 Running Simulation

After the initialisation the simulation beginns to run until every passenger has es-
caped the airplane.Each iteration step can be devided into three groups.
First - for each passenger - its actual position is analized. If it is in a zone which is
influenced by a flight attendant it will behave differently from being in an area close
to an exit. If the passenger is in an exit area it will be taken out of the simulation
and is "free".
Secondly, the new position is calculated. For that wall elements and other passengers
close to it self are looked at.

4.2.1 Generation of Interaction forces

These forces are divided into three parts. The first force to introduce is the so called
physical force. It allows each passenger to have an area of space in which no one
else can enter. It states for the body volume of a passenger. It is implemented as
exponential function which decays fast and only is taken into consideration if two
passengers are situated closer than one meter from each other.
Secondly, a social force is introduced which is over all weaker than the physical force
but it decays slower and has a radius of action of six meters. Furthermore it is not
isotrop. With an increasing variable λ the passanger reacts stonger to intrusions in
front of it than behind of it.
Basically both the physical and the social force base on the principle the force in-
creases the closer two passengers are together. This is achieved by using an expo-
nential approach:
For the physical force between passenger a and b applied to a

~F phy
a−b = Aphy

a · e
ra+rb−da−b

B
phy
a · ~na−b

is applied and for the social force

~F soc
a−b = (λ+ (1− λ)1 + cosφa−b

2
) · Asoc

a · e
ra+rb−da−b

Bsoc
a · ~na−b

holds true, where ~na−b =
~ra−~rb
||~ra−~rb||

. φa−b is the angle between ~na−b and the direction
of movment of a. Aa is the interaction strength and Ba the range of the interaction
force. Both Aa and Ba depend on a as these parameters depend on the passenger
e.g. on the size age, cultural background and so forth.
Figure 8 shows the equiforcelines of a passengers social force located at (0,0) headed
in y-direction with a λ < 1.
As a third essential element a force has to be introduced which unables passengers
to walk through walls. Whereas the forcefield generated by the pathfinder does not
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Figure 8: Unisotropic social force

point towards an obsticle as a wall but the other two mentioned forces could force a
passenger rigth through a wall. For that reason each passenger too close to a wall
element is pushed in normal direction to the orientation of the wall.
In a next step the new position of each passenger is calculated with Eulers Method
applied on Newtons Laws of Motion.

~Ftotal =
∑
i

~Fi = m · ~a = m · ~̈r ≈ m · ṙ(kT )− ṙ(T (k − 1))

dt

with ṙ(kT ) = r(kT )−r(T (k−1))
dt

; r(kT ) =
(
x(kT )

y(kT )

)
; k ∈ N and T = dt

After that the new positions are plotted and - if there are still passengers fleeing - a
next iteration is executed.

4.3 Output

In each time step the plotted passengerformation is as a frame added to a moviestream.
After the sumulation finished the result can be watched as ".avi"-moviefile.
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5 Simulation Results and Discussion

For the sake of analyzing diffrent scenarios in simulations the system is built up
(mostly) deterministic. The only random generated value is the weigth of each pas-
senger. A (more) real system would embody much more uncertanties. For example
the decay rate and the amplification of the social force would vary due to diffrent
cultural backgrounds or behaviours. This is similarly true for the parameter tuple for
the physical force where varying volumina of people would lead to varying parameters
but not necessarily corresponding masses.

5.1 Parameter identification

The aim of the first simulations was to figure out phisically correct parameters. And
there were alot of parameters to define among them obvious ones like the size of one
time step dt or the wheigthing of each force ~Fi. But on the other hand there are
such subtle parameters as the decay rates of the wall-, social-, and pysical-forces or
the radius of influence for these forces.
For a "smooth" simulation a small step size close to zero would be optimal. But
for the sake of computational effort a value of dt = 0.3 is choosen. Other variables
regarding smoothnes are decayrate of forces and radius of influence of these forces. If
a passenger enters an area of influence in which it suddently will experience a strong
change of forces, the passenger could behave "instable" in the sense of being pushed
through walls.
If those two tuples are set the other parameters can be choosen relarively freely.

5.2 Influence of Social force

The social force model was introduced to describe the behaviour of pedestrians on
pavement or in rooms. Airplanes could be considered very small rooms or better
corridors. Beforehand there was the concern that this force applied on alot of pas-
sengers concentrated in a small area could lead to an unnatural behaviour during
simulation. This turned out to be partially true.

