
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Traffic Dynamics

Traffic Flow Comparison of Roundabouts and Crossroads

Tony Wood & Bastian Bücheler

Zurich

20. May 2010

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe, keine
anderen als die angegebenen Quellen-Hilsmittel verwenden habe, und alle Stellen,
die wörtlich oder sinngemäss aus veröffentlichen Schriften entnommen wurden, als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Gruppenarbeit
nicht, auch nicht auszugsweise, bereits für andere Prüfung ausgefertigt wurde.

Tony Wood Bastian Bücheler

2

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Tony Wood Bastian Bücheler

3

Contents

1 Introduction 5

2 Nagel-Schreckenberg Model 7

3 Approach 8
3.1 Description . 8

3.1.1 Crossroad with priority to the right 8
3.1.2 Roundabout . 9

3.2 Implementation . 10
3.2.1 Crossroad . 11
3.2.2 Roundabout . 13

3.3 Execution . 14
3.3.1 User Instructions . 15

4 Results 16

5 Discussion 20
5.1 Comparison . 20
5.2 Validation of Simplification . 21

6 Summary and Outlook 22

7 References and Code 23
7.1 References . 23
7.2 Matlab-Code . 24

7.2.1 traffic.m . 24
7.2.2 trafficsim.m . 27
7.2.3 roundabout.m . 36
7.2.4 crossroad.m . 40
7.2.5 connection.m . 58
7.2.6 pdestination.m . 60

4

1 Introduction

Nowadays, the streets get more and more crowded as more people own a car. Con-
sequently mankind is facing several problems in managing the extra traffic. With
this in mind, it is interesting and at the same time important to look at different
solutions of intersections, where many of these problems occur.

Luka Piskorec and Simon Soller covered a similar approach in last years course.
They modelled the traffic with the help of a cellular automata in MATLAB and they
did two intersection types, namely priority to the right and signals. In between the
intersections they modeled the streets with the Nagel-Schreckenberg model, which
takes in to account many social effects and is at the same time relatively easy to
implement. We build on their experience and add several new aspects; one of which
will be the implementation of a roundabout. This type of intersection is pretty com-
mon in Switzerland. In addition we give the cars the freedom of choosing a direction,
so they don’t just travel from left to right or top to bottom and vice versa.

With these changes we think we can provide a model the traffic in Switzerland in
a more realistic manner. Since we develop a new model of an intersection as well as
more freedom of individual cars, we could not use our predecessor’s code. Therefore
we wrote a new program. We do, however, compare our model with the one from
our predecessors through a common feature, i.e. the priority to the right intersection.

The aim of our research is to analyze the traffic flow of different intersection
configurations. Ultimately, we want to determine which type of intersection gives
the highest traffic flow. Since the roundabout has become popular in recent years,
we expect the it to preform best.

5

Figure 1: Famous roundabout in England

6

2 Nagel-Schreckenberg Model

We decided to use the Nagel-Schreckenberg Model1 to simulate our traffic. This
Model was developed in the early 1990 by two physicist Kai Nagel and Michael
Schreckenberg. It was the first to explain how a traffic jam can evolve from nothing.

The Model is straight forward and intuitive to use. The streets get split up in
cells about the size of a car. One car is approximately 7.5 meter long. In the MAT-
LAB implementation, one second corresponds to one iteration. If the car travels one
cell at a second, it corresponds to 7.5 m/s or 27 km/h. This gives us the maximum
speed which is 5 cells per second or 135 km/h.

Each car then has to follow four simple rules:

1. If the maximum speed is not yet achieved, it has to accelerate by one.

2. If the gap in front of the car is smaller than the actual speed, it has to match
the speed to the gap.

3. The speed of the car gets reduced by one with a probability p, unless it is
already standing still. This is called dawdling.

4. In the end, when everything is calculated, the cars move by their current speed.

With the third rule one can model three social phenomena at the same time:

1. A car that could accelerate, because it didn’t reach the maximal speed yet
and because the gap in front of it is big enough, doesn’t take the opportunity
because of dawdling.

2. A car that already drives with full speed, can fall back. We get fluctuations in
the top speed segment.

3. A car that has to slowdown because of a car in front of it, could slow down
even further through dawdling.

The model is minimal, which means that it can’t be simplified further without
loosing essential characteristics of traffic dynamics. The model does not include
passing or accidents.

1see http://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell

7

3 Approach

3.1 Description

Our Model of city traffic covers two different intersections, a crossroad with priority
to the right and a roundabout. These intersections can be arbitrarily distributed on
a m×n grid and are connected by streets (i.e. see figures 4,5,8 and 10). The streets
consist of two lanes, one in each direction.

The Model is discrete and follows the principle of cellular automaton. Space is
divided up into cells. Each cell is in one of a finite number of states and is updated
every time step according to the system dynamics. Outside intersections the states
are {‘car’,‘no car’} combined with a speed state {0,1,2,3,4,5}. At intersections there
are additional states. While the cars on the streets behave according to the Nagel-
Schreckenbenberg model, the behavior at the intersections is described below.

Cars leaving the map continue on the opposite side. This guarantees a constant
car density. The traffic flow2 is defined as the product of the traffic density and the
average speed of all cars.

flow = density · speed

3.1.1 Crossroad with priority to the right

There are several rules to follow at a crossroad. A car in front of a crossroad will only
enter if there is enough free space. As soon as the vehicle enters the intersection,
it indicates in which direction it will to go. The car will go straight ahead with a
probability of 1/2 and turn left or right with the probability of 1/4 each. We as-
sume that cars in crossroads have the maximum speed 1 in units of cells per iteration.

The main traffic rule to respect is the priority to the right. A car in a crossroad
has to give way to cars coming from its right. It can happen that all cars at a cross-
road have a car coming from their right. Priority to the right leads to a deadlock in
this case. To resolve this blockage of the intersection, the drivers determine by hand
signals who can use the crossing first.

If there are two cars coming from opposite sides of the crossroad and no traffic
is coming from their sides, they can drive as long as none of them is turning left. If
one of them intends to turn left, it will have to give way before crossing the other‘s

2http://en.wikipedia.org/wiki/Traffic flow

8

Figure 2: Crossroad cells

lane. In our model the crossroad is big enough for two cars coming form opposite
sides to turn left without affecting each other. Thus they can do so at the same time.

Our Model also allows a car turning left to wait in the middle of the crossroad.
This way cars behind cars turning left don’t get held up as much because they can
drive around the waiting vehicle.

A crossroad is made up of 24 cells (see Figure 2). The possible states for each cell
are {‘car turning right’,‘car going straight ahead’,‘car turning left’,‘no car’} combined
with a speed {0,1} and the index of the the street a car came from {0,1,2,3,4}.

3.1.2 Roundabout

The basic rule in a roundabout is simple. Cars in the roundabout have the right of
way over cars wanting to enter the intersection. The maximum speed in the round-
about is again limited to 1 cell per iteration.

If there is no car approaching from inside the roundabout cars waiting will enter.
In the roundabout a car will drive whenever there is free space in front of it and
eventually leave through a exit. It will take the second exit with a probability of

9

Figure 3: Roundabout cells

1/2. There is a 1/4 probability each that the vehicle takes the first or the third
exit. In practice cars can also take the forth exit, meaning to use the roundabout to
preform a U-turn. This option is not included in our default model to make it more
comparable to a crossroad.

A car in the roundabout will indicate that it is leaving as soon as the next exit
is its destination. No indication means that the car is not taking the next exit.

Roundabouts consist of 12 cells (see Figure 3). The possible states for these
are {‘car not taking next exit’,‘car taking next exit’,‘no car’} in combination with a
speed {0,1} and the amount of exits a car is going to drive towards before it leaves
{0,1,2,3,}.

3.2 Implementation

The city map and the traffic density are given by the user. The city map is a m× n
matrix with elements 0 or 1. 0 symbolizes a roundabout and 1 stands for a crossroad.
The density for a single simulation is a scalar. If the density given by the user is a
vector, the program will run a simulation for every element of that vector.

10

Streets are divided into two categories, ones leading towards a intersection and
ones leading away form intersections. The end of a street leading away from a
intersection is connected to the beginning of the street heading towards the next
intersection in the corresponding direction. The overall distance between two inter-
sections is 60 cells which corresponds to 420 meters in practice. Eventually all street
and intersections are written into a overall map.

For the initial distribution of cars in the city, the cars get placed on streets only.
All intersections are empty at the starting point. The default number of iterations
per simulation is set to 1000 which corresponds to just 16 minutes. In every time
iteration the values of all cells in the next time step are calculated, the traffic flow is
evaluated and if the graphics are activated the current situation is displayed.