As the social force tendencially unables a passenger to follow its shortest path to an
exit one can expect a longer lasting evacuation than whitout an implemented force.
Several runs of the simulation confirmed this.
The intoduction of the social force let also to a more "decent" behaviour of the
passengers. The passengers lined up in a row and fewer tries to overturn others were
attempted. This can be seen in Figure 9 and Figure 10.
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Figure 9: Simulation without social force

Figure 10: Simulation with social force

5.3 Simulated situations

There were different simulations performed to analyze and verify the model. Two
different airplanes were simulated: A smaller Embraer 190 with 100 passengers and
an Airbus 380. For the Airbus, only the lower economy class deck with 402 passengers
was simulated.
Usually, bigger aircrafts are more difficult to evacuate simply because of the many
passengers to be brought out of the airplane within the required 90 seconds. To see
the differences, the smaller Embrear 190 and the biggest passenger jet of the world,
the A380 were simulated.
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Figure 11: Embraer 190 and Airbus A380, Source: (4)

5.3.1 Airbus A380

Figure 12 shows the model of the Airbus A380. Flight attendants marked with
green were placed either at the exits or in the corridor. At the exits where no flight
attendant is, the area is marked yellow which means that passengers there hesitate
to jump and therefore walk slower within this area.

Figure 12: A380 Model

5.3.2 Embraer 190

For the model of the smaller Embraer 190, two simulations were performed. The
initial situation is shown in Figure 13. In the first simulation (SIM 1), the flight
attendants were placed in the corridor. For the second simulation (SIM 2), they
were placed next to the emergency exit on the left side of the plane. At exits where
no flight attendant is, the area is again marked yellow meaning that the passengers
walk slower there.
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SIM 1:

SIM 2:

Figure 13: Embraer 190 Model

5.4 Results

5.4.1 Positioning of the flight attendants

SIM 1 SIM 2

Evacuation time: 360 steps Evacuation time: 428 steps
Frame No. 108: Frame No. 108:

Figure 14: Embraer 190 results

Figure 14 compares the simulated situation for the Embraer 190. The simulation SIM
1 takes 360 steps compared to 428 steps for SIM 2. This means that the evacuation
takes about 1.4 times longer in SIM 2. The reason for that is obvious to see in Frame
108. The flow in SIM 1 is heavily improved by the presence of a flight attendant
in the corridor in the center of the plane. There are about 56 passengers willing to
leave the plane through the exits in the middle. The exits themselves are much wider
than the corridor of the plane. The most critical point is at the center of the plane
where passengers turn to the exits.
The presence of flight attendants optimises the flow at this point as seen in SIM 1.
The passengers in SIM 1 are grouped more in a column than in a crowd which means
that they don’t obstruct each other too much. This results in a constant flow and
hence a faster evacuation.
The evacuation of the Airbus A380 is shown in Figure 15. It showed up that the
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Figure 15: A380 Simulation frame No. 120 and frame No. 236

center exits had to swallow the most passengers. The last passenger that leaves the
rear exit does that after 220 time steps while the last passenger over all leaves the
plane after 428 time steps through the second exit from the front.
By looking at frame No. 120 and 236 shown in Figure 15, one can see that a flight
attendant at a wide exit has hardly any effect, whereas a flight attendant at the sec-
ond exit from the front on the right really brings a benefit. The passengers leaving
the plane through this exit are faster than on the left side.

As already seen in the simulation of the Embraer 190, the flight attendants are the
most efficient if they were placed at bottle necks.

5.4.2 Hesitation at the exits

The question was raised whether the social force model is reliable to simulate the
situation in which passengers hesitate to jump down the slides at the exits. In nearly
all simulated situations, the most critical parts were not the exits themselves, but
the narrow corridors or corners. It showed up that the flow got slow always where
passengers of many rows had to leave through a narrow bottle neck. Even with
more hesitation time at exits meaning slower speed of passengers in yellow zones,
the problem kept at the narrow bottle necks. The social force model is suitable to
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simulate this situation although it might be slightly different to the reality at the
exits. The much bigger problem showed up at narrow bottlenecks. Eventually, the
construction of the airplane seemed to be the much bigger problem then the aspect
of hesitation with respect to the efficiency of evacuation.

5.5 Comparison to real live experiments

If one analyzes the real live experiments made with an Airbus A380 (5) that there
are several diffrences to the resulted simulations.
Firstly, some of the personel in the experiment does not have a constant position as
in the simulation. Also there is an attendant at each exit preventing a "bottleneck"
situation. Further on, one can conclude that real live personal can intervene more
diversly than simulated staff.
But apart from the dynamic behaviour of the staff their influence is very similar to the
simulated one. Also the behaviour of the passengers diverges very little admittedly
with fewer influence as expected of social force attributes.
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6 Summary and Outlook

6.1 Identification of parameters

The parameters mentiond in 5.1 can be further optimized to complete the model.
Further on, the implementation of individually behaviours of forces could lead to a
more realistic model.

6.2 Adapted social force

Another possible extention could a speed dependent social force model be. Similarly
to cars - where one also tries to have a free region of space in front of/around one to
feel comfortable in - the effect could weaken at increased speeds e.g. when fluently
driving on the autobahn fewer space is tolerated.

6.3 Simulation

The simulation showed that the social force model suits well for the simulation of an
airliner. The effect of hesitation at the exits was overestimated. It showed up that
the flow of people is mostly disturbed by bottle necks due to the construction of the
aircraft. If flight attendants were placed there, the flow could be optimised which
resulted in an overall better performance.
For further simulations, an interesting field of studies would be to perform tests with
different shapes of corridors and eliminated bottle necks. For airplane manufacturers,
there is always the balancing act between building jets carrying as many passengers
as possible and safety aspects.

6.4 Conclusions

Over all one can say that the fundamental questions raised in ?? were answerded by
running simulations described in ?? and in ??.
Also one refered to the expected results stated in ?? by comparing real live experi-
ments with the gained insigths of the simulation in 5.5. The analysis of the influence
of the personal is stated in section ??.
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A Research Plan

MATLAB	  FS11	  –	  Research	  Plan	  
	  
	  
Document	  Version:	  2	  	  
Group	  Name:	  lost	  pedestrians	  
Group	  participants	  names:	  Bühler	  Lukas,	  Heer	  Philipp	  
	  
	  
COMMENTS:	  
	  

• Overall,	  the	  plan	  is	  interesting	  and	  well	  structured.	  It	  tries	  to	  answer	  more	  
real-‐world,	  rather	  than	  fundamental	  questions,	  but	  it	  is	  perfectly	  fine.	  

• The	  only	  thing	  tyou	  could	  add	  is	  an	  explicit	  reference	  to	  the	  benchmarks	  you	  
want	  to	  validate	  your	  model	  against	  (eg.	  the	  90	  seconds?	  )	  

	  
General	  Introduction	  
	  
In	  January	  2009	  an	  Airbus	  was	  forced	  to	  land	  in	  the	  Hudson	  River	  in	  New	  York.	  At	  
this	  event	  150	  persons	  had	  to	  leave	  the	  plane	  before	  it	  sank	  to	  the	  ground	  of	  the	  
river.	  	  
In	  this	  project	  the	  evacuation	  of	  airplanes	  is	  analyzed.	  After	  a	  crash	  it	  is	  possible	  for	  
an	  airplane	  to	  explode	  due	  to	  ignited	  fuel	  or	  after	  a	  water	  landing	  to	  sink.	  During	  
such	  an	  emergency	  situation	  it	  is	  important	  to	  evacuate	  all	  passengers	  and	  crew	  
members	  of	  an	  airplane	  in	  a	  very	  short	  amount	  of	  time	  in	  order	  to	  maintain	  their	  
survival.	  
Evacuation	  scenarios	  were	  studied	  before.	  Emerging	  fires	  or	  earthquakes	  lead	  to	  
similar	  situations	  in	  buildings.	  Even	  the	  evacuation	  of	  airplanes	  has	  already	  been	  
researched	  because	  hundreds	  of	  lives	  could	  be	  at	  stake.	  The	  “International	  Civil	  
Aviation	  Organization”	  (ICAO)	  limited	  the	  maximum	  time	  of	  evacuation	  to	  90	  
seconds	  for	  each	  plane.	  This	  time	  reference	  has	  to	  be	  proved	  by	  each	  manufacturer	  
before	  a	  plane	  can	  go	  into	  service.	  	  	  
	  
	  
Fundamental	  Questions	  
	  
The	  aim	  is	  to	  implement	  the	  social	  force	  model	  and	  to	  simulate	  the	  evacuation	  of	  an	  
airplane.	  In	  specific,	  the	  following	  question	  should	  be	  answered:	  

1) Is	  this	  model	  suitable	  for	  the	  evacuation	  situation	  of	  an	  airplane	  or	  should	  
there	  be	  done	  changes	  in	  order	  to	  get	  reliable	  results?	  Example:	  Do	  people	  
hesitate	  to	  jump	  down	  the	  slides	  at	  the	  exits	  and	  does	  the	  social	  force	  model	  
fail	  there?	  	  

2) Could	  suitable	  instructions	  of	  the	  cabin	  personal	  be	  simulated	  in	  the	  model	  
and	  how	  does	  it	  affect	  the	  performance	  of	  the	  scenario?	  
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Expected	  Results	  
	  

1) There	  is	  data	  of	  evacuation	  experiments	  with	  real	  aircrafts	  available.	  This	  
will	  help	  to	  verify	  and	  test	  the	  model.	  The	  answer	  of	  the	  question	  will	  be	  the	  
confirmation	  of	  the	  test	  results	  by	  the	  model	  or	  a	  succession	  to	  improve	  the	  
model.	  If	  there	  are	  differences	  of	  our	  model	  to	  the	  original	  social	  force	  model,	  
they	  should	  be	  pointed	  out	  and	  explained.	  