For the computation of the updates the program iterates over all intersections.
The streets are saved in blocks of four such that they are linked to a certain inter-
section. In these blocks the row index identifies the street locally. Street numbering
runs anti-clockwise and streets above the intersection have index 1 (see figures 2 and
3).

In every intersection, first, the streets get updated according to the rules of Nagel-
Schreckenberg (see section 2 on page 7). A car moving along the street is implemented
by the cells where the car was passing its state on to the cell where the car will be.
The speed state will be the distance these cells are apart. As mentioned above, cars
leaving one street continue on another one. Cars leaving the map reappear on the
opposite side.

Depending on whether the intersection is a crossroad or a roundabout, different
subprograms are called to do the updates in the intersection. Details on this are
explained below.

After all iterations over time the average traffic flow is calculated and the simu-
lation is complete. Once all simulations are finished the program will plot the traffic
flow versus the density. If the city map was a mix of crossroads and roundabouts,
there will be an additional graph comparing the amount of cars in the crossroads
and roundabouts. The x-axis for this second plot is again the traffic density.

3.2.1 Crossroad

For the update of a crossroad every one of the 24 cells is written down separately.
This is why the code of CROSSROAD is so long. First, the cars waiting in front of

11

Figure 4: Simulation of a single crossroad

the crossroad are considered. These cars are represented by the last cells of streets
heading towards the crossroads in the state ‘car’. If the crossroad is not blocked by
other traffic crossing in front and there is enough space for the car to enter, it will do
so in the next time step. When entering the car randomly gets a direction assigned
and gets marked from which road it came.

Once a car has entered, it will show the other drivers where it intends to go by
its indication. If its not indicating the car wants to go straight ahead. Cars turning
right do not have to give way to anyone. Cells at the entrance of a crossroad in the
state of ‘car turning right’ can therefore be updated by simply checking if there is
space free for the car to move on or not.

Cars going straight ahead have to give way to cars coming from the right. This
is why cars at the entrance that aren’t indicating need to check more of the traffic
situation before they proceed. Before a cell at a entrance releases a car, it makes
sure that this car will not block the crossing.

Without any further mechanism, this system would lead to deadlocks when cars
from all sides want to go straight at the same time. For this reason, every time a car
at the entrance wanting to go straight has to give way, it increases a counter. If the
counter reaches 4, a deadlock has occurred. In the next time step, one of the four
waiting vehicles will be randomly given the privilege to dive.

12

A car turning left, in its first step at the entrance, has to check that there is enough
space in the middle of the crossroad and that there is no traffic to it’s left already in
the crossroad. If that is the case, the car can move forward and wait in the middle of
the crossroad for the traffic coming form the opposite side to clear before it continues.

In the crossroad, a car moving forward means, in terms of the individual cells,
that one cell passes its state on to a new cell. Because the maximum speed in inter-
sections is 1 the next cell is always a direct neighbour.

When a car leaves the crossroad the cell at that exit writes a car with speed 1
into the first cell of the linked street leading away form this intersection.

After the updates of all cells are computed, the program writes the current state
of the crossroad into the overall map. It also adds the amount of cars in and around
this crossroad to a counter. This counter is used to show the relative distributions
of cars.

3.2.2 Roundabout

The update of the roundabout cells is simpler because there is a periodic pattern.
The roundabout can be thought of as a road of length 12 with maximum speed 1.
The end of this road is connected to its beginning and every 3 cells there is a exit
and a entry (see figure 3).

Cars at the end of streets leading towards a roundabout will enter in the next
time step if the cell at that entrance is free and the cell to the left of it isn’t in the
state ‘car not taking next exit’. When a car enters, it randomly gets a number from
{1,2,3} which determines the exit that this car is going to take.

If this exit counter is 1, the car is in the state ‘car taking next exit’. Thus it
is indicating. Once it has reached the next exit, the cell at the exit will, if there
is free space, write a car with speed 1 into the linked street heading away from the
roundabout.

When a car moves on from a exit cell in the state ‘car not taking next exit’, its
exit counter is decreased. If it now is 1, it turns its state into ‘car taking next exit’.

Once all updates have been calculated, the current situation of the roundabout is
written into the overall map and the number of cars in and around the roundabout are

13

added to a counter. This counter is used to show how many car are near roundabouts
compared to the amount near crossroads.

Figure 5: Simulation of a single roundabout

3.3 Execution

Our program consists of 6 MATLAB functions. The main function is called TRAF-
FIC. It is basically the interface between the user and the simulation. TRAFFIC
asks the user for input data and starts the simulation accordingly.

TRAFFICSIM runs the simulations. It uses the functions CONNECTION, ROUND-
ABOUT and CROSSROAD. The input arguments of TRAFFICSIM are a traffic
density, a city map configuration matrix and a Boolean telling it if it should display
the simulation graphically or not. It returns the average traffic flow and the average
number of cars near roundabouts and crossroads respectively.

CONNECTION connects streets. ROUNDABOUT does a updates of a certain
roundabout. CROSSROAD runs a update of a specific crossroad. For this it uses
the function PDESTINATION.

14

3.3.1 User Instructions

• Include the 6 functions TRAFFIC, TRAFFICSIM, CONNECTION, ROUND-
ABOUT, CROSSROAD and PDESTINATION in the MATLAB path

• Execute the function TRAFFIC (no arguments).

• Enter city map. City map is a matrix with elements 1 and 0. 1 stands for a
crossroad with priority to the right. 0 stands for a roundabout.

• Enter traffic density. If a vector is entered, simulations will run for all elements
of this vector.

• Activate graphics by entering ‘y’. Deactivate graphics by entering ‘n’.

• If graphics where activated simulations will be displayed. In the figure the
colour of the cells symbolizes the following:

Black −→ empty space

White −→ road

Red −→ car

Yellow −→ car indicating to the right

Dark red −→ car indicating to the left

• After all simulations have finished the average traffic flow versus the traffic
density is plotted. If the city map is a mix of crossroad and roundabouts
the traffic distribution (cars around roundabouts or around crossroads) versus
traffic density is also plotted.

15

4 Results

Figure 6: Full density spectrum of 2× 2 pure roundabout (red) and pure crossroad (blue)
configurations

Figure 6 shows the traffic flow of the two square pure city maps containing only
one sort of intersection each. They simulation of the configuration with the 4 round-
about shows a significantly higher traffic flow over the entire density range.

The general behavior of the traffic flow in dependence of the traffic density is
to rise steeply in a low densities range. Figure 6 also shows the drop of the traffic
flow at high densities. We observe this drop for all configurations at densities above
0.5. The behavior between this steep rise at low densities and drop at high densities
appears to be different for the two types of intersections. In both cases the traffic
flow doesn’t change much in this region. But while the traffic flow continues to climb
a little for roundabouts, it decreases slightly for crossroads.

Figure 7 shows the traffic flow of a mixed city map configuration according to fig-

16

Figure 7: Traffic flow and distribution of the mixed 2x2 intersection configuration from
figure 8

17

Figure 8: A mixed 2x2 intersection configuration

ure 8 over the density range [0,0.2]. At low densities, where the traffic flow increases
strongly with the density, the the number of cars around the 2 roundabouts is all
most the same as the amount around crossroads. There are a few more cars round
the roundabouts though. This distribution changes drastically in higher densities
where the traffic flow saturates. At a traffic density of 0.2, approximately 80 percent
of the cars are near crossroads.

Figure 9 shows that the configuration of figure 10 has a higher traffic flow than
a pure 3x3 crossroad configuration. Replacing one out of nine intersections has a
visible influence on the traffic flow.

18

Figure 9: Traffic flow and distribution of the 3x3 crossroad configuration from figure 10

Figure 10: A 3x3 configuration with 8 crossroads around a roundabout in the center

19

5 Discussion

5.1 Comparison

Figure 11: Comparison of models for 2x2 crossroad configurations

In figure 11 the model of Piskorec and Soller is compared to or model. For this
we have shortened the distance between the intersection down to 20 cells, which is
the default in their implementation. The graph also shows an edited version of our
implementation. In this the ability to turn at the intersection has been removed. All
three models have been evaluated in a 2x2 pure crossroad configuration for densities
from 0 to 0.2.

For traffic densities over 0.02 our model produces a high traffic flow. This effect is
obviously not caused by the ability to turn. The freedom of turning reduces the traffic
flow slightly. Furthermore, our model does not show the periodic jumps Piskorec and
Soller encountered.

20

5.2 Validation of Simplification

Figure 12: Comparison of single roundabouts with (green) and without(blue) the ability
to turn abound

To be able to compare crossroads and roundabouts, in our default model, we
disabled cars to take the fourth exit in roundabouts. This means cars can’t use
the roundabout to turn around. Figure 12 shows the effect of this simplification.
The modified model allowing cars to turn around produces a lower traffic flow for
densities over 0.05. The difference however is not very big.

21

6 Summary and Outlook

In the introduction we asked which type of intersection produces the higher traffic
flow. We now can answer this question clearly. Roundabouts have a much higher
throughput than crossroads at every density. In a combination of the two intersec-
tion types, congestion predominantly occurs at the crossroads. Our model confirms
that the increase in popularity of the roundabout over the last years is justified.

Although our model is more sophisticated than the one of our predecessor’s, there
are still some unrealistic aspects. For example, cars drive just as fast as they can
in order not to crash. Crash report show that this is not true in practise. Also, the
dimensions of our intersections are questionable. According to the cell size defined in
section 2 on page 7 our intersections are 42 meters wide which is larger than normal.
In addition, crossroads often have more advanced configurations of lanes than have
modeled. Roundabout with two lanes are also common.

22

7 References and Code

7.1 References

• K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic,
J. Phys. I France 2 2221–2229 (1992)

• Foils GESS - Lecture with Computer Exercises: Modeling and Simulating Social
Systems with MATLAB - 2010

• Luka Piskorec and Simon Soller, Traffic Dynamics - The effectiveness of signal-
ization and the priority to the right simulated with Cellular Automata, 2009

• http://de.wikipedia.org/wiki/Nagel-Schreckenberg-Modell

• http://en.wikipedia.org/wiki/Traffic flow

• http://en.wikipedia.org/wiki/Cellular automaton

23

7.2 Matlab-Code

7.2.1 traffic.m

1 function traffic
2 %%%
3 %TRAFFIC Simulation of traffic in an city map containing roundabouts and
4 %crossroads.
5 %
6 %This program requires the following subprogams:
7 %TRAFFICSIM,ROUNDABOUT,CROSSROAD,CONNECTION,PDESTINATION
8 %
9 %

10 %User will be ask to determine city map,traffic density and whether
11 %simulation is to be displayed or not.
12 %
13 %The city map is entered by supplying a matrix with elements '1' for
14 %crossroads and '0' for roundabouts.
15 %
16 %The density can be a scalar or a vector. If the density is a scalar
17 %TRAFFIC will run the simulation for all densities given. The elements must
18 %be in the range of [0,1].
19 %
20 %If Users chooses to display simulation (by entering 'y') a figure will
21 %open showing the animation:
22 %-Black cells simbolize empty space
23 %-White cells simbolize road
24 %-Red cells simbolize cars
25 %-Yellow cells simbolize cars indicating to the right
26 %-Dark red celss simbolize cars indicating to the left
27 %
28 %After all simulations have finished TRAFFIC plots the average traffic flow
29 %versus the traffic density. If city map is a mix of crossroad and
30 %roundabouts the traffic distribution (cars around roundabouts or around
31 %crossroads) versus traffic density is also plotted.
32 %
33 %A project by Bastian Buecheler and Tony Wood in the GeSS course "Modelling
34 %and Simulation of Social Systems with MATLAB" at ETH Zurich.
35 %Spring 2010
36 %%%
37

38 close all;
39

40 %promt city road configutation
41 c = input(['\nenter city map\n\ngive matrix elements: ', ...
42 'Priority to the right (=1) and Roundabout (=0) \n\n', ...
43 'i.e. [1 0 0;1 1 0;0 1 1]\n\n']);
44

45 %check c

24

46 [c m,c n] = size(c);
47 for a = 1:c m
48 for b = 1:c n
49 if (c(c m,c n) 6= 1 && c(c m,c n) 6= 0)
50 disp('Elements must be 0 or 1');
51 return
52 end
53 end
54 end
55 %check if city map is a mix of crossroads and roundaoubts or if it made up
56 %of purely one or the other
57 if (sum(sum(c)) == c m * c n | | sum(sum(c)) == 0)
58 mix = false;
59 else
60 mix = true;
61 end
62

63 %promt traffic density
64 d = input('\nenter traffic density: ');
65 %check d
66 if (max(d) > 1 | | min(d) < 0)
67 disp('density must be in range [0,1]');
68 return
69 end
70

71 %ask if simulation should be displayed
72 show = input('\ndisplay simulation graphically? yes (=y) or no (=n) ','s');
73

74 %average flow and distributions for every density suppied
75 avFlow = zeros(1,max(size(d)));
76 avRo = zeros(1,max(size(d)));
77 avCr = zeros(1,max(size(d)));
78

79 if (show == 'y' | | show == 'n')
80 %if wanted run simulation with graphics
81 if (show == 'y')
82 for di=1:max(size(d))
83 [avFlow(di),avRo(di),avCr(di)] = trafficsim(d(di),c,true);
84 end
85 %if animation undesired run simulation without graphics
86 else
87 for di=1:max(size(d))
88 [avFlow(di),avRo(di),avCr(di)] = trafficsim(d(di),c,false);
89 end
90 end
91

92 figure(2);
93 %is city map is a mix of roundabout and crossroads, plot distribution
94 if (mix)
95 %plot relativ number of cars at roundabouts and number of cars at

25

96 %crossroads versus traffic density
97 subplot(2,1,2);
98 plot(d,avRo*100,'rx',d,avCr*100,'gx');
99 set(gca,'FontSize',16);

100 title('Traffic Distribution');
101 xlabel('traffic density');
102 ylabel('relative numeber of cars [%]');
103 legend('around roundabouts','around crossroads');
104 ylim([0 100]);
105 subplot(2,1,1);
106 end
107

108 %plot traffic flow versus traffic density
109 plot(d,avFlow,'x');
110 set(gca,'FontSize',16);
111 title('Traffic Dynamics');
112 xlabel('traffic density');
113 ylabel('average traffic flow');
114 %ylim([0 0.5]);
115 else
116 disp('Input must be y or n!');
117 end
118 end

26

7.2.2 trafficsim.m

1 function [averageFlow,avCaRo,avCaCr] = trafficsim(density,config,display)
2 %%%
3 %TRAFFICSIM Simulation of traffic in an city map containing roundabouts and
4 %crossroads.
5 %
6 %Output:
7 %AVERAGEFLOW, Average traffic flow for given city map and density
8 %AVCARO, Average amount of cars around roundabouts
9 %AVCACR, Average amount of cars around crossroads

10 %
11 %INPUT:
12 %DENSITY, Traffic density
13 %CONFIG, City map
14 %DISPlAY, Turn graphics on 'true' or off 'false'
15 %
16 %This program requires the following subprogams:
17 %ROUNDABOUT,CROSSROAD,CONNECTION,PDESTINATION
18 %
19 %A project by Bastian Buecheler and Tony Wood in the GeSS course "Modelling
20 %and Simulation of Social Systems with MATLAB" at ETH Zurich.
21 %Spring 2010
22 %%%
23

24 %dawde probability
25 dawdleProb = 0.2;
26 %street length (>5)
27 l = 30;
28 %number of iterations
29 nIt=1000;
30

31 %dimensions of config, how many intersections in x and y direction are
32 %there?
33 [config m,config n] = size(config);
34

35 %in streets cell values indicate the following:
36 %0.4 means there is a car in this position (red in figure)
37 %1 means there is no car in this position (white in figure)
38

39 %initialize matrices for streets heading toward intersections
40 t = ones(4*config m,l*config n);
41 tspeed = zeros(4*config m,l*config n);
42 %number of elements in t
43 tsize = sum(sum(t));
44

45 %initialize matrices for street leading away from intersections
46 f = ones(4*config m,l*config n);

27

47 fspeed = zeros(4*config m,l*config n);
48

49 %initialize matrices for roundabouts
50 r = ones(config m,12*config n);
51 rspeed = zeros(config m,12*config n);
52 rex = zeros(config m,12*config n);
53

54 %initialize matrices for crossings with priority to the right
55 p = ones(6*config m,6*config n);
56 pspeed = zeros(6 *config m,6*config n);
57 came = zeros(6*config m,6*config n);
58 %deadlock prevention
59 deadlock = zeros(config m,config n);
60

61 %initialaize map
62 map = zeros(config m*(2*l+6),config n*(2*l+6));
63 %initialize gap
64 gap = 0;
65