2) We	  expect	  the	  instructions	  of	  the	  personal	  to	  be	  a	  positive	  effect	  on	  
performance.	  To	  simulate	  this,	  there	  will	  be	  changes	  in	  the	  original	  social	  
force	  model.	  

	  
	  
References	  	  
	  
Paper	  provided	  by	  the	  course:	  Self-‐Organized	  Pedestrian	  Crowd	  Dynamics:	  
Experiments,	  Simulations,	  and	  Design	  Solutions	  
	  
Diplomarbeit	  TU	  Hamburg:	  Systeme	  gewöhnlicher	  Differentialgleichungen	  zur	  
Beschreibung	  von	  Fußgängerdynamik,	  Mohcine	  Chraibi	  2008	  
	  
	  
	  
Research	  Methods	  
	  
Continuous	  Modeling	  by	  implementing	  the	  social	  force	  model.	  
	  
The	  model	  time	  step	  dt	  will	  be	  defined.	  The	  performance	  of	  the	  model	  will	  be	  
measured	  by	  counting	  the	  time	  steps.	  By	  counting	  the	  amount	  of	  time	  steps,	  the	  
model	  is	  validated	  relatively	  and	  can	  not	  be	  compared	  to	  a	  real	  time	  value.	  
Nevertheless,	  this	  allows	  us	  to	  compare	  adaptations	  of	  our	  model.	  
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B Matlab program code

B.1 pedest.m

26.05.11 14:42 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\pedest.m 1 of 4

%Lecture with Computer Exercises
%Modelling and Simulating Social Systems
 
%Projects: Pedestrian Dynamics
%Lukas Bühler Heer Philipp  
%file: pedest.m
 
%run matrix description
 run init
 
 mov1 = avifile('planeS_1new.avi');
 
%time loop
for t=0:dt:T
    %reset seen phy_, obi_& soc_forces
    pasMat(1:NrOfpassenger,8:11)=0;
    pasMat(1:NrOfpassenger,17:20)=0;
    
    %passenger loop
    for i=1:NrOfpassenger
        if  pasMat(i,3)==1
            
        %calculation integer matrix indices
        xint=real(int16(pasMat(i,1)));  
        yint=real(int16(pasMat(i,2)));
        %errorcatcher
        if xint<=0 || xint >= n || yint <=0 || yint >=m
            pasMat(i,3)=0;
        end
        end
        if  pasMat(i,3)==1
        %passenger in exit-area
        if  f(yint,xint)==Inf || f(yint+1,xint)==Inf ||f(yint-1,xint)==Inf || f(yint+2,xint)==Inf ||f(yint-2,xint)==Inf
            pasMat(i,3)=0;
            pasMat=sortrows(pasMat,3);
            passengerfleed=passengerfleed+1;
        end
        
        %passenger in "about to leave the plane"-area              
        if f(yint,xint)==3 && crewflee==0
            pasMat(i,12)=FX(yint,xint)*fear_force_factor;
            pasMat(i,13)=FY(yint,xint)*fear_force_factor;
        
        %passenger in flightattendant-area
        elseif f(yint,xint)==6 && crewflee==0
            pasMat(i,12)=FX(yint,xint)*flee_force_factor;
            pasMat(i,13)=FY(yint,xint)*flee_force_factor;
        
        %passenger in no special area
        else
            pasMat(i,12)=FX(yint,xint)*force_factor;
            pasMat(i,13)=FY(yint,xint)*force_factor;        
        end
        

26



26.05.11 14:42 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\pedest.m 2 of 4

        e_a=pasMat(i,12:13)/norm(pasMat(i,12:13)+[epsilon 0]);
         
        %influence of other passenger
        for j=1:NrOfpassenger
            if i~=j && pasMat(j,3)==1
                fv=[pasMat(i,1)-pasMat(j,1);pasMat(i,2)-pasMat(j,2)];
                if norm(fv)<pas_soc_influence_area
                    n_ab=(pasMat(i,1:2)-pasMat(j,1:2))./norm(pasMat(j,1:2)-pasMat(i,1:2));
                    
                    %calculation f_phy
                    if norm(fv)<pas_phy_influence_area
                        pasMat(i,8:9)=pasMat(i,8:9)+A_phy*exp((1-norm(pasMat(i,1:2)-pasMat(j,1:2)))/B_phy).*n_ab;  
                    end
                    
                    %calculation f_soc
                    %phi_alphabeta = angle between passenger i and j
                    phi_alphabeta=acos(dot(e_a,n_ab));
                    pasMat(i,10:11)=pasMat(i,10:11)+((lamda+(1-lamda)*(1+cos(phi_alphabeta))/2))*A_soc*exp(1-norm
(pasMat(i,1:2)-pasMat(j,1:2))/B_soc).*n_ab;  
                end
            end
        end      
 
        %influence of wall_objects
        for j=1:NrOfObi
            %fv=vector between pas and wallelement
            fv=[pasMat(i,1)-obiMat(j,1);pasMat(i,2)-obiMat(j,2)];
 
            if norm(fv)<wall_influence_area
                wall_force=A_wall*exp(-norm(fv)/B_wall);
                
                if abs(obiMat(j,19))< abs(obiMat(j,20)) % wall in y-direction
                    if obiMat(j,20)==[2.2] %only a wallelem above
                        if pasMat(i,2)< obiMat(j,2)
                            pasMat(i,12)=pasMat(i,12)+3*FX(yint-1,xint)*force_factor;   
                        else
                            pasMat(i,17)=pasMat(i,17)+1.5*sign(fv(1))*wall_force;
                        end
                        pasMat(i,18)=-100;
                            
                    elseif obiMat(j,20)==[-3.3] %only a wallelem below
                        if pasMat(i,2) > obiMat(j,2)
                            pasMat(i,12)=pasMat(i,12)+3*FX(yint+1,xint)*force_factor;
                        else
                            pasMat(i,17)=pasMat(i,17)+1.5*sign(fv(1))*wall_force;
                        end
                        pasMat(i,18)=100;
                            
                    else
                        pasMat(i,17)=pasMat(i,17)+1.5*sign(fv(1))*wall_force;
                    end
                    
                else % wall in x-direction
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                    if obiMat(j,19)==[2.2] %only a wallelem on the rigth
                        if pasMat(i,1)< obiMat(j,1)
                            pasMat(i,13)=pasMat(i,13)+3*FY(yint,xint-1)*force_factor;
                        else
                            pasMat(i,18)=pasMat(i,18)+1.5*sign(fv(2))*wall_force;
                        end
                        pasMat(i,17)=-100;
 
                    elseif obiMat(j,19)==[-3.3] %only a wallelem on the left
                        if pasMat(i,1) > obiMat(j,1)
                            pasMat(i,13)=pasMat(i,13)+3*FY(yint,xint+1)*force_factor;
                            
                        else
                            pasMat(i,18)=pasMat(i,18)+1.5*sign(fv(2))*wall_force;
                        end
                            pasMat(i,17)=100;
   
                    else
                        pasMat(i,18)=pasMat(i,18)+1.5*sign(fv(2))*wall_force;
                    end
                end
                break;%only look at one wall-obj
            end
        end
        
        else
            pasMat(i,8:15)=0;
            pasMat(i,4:5)=0;
        end
    end
    
    %calculate f_tot 
    pasMat(1:NrOfpassenger,14:15)=(pasMat(1:NrOfpassenger,8:9)+pasMat(1:NrOfpassenger,10:11)+...
        pasMat(1:NrOfpassenger,12:13)+pasMat(1:NrOfpassenger,17:18)+pasMat(1:NrOfpassenger,19:20));
 
    %calculate x'' and x'
    pasMat(1:NrOfpassenger,4:5)=dt.*pasMat(1:NrOfpassenger,14:15)./[pasMat(1:NrOfpassenger,16) pasMat(1:
NrOfpassenger,16)];
 
    %calculate x
    pasMat(1:NrOfpassenger,6:7)=pasMat(1:NrOfpassenger,1:2);
    pasMat(1:NrOfpassenger,7)=pasMat(1:NrOfpassenger,7)+epsilon;
    pasMat(1:NrOfpassenger,1:2)=dt.*pasMat(1:NrOfpassenger,4:5)+pasMat(1:NrOfpassenger,1:2);
    pasMat(1:NrOfpassenger,4)=pasMat(1:NrOfpassenger,4)+epsilon;
    allMat=[pasMat;obiMat2];
    
    %newplot
    plot(allMat(NrOfpassenger+1:NrOfpassenger+NrOfObi2,1),allMat(NrOfpassenger+1:NrOfpassenger+NrOfObi2,
2),'.k','MarkerSize', 20);
    hold on
    plot(exiMat(:,1),exiMat(:,2),'.r','MarkerSize', 20);
    plot(allMat(1+passengerfleed:NrOfpassenger,1),allMat(1+passengerfleed:NrOfpassenger,2),'.bl','MarkerSize', 30);
    xlim([000 n]);
    ylim([0 m]);
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    %handle movie 
    FF1 = getframe(gca);
    mov1=addframe(mov1,FF1);
 
    clf('reset')
    