66 %initialize flow calculation variables
67 avSpeedIt = zeros(nIt+1,1);
68 %counter for cars around crossroads
69 numCaCrIt = zeros(nIt+1,1);
70 %counter for cars around crossroads
71 numCaRoIt = zeros(nIt+1,1);
72

73 %distribute cars randomly on streets for starting point
74 overall length = sum(sum(t)) + sum(sum(f));
75 numCars = ceil(density * overall length);
76 q = 1;
77

78 while (q ≤ numCars)
79 w = randi(overall length,1);
80 if (w ≤ tsize)
81 if (t(w) == 1)
82 t(w) = 0.4;
83 tspeed(w) = randi(5,1);
84 q = q + 1;
85 end
86 end
87 if (w > tsize)
88 if (f(w-tsize) == 1)
89 f(w-tsize) = 0.4;
90 fspeed(w-tsize) = randi(5,1);
91 q = q +1 ;
92 end
93 end
94 end
95

96

28

97 %iterate over time
98 for time = 1:nIt+1
99

100 %clear values for next step
101 t next = ones(4*config m,l*config n);
102 tspeed next = zeros(4*config m,l*config n);
103 f next = ones(4*config m,l*config n);
104 fspeed next = zeros(4*config m,l*config n);
105 r next = ones(config m,12*config n);
106 rspeed next = zeros(config m,12*config n);
107 rex next = zeros(config m,12*config n);
108 p next = ones(6*config m,6*config n);
109 pspeed next = ones(6*config m,6*config n);
110 came next = zeros(6*config m,6*config n);
111 deadlock next = zeros(config m,config n);
112

113 %iterate over all intersection
114 for a = 1:config m
115 for b = 1:config n
116

117 %define Index starting points for each intersection
118 tI m = (a - 1) * 4;
119 tI n = (b - 1) * l;
120 mapI m = (a - 1) * (2 * l + 6);
121 mapI n = (b - 1) * (2 * l + 6);
122

123 %positions outside intersections
124 %for every intersection iterate along streets
125 for c = tI m + 1:tI m +4
126 for d = tI n + 1:tI n+l
127

128 %%%
129 %streets to intersections
130

131 %deal with position directly in front of intersection
132 %separately later
133 if (mod(d,l) 6= 0)
134 %if there is a car in this position, apply
135 %NS-Model
136 if (t(c,d) == 0.4)
137 %Nagel-Schreckenberg-Model
138 %NS 1. step: increase velocity if < 5
139 v = tspeed(c,d);
140 if (v < 5)
141 v = v + 1;
142 end
143

144 %NS 2. step: adapt speed to gap
145 %how big is gap (to car ahead or intersection)?
146 e = 1;

29

147 while (e ≤ 5 && d + e ≤ b * l && ...
148 t(c,d+e) == 1)
149 e = e + 1;
150 end
151 gap = e - 1;
152 %reduce speed if gap is too small
153 if (v > gap)
154 v = gap;
155 end
156

157 %NS 3. step: dawdle
158 if (rand < dawdleProb && v 6= 0)
159 v = v - 1;
160 end
161

162 %NS 4. step: drive, move cars tspeed(c,d) cells
163 %forward
164 %new position
165 t next(c,d+v) = 0.4;
166 tspeed next(c,d+v) = v;
167 end
168 end
169

170 %%%
171 %street from intersections
172

173 if (f(c,d) == 0.4)
174 %Nagel-Schreckenberg-Model
175 %NS 1. step: increase velocity if < 5
176 v = fspeed(c,d);
177 if (v < 5)
178 v = v + 1;
179 end
180

181 %NS 2.step: adpat speed to gap
182 %how big is gap (to car ahead)?
183 e = 1;
184 while (e ≤ 5)
185 %if gap is bigger than distance to edge,connect
186 %steets
187 if (d + e > b * l)
188 %testing position in new street
189 hh = d + e - b * l;
190 %connect to next street
191 [ec,ed]=connection(a,b,c,hh, ...
192 config m,config n,l);
193 while (t(ec,ed) == 1 && e ≤ 5)
194 e = e + 1;
195 %testing position in new street
196 hh = d + e - b * l;

30

197 %connect to next street
198 [ec,ed]=connection(a,b,c,hh, ...
199 config m,config n,l);
200 end
201 gap = e - 1;
202 e = 6;
203 else
204 if (f(c,d+e) == 1)
205 e = e + 1;
206 if (e == 6)
207 gap = 5;
208 end
209 else
210 gap = e - 1;
211 e = 6;
212 end
213 end
214 end
215 %reduce speed if gap is too small
216 if (v > gap)
217 v = gap;
218 end
219

220 %NS 3. step: dawdle
221 if (rand ≤ dawdleProb && v 6= 0)
222 v = v - 1;
223 end
224

225 %NS 4. step: drive, move cars fspeed(c,d) cells
226 %forward
227 %if new position is off this street, connect
228 %streets
229 if (d + v > b * l)
230 %position in new street
231 hhh = d + v - b * l;
232 %connect next street
233 [ec,ed] = connection(a,b,c,hhh, ...
234 config m,config n,l);
235 t next(ec,ed) = 0.4;
236 tspeed next(ec,ed) = v;
237 else
238 f next(c,d+v) = 0.4;
239 fspeed next(c,d+v) = v;
240 end
241 end
242 end
243 end
244

245 %%%
246 %roundabouts

31

247

248 %check if intersection is a roundabout
249 if (config(a,b) == 0)
250 %define index strating point for this roundabout
251 rI n = (b - 1) * 12;
252

253 %do roundabout calculations for this roundabout and time
254 %step
255 %call ROUNDABOUT
256 [t next(tI m+1:tI m+4,tI n+l), ...
257 tspeed next(tI m+1:tI m+4,tI n+l), ...
258 f next(tI m+1:tI m+4,tI n+1), ...
259 fspeed next(tI m+1:tI m+4,tI n+1), ...
260 r next(a,rI n+1:rI n+12), ...
261 rspeed next(a,rI n+1:rI n+12), ...
262 rex next(a,rI n+1:rI n+12)] = ...
263 roundabout(t(tI m+1:tI m+4,tI n+l), ...
264 f(tI m+1:tI m+4,tI n+1), ...
265 r(a,rI n+1:rI n+12), ...
266 rex(a,rI n+1:rI n+12), ...
267 t next(tI m+1:tI m+4,tI n+l), ...
268 tspeed next(tI m+1:tI m+4,tI n+l), ...
269 f next(tI m+1:tI m+4,tI n+1), ...
270 fspeed next(tI m+1:tI m+4,tI n+1));
271

272 %write roundabout into map
273 map(mapI m+l+1:mapI m+l+6,mapI n+l+1:mapI n+l+6) = ...
274 [0 1 r(a,rI n+4) r(a,rI n+3) 1 0;
275 1 r(a,rI n+5) 1 1 r(a,rI n+2) 1;
276 r(a,rI n+6) 1 0 0 1 r(a,rI n+1);
277 r(a,rI n+7) 1 0 0 1 r(a,rI n+12);
278 1 r(a,rI n+8) 1 1 r(a,rI n+11) 1;
279 0 1 r(a,rI n+9) r(a,rI n+10) 1 0];
280

281 %add cars around this crossroad in this time step to
282 %counter for cars around crossroads
283 for v = tI m+1:tI m+4
284 for w = tI n+1:tI n+l
285 if (t(v,w) 6= 1)
286 numCaRoIt(time) = numCaRoIt(time) + 1;
287 end
288 if (f(v,w) 6= 1)
289 numCaRoIt(time) = numCaRoIt(time) + 1;
290 end
291 end
292 end
293 for y = rI n+1:rI n+12
294 if (r(a,y) 6= 1)
295 numCaRoIt(time) = numCaRoIt(time) + 1;
296 end

32

297 end
298

299 end
300

301 %%%
302 %crossroads
303

304 %check if intersection is a crossing with priority to the right
305 if (config(a,b) == 1)
306 %define index strating points for this crossraod
307 pI m = (a - 1) * 6;
308 pI n = (b - 1) * 6;
309