    %if all passengers are gone -> allow crew to flee
    if sum(pasMat(1:NrOfpassenger,3))==0   
        break;
    end
end
%end movie
mov1=close(mov1);
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B.2 init.m
26.05.11 14:49 C:\ETH\2. Semester\Matlab Pedestrian Dynamics\Projekt\Pathfinder2\init.m 1 of 3

%Lecture with Computer Exercises
%Modelling and Simulating Social Systems
 
%Projects: Pedestrian Dynamics
%Lukas Bühler Heer Philipp  
%file: init.m
 
%Init
clear all;
clc
 
%variable definition
pas_phy_influence_area=3;
pas_soc_influence_area=10;
att_soc_influence_area=10;
A_phy=80;
A_soc=40;
A_wall=1000;
B_phy=1;
B_soc=2;
B_wall=.5;
lamda=0.2;
dt=0.3;
epsilon=1e-10;
T=200/dt;
wall_influence_area=1.2;
wallrelevance_area=10;
heavy=1e10;
fear_force_factor=20;
force_factor=40;
flee_force_factor=60;
walelem=1;
paselem=1;
exielem=1;
crewflee=0;
passengerfleed=0;
gone=0;
 
%allocation of matrices
pasMat=zeros(10,20);
obiMat=zeros(700,20);
obiMat2=[];
 
%read picture/generate forcefield
 f = getFile();
[FX,FY]=computeGradientField1(f);
[m n]=size(FX);
 
%integration into matrices
for mm=1:m
    for nn=1:n
        %pas integration 
        if f(mm,nn)==2;
            pasMat(paselem,2)=mm;
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            pasMat(paselem,1)=nn;
            paselem=paselem+1;
        end
 
        %wall integration
        if f(mm,nn)==0;
            obiMat(walelem,2)=mm;
            obiMat(walelem,1)=nn;
            walelem=walelem+1;
        end
        %exit integration
        if f(mm,nn)==Inf;
            exiMat(exielem,2)=mm;
            exiMat(exielem,1)=nn;
            exielem=exielem+1;
        end
    end
end
 
 
%IT'S ALIVE MUAHAHAH!!
pasMat(:,3)=1;
 
%'previous' place
pasMat(:,6)=pasMat(:,1);
pasMat(:,7)=pasMat(:,2)+epsilon;
pasMat(:,4)=epsilon;
[NrOfpassenger entries]=size(pasMat);
[NrOfObi Obientries]=size(obiMat);
%random weigth
pasMat(:,16)=unidrnd(70,NrOfpassenger,1)+50;
obiMat(:,16)=heavy;
 
%set walldirection
for mn=2:NrOfObi
    
       %there is a wallelem above
   if f(obiMat(mn,2)+1,obiMat(mn,1))==0    
       obiMat(mn,20)=[2.2]; 
   end
       %there is a wallelem below
   if f(obiMat(mn,2)-1,obiMat(mn,1))==0     
       obiMat(mn,20)=obiMat(mn,20)-3.3;
   end
       %there is a wallelem on the rigth
   if f(obiMat(mn,2),obiMat(mn,1)+1)==0    
       obiMat(mn,19)=[2.2];
   end
       %there is a wallelem on the left
   if f(obiMat(mn,2),obiMat(mn,1)-1)==0     
       obiMat(mn,19)=obiMat(mn,19)-3.3;
   end
end
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%simplify obiMat -> leave out useless wall elements 
for j=1:exielem-1
    obiMat1=obiMat;
    [NrOfObi Obientries]=size(obiMat);
    gone=0;
    for i=1:NrOfObi
        fv=abs([obiMat1(i-gone,1)-exiMat(j,1);obiMat1(i-gone,2)-exiMat(j,2)]);
        NrOfObi=NrOfObi-gone;
        if abs(obiMat1(i-gone,19)) > abs(obiMat1(i-gone,20)) 
        if abs(norm(fv)) > wallrelevance_area
            obiMat1(i-gone,:)=[];
            gone=gone+1;
        end
        end
    end
    obiMat2=[obiMat2;obiMat1];
end
 
obiMat3=unique(obiMat2,'rows');
clear obiMat2;
 
[NrOfObi Obientries]=size(obiMat);
for i=1:NrOfObi
    if abs(obiMat(i,19)) > abs(obiMat(i,20))
        if obiMat(i,2) < 7 || obiMat(i,2) > m-7
        else
            obiMat3=[obiMat3;obiMat(i,:)];
        end
    end
end
obiMat2=obiMat;
obiMat=obiMat3;
clear obiMat4;
clear obiMat1;
clear obiMat3;
[NrOfObi Obientries]=size(obiMat);
[NrOfObi2 Obientries2]=size(obiMat2);
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B.3 getFile.m