310 %do crossroad calculations for this crossroad and time step
311 %call CROSSROAD
312 [t next(tI m+1:tI m+4,tI n+l), ...
313 tspeed next(tI m+1:tI m+4,tI n+l), ...
314 f next(tI m+1:tI m+4,tI n+1), ...
315 fspeed next(tI m+1:tI m+4,tI n+1), ...
316 p next(pI m+1:pI m+6,pI n+1:pI n+6), ...
317 pspeed next(pI m+1:pI m+6,pI n+1:pI n+6), ...
318 came next(pI m+1:pI m+6,pI n+1:pI n+6), ...
319 deadlock next(a,b), ...
320 map(mapI m+l+1:mapI m+l+6,mapI n+l+1:mapI n+l+6)] ...
321 = crossroad(t(tI m+1:tI m+4,tI n+l), ...
322 f(tI m+1:tI m+4,tI n+1), ...
323 p(pI m+1:pI m+6,pI n+1:pI n+6), ...
324 came(pI m+1:pI m+6,pI n+1:pI n+6), ...
325 deadlock(a,b), ...
326 t next(tI m+1:tI m+4,tI n+l), ...
327 tspeed next(tI m+1:tI m+4,tI n+l), ...
328 f next(tI m+1:tI m+4,tI n+1), ...
329 fspeed next(tI m+1:tI m+4,tI n+1));
330

331 %add cars around this roundabout in this time step to
332 %counter for cars around roundabouts
333 for v = tI m+1:tI m+4
334 for w = tI n+1:tI n+l
335 if (t(v,w) 6= 1)
336 numCaCrIt(time) = numCaCrIt(time) + 1;
337 end
338 if (f(v,w) 6= 1)
339 numCaCrIt(time) = numCaCrIt(time) + 1;
340 end
341 end
342 end
343 for x = pI m+1:pI m+6
344 for y = pI n+1:pI n+6
345 if (came(x,y) 6= 0)
346 numCaCrIt(time) = numCaCrIt(time) + 1;

33

347 end
348 end
349 end
350

351 end
352

353 %%%
354 %write streets into map
355 for i = 1:l
356 map(mapI m+i,mapI n+l+3) = t(tI m+1,tI n+i);
357 map(mapI m+l+4,mapI n+i) = t(tI m+2,tI n+i);
358 map(mapI m+2*l+7-i,mapI n+l+4) = t(tI m+3,tI n+i);
359 map(mapI m+l+3,mapI n+2*l+7-i) = t(tI m+4,tI n+i);
360 map(mapI m+l+1-i,mapI n+l+4) = f(tI m+1,tI n+i);
361 map(mapI m+l+3,mapI n+l+1-i) = f(tI m+2,tI n+i);
362 map(mapI m+l+6+i,mapI n+l+3) = f(tI m+3,tI n+i);
363 map(mapI m+l+4,mapI n+l+6+i) = f(tI m+4,tI n+i);
364 end
365

366 %illustrate trafic situation (now not of next time step)
367 if (display)
368 figure(1);
369 imagesc(map);
370 colormap(hot);
371 titlestring = sprintf('Density = %g',density);
372 title(titlestring);
373 drawnow;
374 end
375

376

377 end
378 end
379

380 %calculate average velosity per time step
381 avSpeedIt(time) = (sum(sum(tspeed)) + sum(sum(fspeed)) + ...
382 sum(sum(rspeed)) + sum(sum(pspeed))) / numCars;
383

384 %pause(1);
385

386 %move on time step on
387 t = t next;
388 tspeed = tspeed next;
389 f = f next;
390 fspeed = fspeed next;
391 r = r next;
392 rspeed = rspeed next;
393 rex = rex next;
394 p = p next;
395 pspeed = pspeed next;
396 came = came next;

34

397 deadlock = deadlock next;
398 end
399

400 %overall average velocity
401 averageSpeed = sum(avSpeedIt) / max(size(avSpeedIt));
402 %overall average flow
403 averageFlow = density * averageSpeed;
404

405 %average relative amount of cars around roundabouts
406 avCaRo = sum(numCaRoIt) / (max(size(numCaRoIt)) * numCars);
407 %average relative amount of cars around crossroads
408 avCaCr = sum(numCaCrIt) / (max(size(numCaCrIt)) * numCars);
409

410 end

35

7.2.3 roundabout.m

1 function [tr next, ...
2 trspeed next, ...
3 fr next, ...
4 frspeed next, ...
5 rlocal next, ...
6 rspeedlocal next, ...
7 rexlocal next] ...
8 = roundabout(tr, ...
9 fr, ...

10 rlocal, ...
11 rexlocal, ...
12 tr next, ...
13 trspeed next, ...
14 fr next,...
15 frspeed next)
16 %%%
17 %ROUNDABOUT Calculation of update for a certain roundabout, density and
18 %time step
19 %
20 %A project by Bastian Buecheler and Tony Wood in the GeSS course "Modelling
21 %and Simulation of Social Systems with MATLAB" at ETH Zurich.
22 %Spring 2010
23 %%%
24

25 %in roundabout cell values indicate if car is about to leave roundabout:
26 %0.4 means car is not taking next exit (red in figure)
27 %0.7 means car is taking next exit (yellow in figure)
28 %1 means no car in this position (white in figure)
29

30 %clear local next variables
31 rlocal next = ones(1,12);
32 rspeedlocal next = zeros(1,12);
33 rexlocal next = zeros(1,12);
34

35 %%%
36 %car in front of roundabout
37

38 for k = 1:4
39 if (tr(k,1) == 0.4)
40 %entering roundabout with velocity 1 when possible
41 %roundabout position index
42 iR = mod(3*k+1,12);
43 if (rexlocal(k*3) ≤ 1 && rlocal(iR) == 1)
44 %enter roundabout
45 %decide which exit car is going to take
46 u = randi(12,1);

36

47 %probabilty 6/12 take it takes 2. exit
48 if (u ≤ 6)
49 rexlocal next(iR) = 2;
50 rlocal next(iR) = 0.4;
51 rspeedlocal next(iR) = 1;
52 end
53 %probabilty 3/12 take it takes 1. exit
54 if (u ≥ 7 && u ≤ 9)
55 rexlocal next(iR) = 1;
56 %indicate
57 rlocal next(iR) = 0.7;
58 rspeedlocal next(iR) = 1;
59 end
60 %probabilty 3/12 take it takes 3. exit
61 if (u ≥ 10 && u ≤ 12)
62 rexlocal next(iR) = 3;
63 rlocal next(iR) = 0.4;
64 rspeedlocal next(iR) = 1;
65 end
66 %probabilty 1/12 take it takes 4. exit (turns around)
67 %if (u == 12)
68 % rexlocal next(iR) = 4;
69 % rlocal next(iR) = 0.4;
70 % rspeedlocal next(iR) = 1;
71 %end
72

73 %car waiting in front of roundabout
74 else
75 tr next(k,1) = tr(k,1);
76 trspeed next(k,1) = 0;
77 end
78 end
79 end
80

81 %%%
82 %car in roundabout
83

84 for j = 1:12
85 if (rlocal(j) 6= 1)
86

87 %cars in roundabout not at an exit
88 if (mod(j,3) 6= 0)
89 %if space free, move one forward
90 if (rlocal(j+1) == 1)
91 %take new position
92 rlocal next(j+1) = rlocal(j);
93 rspeedlocal next(j+1) = 1;
94 rexlocal next(j+1) = rexlocal(j);
95 %if no space free, stay
96 else

37

97 rlocal next(j) = rlocal(j);
98 rspeedlocal next(j) = 0;
99 rexlocal next(j) = rexlocal(j);

100 end
101

102 %car at an exit
103 else
104

105 %if car is at its exit
106 if (rexlocal(j) == 1)
107 %if space free, leave roundabout
108 if (fr(j/3,1) == 1)
109 fr next(j/3,1) = 0.4;
110 frspeed next(j/3,1) = 1;
111 %if no space free, stay
112 else
113 rlocal next(j) = rlocal(j);
114 rspeedlocal next(j) = 0;
115 rexlocal next(j) = rexlocal(j);
116 end
117

118 %car at an exit but not the one its taking
119 else
120 %connect r(12) with r(1)
121 if (j == 12)
122 %if space free, move one forward and decrease exit
123 %counter
124 if (rlocal(1) == 1)
125 %decrease exit by one
126 rexlocal next(1) = rexlocal(12) - 1;
127 rspeedlocal next(1) = 1;
128 if (rexlocal next(1) == 1)
129 %indicate
130 rlocal next(1) = 0.7;
131 else
132 rlocal next(1) = 0.4;
133 end
134 %if no space free, stay
135 else
136 rlocal next(12) = rlocal(12);
137 rspeedlocal next(12) = 0;
138 rexlocal next(12) = rexlocal(12);
139 end
140 else
141 %if space free, move one forward and decrease exit
142 %counter
143 if (rlocal(j+1) == 1)
144 %decrease exit by one
145 rexlocal next(j+1) = rexlocal(j) - 1;
146 rspeedlocal next(j+1) = 1;

38

147 if (rexlocal next(j+1) == 1)
148 %indicate
149 rlocal next(j+1) = 0.7;
150 else
151 rlocal next(j+1) = 0.4;
152 end
153 %if no space free, stay
154 else
155 rlocal next(j) = rlocal(j);
156 rspeedlocal next(j) = 0;
157 rexlocal next(j) = rexlocal(j);
158 end
159 end
160 end
161 end
162 end
163 end
164

165 end

39

7.2.4 crossroad.m

1 function [tp next, ...
2 tpspeed next, ...
3 fp next, ...
4 fpspeed next, ...
5 plocal next ...
6 pspeedlocal next, ...
7 camelocal next, ...
8 deadlocklocal next, ...
9 plocal] ...