24.05.11 08:48 /Users/lukasbuehler/ETH/Sem2/Simulat.../getFile.m 1 of 1

function [F] = getFile()
%getFile: Convertion of an bmp image to a matrix
%   This function converts a bmp file to a matrix and returns it. There 
are
%   only the following colors with their corresponding interpretation 
%   allowed:
%
%   Color         Hex triplet    Description
%   White         FFFFFF         Space in which the passengers can freely
%                                walk
%   Black         000000         Walls
%   Red           FF0000         Emergency exit
%   Blue          0000FF         Every blue pixel is recognised as a
%                                pessanger
%   Light green   00FF00         Every light green pixel is recognised as 
a
%                                flight attendant
%   Dark green    009900         Zone which is influenced by the flight
%                                attendant
%   Yellow        FFFF00         Special zones, in which pessangers
%                                struggle to continue walking
%
%   The output matrix contains the following entries:
%   0=wall, 1=space, 2=passenger, 3=hesitation area, 4=flightattendant, 
%   6=flightattendantarea, Inf=emergency exit
 
 
exit=0;
while exit==0
    [FileName,PathName] = uigetfile(’*.bmp’, ’Select a Bitmap File’)
    I=imread(strcat(PathName,FileName));
    exit=1;
    if (find(I>6))
        exit=0;
        uiwait(msgbox(’Wrong file’));
    end
end
 
space=find(I==5);
goSlow=find(I==4);
exit=find(I==2);
passenger=find(I==1);
flightattendant=find(I==3);
flightattendantarea=find(I==6);
wall=find(I==0);
[n,m]=size(I);
F=zeros(n,m);
F(space)=1;
F(goSlow)=3
F(exit)=Inf;
F(passenger)=2;
F(flightattendant)=4;
F(wall)=0;
F(flightattendantarea)=6;
F=flipud(F)
 
end
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B.4 gradient_special.m

24.05.11 09:14 /Users/lukasbuehler/ETH/Sem.../gradient_special.m 1 of 4

function [FFX FFY] = gradient_special(M)
%GRADIENT_SPECIAL Special gradient function which excludes matrix entries
%which are Inf
%   Input is a matrix m with a potential field and Inf entries 
representing
%   walls. This function generates a vector field representing the 
gradient
%   field of m, but ignores all Inf entries.
[a b]=size(M);
 
FX=zeros(a,b);
FY=zeros(a,b);
caseX=0;
caseY=0;
 
%Cases: W=Wall  °=Point to be handled
%  1.  W ° W
%  2.  W ° °
 
 
for m = 1:a    %y direction
    for n = 1:b   %x direction
        
        %X Direction
        if (M(m,n)~=Inf) %Point is no wall element
            if(n>1 && n<b) %No element at the boarder of the matrix
                if(M(m,n 1)==Inf && M(m,n+1)==Inf)
                    caseX=1;
                elseif (M(m,n 1)==Inf)
                    caseX=2;
                elseif (M(m,n+1)==Inf)
                    caseX=3;
                else
                    caseX=4;
                end
            elseif (n<b) %Element at the lower boarder of the matrix
                if(M(m,n+1)==Inf)
                    caseX=1;
                else
                    caseX=2;
                end
            else %Element at the upper boarder of the matrix
                if(M(m,n 1)==Inf)
                    caseX=1;
                else
                    caseX=3;
                end
            end
 
            
        else %Point is a wall element
            if(n>1 && n<b) %No element at the boarder of the matrix
                if(M(m,n 1)==Inf && M(m,n+1)==Inf)
                    caseX=5;
                elseif (M(m,n 1)==Inf)
                    caseX=6;
                elseif (M(m,n+1)==Inf)
                    caseX=7;
                else
                    caseX=8;
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                end
            elseif (n<b) %Element at the lower boarder of the matrix
                if(M(m,n+1)==Inf)
                    caseX=5;
                else
                    caseX=6;
                end
            else %Element at the upper boarder of the matrix
                if(M(m,n 1)==Inf)
                    caseX=5;
                else
                    caseX=7;
                end
            end
 
        end 
        
        switch caseX
            case 1
                FX(m,n)=0;
            case 2
                FX(m,n)=(M(m,n) M(m,n+1));
            case 3
                FX(m,n)=(M(m,n 1) M(m,n));
            case 4
                FX(m,n)=(M(m,n 1) M(m,n+1))/2;
            case 5
                FX(m,n)=0;
            case 6
                FX(m,n)=0;
            case 7
                FX(m,n)=0;
            case 8
                FX(m,n)=0;
        end
        