10 = crossroad(tp, ...
11 fp, ...
12 plocal, ...
13 camelocal, ...
14 deadlocklocal, ...
15 tp next, ...
16 tpspeed next, ...
17 fp next, ...
18 fpspeed next)
19 %%%
20 %CROSSROAD Calculation of update for a certain crossroad, density and time
21 %step
22 %
23 %This program requires the following subprogams:
24 %PDESTINATION
25 %
26 %A project by Bastian Buecheler and Tony Wood in the GeSS course "Modelling
27 %and Simulation of Social Systems with MATLAB" at ETH Zurich.
28 %Spring 2010
29 %%%
30

31 %in crossroad cell values indicate where cars is going:
32 %0.1 means car is turning left (dark red in figure)
33 %0.4 means car is going straight ahead (red in figure)
34 %0.7 means car is turning right (yellow in figure)
35 %1 means no car in this position (white in figure)
36

37 %clear local next variables
38 plocal next = ones(6,6);
39 pspeedlocal next = zeros(6,6);
40 camelocal next = zeros(6,6);
41 deadlocklocal next = 0;
42

43 %'paint' unused corners of plocal black
44 plocal(1,1) = 0;
45 plocal(1,6) = 0;
46 plocal(6,1) = 0;

40

47 plocal(6,6) = 0;
48 plocal(1,2) = 0;
49 plocal(1,5) = 0;
50 plocal(2,1) = 0;
51 plocal(2,6) = 0;
52 plocal(5,1) = 0;
53 plocal(5,6) = 0;
54 plocal(6,2) = 0;
55 plocal(6,5) = 0;
56

57 %key to unlock deadlock for this iteration and this
58 %intersection
59 unlock = randi(4,1);
60

61 %%%
62 %cars in front of crossroad
63

64 %car waiting from above
65 if (tp(1,1) == 0.4)
66 %if space is free and there is no car coming from the
67 %left going straight ahead already in crossing, enter
68 if (plocal(1,3) == 1 && camelocal(2,3) 6= 4 && ...
69 camelocal(2,4) 6= 1 && ...
70 ¬(camelocal(2,5) == 4 && plocal(2,5) == 0.4))
71 %decide where car is heading
72 plocal next(1,3) = pdestination;
73 pspeedlocal next(1,3) = 1;
74 %mark which entrance car came from
75 camelocal next(1,3) = 1;
76 %if not wait
77 else
78 tp next(1,1) = tp(1,1);
79 tpspeed next(1,1) = 0;
80 end
81 end
82

83 %car waiting from left
84 if (tp(2,1) == 0.4)
85 %if space is free and there is no car coming from the
86 %left going straight ahead already in crossing, enter
87 if (plocal(4,1) == 1 && camelocal(4,2) 6= 1 && ...
88 camelocal(3,2) 6= 1 && ...
89 ¬(camelocal(2,2) == 1 && plocal(2,2) == 0.4))
90 %decide where car is heading
91 plocal next(4,1) = pdestination;
92 pspeedlocal next(4,1) = 1;
93 %mark which entrance car came from
94 camelocal next(4,1) = 2;
95 %if not wait
96 else

41

97 tp next(2,1) = tp(2,1);
98 tpspeed next(2,1) = 0;
99 end

100 end
101

102 %car waiting from below
103 if (tp(3,1) == 0.4)
104 %if space is free and there is no car coming from the
105 %left going straight ahead already in crossing, enter
106 if (plocal(6,4) == 1 && camelocal(5,4) 6= 2 && ...
107 camelocal(5,3) 6= 2 && ...
108 ¬(camelocal(5,2) == 2 && plocal(5,2) == 0.4))
109 %decide where car is heading
110 plocal next(6,4) = pdestination;
111 pspeedlocal next(6,4) = 1;
112 %mark which entrance car came from
113 camelocal next(6,4) = 3;
114 %if not wait
115 else
116 tp next(3,1) = tp(3,1);
117 tpspeed next(3,1) = 0;
118 end
119 end
120

121 %car waiting from right
122 if (tp(4,1) == 0.4)
123 %if space is free and there is no car coming from the
124 %left going straight ahead already in crossing, enter
125 if (plocal(3,6) == 1 && camelocal(3,5) 6= 3 && ...
126 camelocal(4,5) 6= 3 && ...
127 ¬(camelocal(5,5) == 3 && plocal(5,5) == 0.4))
128 %decide where car is heading
129 plocal next(3,6) = pdestination;
130 pspeedlocal next(3,6) = 1;
131 %mark which entrance car came from
132 camelocal next(3,6) = 4;
133 %if not wait
134 else
135 tp next(4,1) = tp(4,1);
136 tpspeed next(4,1) = 0;
137 end
138 end
139

140 %%%
141 %cars going turning right step 1
142

143 %car coming form above, turning right
144 %1. step
145 if (plocal(1,3) == 0.7)
146 %if space free, car has right of way and can drive

42

147 if (plocal(2,2) == 1 && plocal(2,3) 6= 0.4)
148 plocal next(2,2) = plocal(1,3);
149 pspeedlocal next(2,2) = 1;
150 camelocal next(2,2) = camelocal(1,3);
151 % if space not free, stay
152 else
153 plocal next(1,3) = plocal(1,3);
154 pspeedlocal next(1,3) = 0;
155 camelocal next(1,3) = camelocal(1,3);
156 end
157 end
158

159 %car coming form left, turning right
160 %1. step
161 if (plocal(4,1) == 0.7)
162 %if space free, car has right of way and can drive
163 if (plocal(5,2) == 1 && plocal(4,2) 6= 0.4)
164 plocal next(5,2) = plocal(4,1);
165 pspeedlocal next(5,2) = 1;
166 camelocal next(5,2) = camelocal(4,1);
167 % if space not free, stay
168 else
169 plocal next(4,1) = plocal(4,1);
170 pspeedlocal next(4,1) = 0;
171 camelocal next(4,1) = camelocal(4,1);
172 end
173 end
174

175 %car coming form below, turning right
176 %1. step
177 if (plocal(6,4) == 0.7)
178 %if space free, car has right of way and can drive
179 if (plocal(5,5) == 1 && plocal(5,4) 6= 0.4)
180 plocal next(5,5) = plocal(6,4);
181 pspeedlocal next(5,5) = 1;
182 camelocal next(5,5) = camelocal(6,4);
183 % if space not free, stay
184 else
185 plocal next(6,4) = plocal(6,4);
186 pspeedlocal next(6,4) = 0;
187 camelocal next(6,4) = camelocal(6,4);
188 end
189 end
190

191 %car coming form right, turning right
192 %1. step
193 if (plocal(3,6) == 0.7)
194 %if space free, car has right of way and can drive
195 if (plocal(2,5) == 1 && plocal(3,5) 6= 0.4)
196 plocal next(2,5) = plocal(3,6);

43

197 pspeedlocal next(2,5) = 1;
198 camelocal next(2,5) = camelocal(3,6);
199 % if space not free, stay
200 else
201 plocal next(3,6) = plocal(3,6);
202 pspeedlocal next(3,6) = 0;
203 camelocal next(3,6) = camelocal(3,6);
204 end
205 end
206

207 %%%
208 %cars going straight ahead step 1
209

210 %car coming form above, going stright ahead
211 %1. step
212 if (plocal(1,3) == 0.4)
213 %if space is free and there are no are coming from the
214 %right or is there has been a deadlock and driver have
215 %agreed by hand signal to let this car go, dive
216 %!warning: only works if this step is done after update
217 %of cars in front of crossraod!
218 if (plocal(2,2) == 1 && plocal(2,3) 6= 0.4 && ...
219 ((tp next(2,1) == 1 && plocal next(4,1) == 1 && ...
220 plocal(4,1) == 1) | | (deadlocklocal == 4 && unlock == 1)))
221 plocal next(2,2) = plocal(1,3);
222 pspeedlocal next(2,2) = 1;
223 camelocal next(2,2) = camelocal(1,3);
224 %no deadlock, clear deadlock counter
225 deadlocklocal next = 0;
226 % if not, stay
227 else
228 plocal next(1,3) = plocal(1,3);
229 pspeedlocal next(1,3) = 0;
230 camelocal next(1,3) = camelocal(1,3);
231 %increase deadlock counter, if it reaches 4 a
232 %deadlock occurs and will have to be solve in next
233 %time step by a hand signals between drivers
234 deadlocklocal next = deadlocklocal next + 1;
235 end
236 end
237

238 %car coming form left, going stright ahead
239 %1. step
240 if (plocal(4,1) == 0.4)
241 %if space is free and there are no are coming from the
242 %right or is there has been a deadlock and driver have
243 %agreed by hand signal to let this car go, dive
244 %!warning: only works if this step is done after update
245 %of cars in front of crossraod!
246 if (plocal(5,2) == 1 && plocal(4,2) 6= 0.4 && ...

44

247 ((tp next(3,1) == 1 && plocal next(6,4) == 1 && ...
248 plocal(6,4) == 1) | | (deadlocklocal == 4 && unlock == 2)))
249 plocal next(5,2) = plocal(4,1);
250 pspeedlocal next(5,2) = 1;
251 camelocal next(5,2) = camelocal(4,1);
252 %no deadlock, clear deadlock counter
253 deadlocklocal next = 0;
254 % if not, stay
255 else
256 plocal next(4,1) = plocal(4,1);
257 pspeedlocal next(4,1) = 0;
258 camelocal next(4,1) = camelocal(4,1);
259 %increase deadlock counter, if it reaches 4 a
260 %deadlock occurs and will have to be solve in next
261 %time step by a hand signals between drivers
262 deadlocklocal next = deadlocklocal next + 1;
263 end
264 end
265

266 %car coming form below, going stright ahead
267 %1. step
268 if (plocal(6,4) == 0.4)
269 %if space is free and there are no are coming from the
270 %right or is there has been a deadlock and driver have
271 %agreed by hand signal to let this car go, dive
272 %!warning: only works if this step is done after update
273 %of cars in front of crossraod!
274 if (plocal(5,5) == 1 && plocal(5,4) 6= 0.4 && ...
275 ((tp next(4,1) == 1 && plocal next(3,6) == 1 && ...
276 plocal(3,6) == 1) | | (deadlocklocal == 4 && unlock == 3)))
277 plocal next(5,5) = plocal(6,4);
278 pspeedlocal next(5,5) = 1;
279 camelocal next(5,5) = camelocal(6,4);
280 %no deadlock, clear deadlock counter
281 deadlocklocal next = 0;
282 % if not, stay
283 else
284 plocal next(6,4) = plocal(6,4);
285 pspeedlocal next(6,4) = 0;
286 camelocal next(6,4) = camelocal(6,4);
287 %increase deadlock counter, if it reaches 4 a
288 %deadlock occurs and will have to be solve in next
289 %time step by a hand signals between drivers
290 deadlocklocal next = deadlocklocal next + 1;
291 end
292 end
293

294 %car coming form right, going stright ahead
295 %1. step
296 if (plocal(3,6) == 0.4)

45

297 %if space is free and there are no are coming from the
298 %right or is there has been a deadlock and driver have
299 %agreed by hand signal to let this car go, dive
300 %!warning: only works if this step is done after update
301 %of cars in front of crossraod!
302 if (plocal(2,5) == 1 && plocal(3,5) 6= 0.4 && ...
303 ((tp next(1,1) == 1 && plocal next(1,3) == 1 && ...
304 plocal(1,3) == 1) | | (deadlocklocal == 4 && unlock == 4)))
305 plocal next(2,5) = plocal(3,6);
306 pspeedlocal next(2,5) = 1;
307 camelocal next(2,5) = camelocal(3,6);
308 %no deadlock, clear deadlock counter
309 deadlocklocal next = 0;
310 % if not, stay
311 else
312 plocal next(3,6) = plocal(3,6);
313 pspeedlocal next(3,6) = 0;
314 camelocal next(3,6) = camelocal(3,6);
315 %increase deadlock counter, if it reaches 4 a
316 %deadlock occurs and will have to be solve in next
317 %time step by a hand signals between drivers
318 deadlocklocal next = deadlocklocal next + 1;
319 end
320 end
321

322 %%%
323 %cars turning right step 2
324 %cars going straight ahead step 5
325

326 %2. step for car coming from above, turning right
327 %5. step for car coming from right, going straight ahead
328 if (plocal(2,2) == 0.7 | | (plocal(2,2) == 0.4 && camelocal(2,2) == 4))
329 %if space free, car has right of way and can drive
330 if (plocal(3,1) == 1)
331 plocal next(3,1) = plocal(2,2);
332 pspeedlocal next(3,1) = 1;
333 camelocal next(3,1) = camelocal(2,2);
334 % if space not free, stay
335 else
336 plocal next(2,2) = plocal(2,2);
337 pspeedlocal next(2,2) = 0;
338 camelocal next(2,2) = camelocal(2,2);
339 end
340 end
341

342 %2. step for car coming from left, turning right
343 %5. step for car coming from above, going straight ahead
344 if (plocal(5,2) == 0.7 | | (plocal(5,2) == 0.4 && camelocal(5,2) == 1))
345 %if space free, car has right of way and can drive
346 if (plocal(6,3) == 1)

46

347 plocal next(6,3) = plocal(5,2);
348 pspeedlocal next(6,3) = 1;
349 camelocal next(6,3) = camelocal(5,2);
350 % if space not free, stay
351 else
352 plocal next(5,2) = plocal(5,2);
353 pspeedlocal next(5,2) = 0;
354 camelocal next(5,2) = camelocal(5,2);
355 end
356 end
357

358 %2. step for car coming from below, turning right
359 %5. step for car coming from left, going straight ahead
360 if (plocal(5,5) == 0.7 | | (plocal(5,5) == 0.4 && camelocal(5,5) == 2))
361 %if space free, car has right of way and can drive
362 if (plocal(4,6) == 1)
363 plocal next(4,6) = plocal(5,5);
364 pspeedlocal next(4,6) = 1;
365 camelocal next(4,6) = camelocal(5,5);
366 % if space not free, stay
367 else
368 plocal next(5,5) = plocal(5,5);
369 pspeedlocal next(5,5) = 0;
370 camelocal next(5,5) = camelocal(5,5);
371 end
372 end
373

374 %2. step for car coming from right, turning right
375 %5. step for car coming from below, going straight ahead
376 if (plocal(2,5) == 0.7 | | (plocal(2,5) == 0.4 && camelocal(2,5) == 3))
377 %if space free, car has right of way and can drive
378 if (plocal(1,4) == 1)
379 plocal next(1,4) = plocal(2,5);
380 pspeedlocal next(1,4) = 1;
381 camelocal next(1,4) = camelocal(2,5);
382 % if space not free, stay
383 else
384 plocal next(2,5) = plocal(2,5);
385 pspeedlocal next(2,5) = 0;
386 camelocal next(2,5) = camelocal(2,5);
387 end
388 end
389

390 %%%
391 %cars going staight ahead step 2 to 4
392

393 %car coming form above, going staight ahead
394 %2. step
395 if (plocal(2,2) == 0.4 && camelocal(2,2) == 1)
396 %if space is free, drive

47

397 if (plocal(3,2) == 1)
398 plocal next(3,2) = plocal(2,2);
399 pspeedlocal next(3,2) = 1;
400 camelocal next(3,2) = camelocal(2,2);
401 % if not, wait
402 else
403 plocal next(2,2) = plocal(2,2);
404 pspeedlocal next(2,2) = 0;
405 camelocal next(2,2) = camelocal(2,2);
406 end
407 end
408 %3. step
409 if (plocal(3,2) == 0.4)
410 %if space is free, drive
411 if (plocal(4,2) == 1 && plocal(4,1) 6= 0.1)
412 plocal next(4,2) = plocal(3,2);
413 pspeedlocal next(4,2) = 1;
414 camelocal next(4,2) = camelocal(3,2);
415 % if not, wait
416 else
417 plocal next(3,2) = plocal(3,2);
418 pspeedlocal next(3,2) = 0;
419 camelocal next(3,2) =camelocal(3,2);
420 end
421 end
422 %4. step
423 if (plocal(4,2) == 0.4)
424 %if space is free, drive
425 if (plocal(5,2) == 1)
426 plocal next(5,2) = plocal(4,2);
427 pspeedlocal next(5,2) = 1;
428 camelocal next(5,2) = camelocal(4,2);
429 % if not, wait
430 else
431 plocal next(4,2) = plocal(4,2);
432 pspeedlocal next(4,2) = 0;
433 camelocal next(4,2) = camelocal(4,2);
434 end
435 end
436