        %FX(m,n)=caseX;
        
        
        
        
        
        %Y Direction
        if (M(m,n)~=Inf) %Point is no wall element
            if(m>1 && m<a) %No element at the boarder of the matrix
                if(M(m 1,n)==Inf && M(m+1,n)==Inf)
                    caseY=1;
                elseif (M(m 1,n)==Inf)
                    caseY=2;
                elseif (M(m+1,n)==Inf)
                    caseY=3;
                else
                    caseY=4;
                end
            elseif (m<a) %Element at the lower boarder of the matrix
                if(M(m+1,n)==Inf)
                    caseY=1;
                else
                    caseY=2;
                end
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            else %Element at the upper boarder of the matrix
                if(M(m 1,n)==Inf)
                    caseY=1;
                else
                    caseY=3;
                end
            end
 
            
        else %Point is a wall element
            if(m>1 && m<a) %No element at the boarder of the matrix
                if(M(m 1,n)==Inf && M(m+1,n)==Inf)
                    caseY=5;
                elseif (M(m 1,n)==Inf)
                    caseY=6;
                elseif (M(m+1,n)==Inf)
                    caseY=7;
                else
                    caseY=8;
                end
            elseif (m<a) %Element at the lower boarder of the matrix
                if(M(m+1,n)==Inf)
                    caseY=5;
                else
                    caseY=6;
                end
            else %Element at the upper boarder of the matrix
                if(M(m 1,n)==Inf)
                    caseY=5;
                else
                    caseY=7;
                end
            end
 
        end 
        
        switch caseY
            case 1 %  W ° W
                FY(m,n)=0;
            case 2 %  W ° °
                FY(m,n)=(M(m,n) M(m+1,n));
            case 3 %  ° ° W
                FY(m,n)=(M(m 1,n) M(m,n));
            case 4 %  ° ° °
                FY(m,n)=(M(m 1,n) M(m+1,n))/2;
            case 5 %  I I I
                FY(m,n)=0;
            case 6 %  I I °
                FY(m,n)=0;
            case 7 %  ° I I
                FY(m,n)=0;
            case 8 %  ° I °
                FY(m,n)=0;
        end
        % Current Point: °    Wall: W   Infinity:I
        
        %FX(m,n)=caseX;
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    end
end
 
 
%Normalization of the vector length
[a,b]=size(FX);
 
for m = 1:a
    for n = 1:b
        if (FX(m,n)~=0 && FY(m,n)~=0)
            FFX(m,n)=(FX(m,n)/(sqrt(FX(m,n)^2+FY(m,n)^2)));
            FFY(m,n)=(FY(m,n)/(sqrt(FX(m,n)^2+FY(m,n)^2)));
        elseif(FX(m,n)~=0)
            FFX(m,n)=(FX(m,n)/abs(FX(m,n)));
            FFY(m,n)=0;
        elseif(FY(m,n)~=0)
            FFX(m,n)=0;
            FFY(m,n)=(FY(m,n)/abs(FY(m,n)));
        end
    end
end
 
 
end
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B.5 computeGradientField1.m
24.05.11 09:32 /Users/lukasbuehler/ET.../computeGradientField1.m 1 of 1

function [FX, FY] = computeGradientField1(F)
%UNTITLED2 This function computes the shortest path from every point to 
the
%next emergency exit.
%   The input matrix F contains a space described in the file getFile.m.
%   This function calculates a vector field containing the shortest path
%   from every point in the space to the next emergency exit.
 
%Find the Exits
[rowE,colE,v] = find(F==Inf);
 
%Create a new Space with only 1(Space) and 0(Wall) as entries
[sx,sy]=size(F);
NewF=ones(sx,sy);
Wall=find(F==0);
NewF(Wall)=0;
 
 
 
Exits(1,:)=rowE’;
Exits(2,:)=colE’;
 
options.nb_iter_max = Inf;
[D,S] = perform_fast_marching(NewF, Exits, options);
[FX,FY] = gradient_special(D);
 
D(D==Inf)=0; % Make infinity entries of D to 0
 
 
%Plot Contour
contour(D);
hold on;
 
%Plot Vectorfield
quiver(FX,FY,0.1);
hold on;
 
%Plot Walls
[rowW,colW,v] = find(NewF==0);
for n=1:1:size(rowW)
   h = plot(colW(n),rowW(n), ’.b’); set(h, ’MarkerSize’, 10);
end
 
 
%Plot Exits
for n=1:1:size(rowE)
   h = plot(colE(n),rowE(n), ’.r’); set(h, ’MarkerSize’, 20);
end
 
end
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