437 %car coming form left, going staight ahead
438 %2. step
439 if (plocal(5,2) == 0.4 && camelocal(5,2) == 2)
440 %if space is free, drive
441 if (plocal(5,3) == 1)
442 plocal next(5,3) = plocal(5,2);
443 pspeedlocal next(5,3) = 1;
444 camelocal next(5,3) = camelocal(5,2);
445 % if not, wait
446 else

48

447 plocal next(5,2) = plocal(5,2);
448 pspeedlocal next(5,2) = 0;
449 camelocal next(5,2) = camelocal(5,2);
450 end
451 end
452 %3. step
453 if (plocal(5,3) == 0.4)
454 %if space is free, drive
455 if (plocal(5,4) == 1 && plocal(6,4) 6= 0.1)
456 plocal next(5,4) = plocal(5,3);
457 pspeedlocal next(5,4) = 1;
458 camelocal next(5,4) = camelocal(5,3);
459 % if not, wait
460 else
461 plocal next(5,3) = plocal(5,3);
462 pspeedlocal next(5,3) = 0;
463 camelocal next(5,3) =camelocal(5,3);
464 end
465 end
466 %4. step
467 if (plocal(5,4) == 0.4)
468 %if space is free, drive
469 if (plocal(5,5) == 1)
470 plocal next(5,5) = plocal(5,4);
471 pspeedlocal next(5,5) = 1;
472 camelocal next(5,5) = camelocal(5,4);
473 % if not, wait
474 else
475 plocal next(5,4) = plocal(5,4);
476 pspeedlocal next(5,4) = 0;
477 camelocal next(5,4) = camelocal(5,4);
478 end
479 end
480

481 %car coming form below, going staight ahead
482 %2. step
483 if (plocal(5,5) == 0.4 && camelocal(5,5) == 3)
484 %if space is free, drive
485 if (plocal(4,5) == 1)
486 plocal next(4,5) = plocal(5,5);
487 pspeedlocal next(4,5) = 1;
488 camelocal next(4,5) = camelocal(5,5);
489 % if not, wait
490 else
491 plocal next(5,5) = plocal(5,5);
492 pspeedlocal next(5,5) = 0;
493 camelocal next(5,5) = camelocal(5,5);
494 end
495 end
496 %3. step

49

497 if (plocal(4,5) == 0.4)
498 %if space is free, drive
499 if (plocal(3,5) == 1 && plocal(3,6) 6= 0.1)
500 plocal next(3,5) = plocal(4,5);
501 pspeedlocal next(3,5) = 1;
502 camelocal next(3,5) = camelocal(4,5);
503 % if not, wait
504 else
505 plocal next(4,5) = plocal(4,5);
506 pspeedlocal next(4,5) = 0;
507 camelocal next(4,5) =camelocal(4,5);
508 end
509 end
510 %4. step
511 if (plocal(3,5) == 0.4)
512 %if space is free, drive
513 if (plocal(2,5) == 1)
514 plocal next(2,5) = plocal(3,5);
515 pspeedlocal next(2,5) = 1;
516 camelocal next(2,5) = camelocal(3,5);
517 % if not, wait
518 else
519 plocal next(3,5) = plocal(3,5);
520 pspeedlocal next(3,5) = 0;
521 camelocal next(3,5) = camelocal(3,5);
522 end
523 end
524

525 %car coming form right, going staight ahead
526 %2. step
527 if (plocal(2,5) == 0.4 && camelocal(2,5) == 4)
528 %if space is free, drive
529 if (plocal(2,4) == 1)
530 plocal next(2,4) = plocal(2,5);
531 pspeedlocal next(2,4) = 1;
532 camelocal next(2,4) = camelocal(2,5);
533 % if not, wait
534 else
535 plocal next(2,5) = plocal(2,5);
536 pspeedlocal next(2,5) = 0;
537 camelocal next(2,5) = camelocal(2,5);
538 end
539 end
540 %3. step
541 if (plocal(2,4) == 0.4)
542 %if space is free, drive
543 if (plocal(2,3) == 1 && plocal(1,3) 6= 0.1)
544 plocal next(2,3) = plocal(2,4);
545 pspeedlocal next(2,3) = 1;
546 camelocal next(2,3) = camelocal(2,4);

50

547 % if not, wait
548 else
549 plocal next(2,4) = plocal(2,4);
550 pspeedlocal next(2,4) = 0;
551 camelocal next(2,4) =camelocal(2,4);
552 end
553 end
554 %4. step
555 if (plocal(2,3) == 0.4)
556 %if space is free, drive
557 if (plocal(2,2) == 1)
558 plocal next(2,2) = plocal(2,3);
559 pspeedlocal next(2,2) = 1;
560 camelocal next(2,2) = camelocal(2,3);
561 % if not, wait
562 else
563 plocal next(2,3) = plocal(2,3);
564 pspeedlocal next(2,3) = 0;
565 camelocal next(2,3) = camelocal(2,3);
566 end
567 end
568

569 %%%
570 %cars turning left
571

572 %car coming from above turning left
573 %1. step
574 if (plocal(1,3) == 0.1)
575 %if next two spaces are free and there is no car coming
576 %form right turning in front of this car, drive
577 if (plocal(2,3) == 1 && plocal(3,4) == 1 && ...
578 plocal(4,2) 6= 0.1 && plocal(3,3) == 1)
579 plocal next(2,3) = plocal(1,3);
580 pspeedlocal next(2,3) = 1;
581 camelocal next(2,3) = camelocal(1,3);
582 %if not, stay
583 else
584 plocal next(1,3) = plocal(1,3);
585 pspeedlocal next(1,3) = 0;
586 camelocal next(1,3) = camelocal(1,3);
587 end
588 end
589 %2. step
590 if (plocal(2,3) == 0.1)
591 %is space is free, drive
592 if (plocal(3,4) == 1)
593 plocal next(3,4) = plocal(2,3);
594 pspeedlocal next(3,4) = 1;
595 camelocal next(3,4) = camelocal(2,3);
596 %if not, stay

51

597 else
598 plocal next(2,3) = plocal(2,3);
599 pspeedlocal next(2,3) = 0;
600 camelocal next(2,3) = camelocal(2,3);
601 end
602 end
603 %3 .step
604 if (plocal(3,4) == 0.1)
605 %if space is free and there is no car coming from the
606 %opposite side going straight ahead and no car coming
607 %from the right , drive
608 if (plocal(4,5) == 1 && plocal(4,6) == 1 && ...
609 plocal(5,5) == 1 && plocal(5,4) 6= 0.4)
610 plocal next(4,5) = plocal(3,4);
611 pspeedlocal next(4,5) = 1;
612 camelocal next(4,5) = camelocal(3,4);
613 %if not, stay
614 else
615 plocal next(3,4) = plocal(3,4);
616 pspeedlocal next(3,4) = 0;
617 camelocal next(3,4) = camelocal(3,4);
618 end
619 end
620 %4. step
621 if (plocal(4,5) == 0.1)
622 %if space is free, drive
623 if (plocal(4,6) == 1 && plocal(5,5) 6= 0.7 && ...
624 ¬(plocal(5,5) == 0.4 && camelocal(5,5) == 2))
625 plocal next(4,6) = plocal(4,5);
626 pspeedlocal next(4,6) = 1;
627 camelocal next(4,6) = camelocal(4,5);
628 %if not, stay
629 else
630 plocal next(4,5) = plocal(4,5);
631 pspeedlocal next(4,5) = 0;
632 camelocal next(4,5) = camelocal(4,5);
633 end
634 end
635

636 %car coming from the left turning left
637 %1. step
638 if (plocal(4,1) == 0.1)
639 %if next two spaces are free and there is no car coming
640 %form right turning in front of this car, drive
641 if (plocal(4,2) == 1 && plocal(3,3) == 1 && ...
642 plocal(5,4) 6= 0.1 && plocal(4,3) == 1)
643 plocal next(4,2) = plocal(4,1);
644 pspeedlocal next(4,2) = 1;
645 camelocal next(4,2) = camelocal(4,1);
646 %if not, stay

52

647 else
648 plocal next(4,1) = plocal(4,1);
649 pspeedlocal next(4,1) = 0;
650 camelocal next(4,1) = camelocal(4,1);
651 end
652 end
653 %2. step
654 if (plocal(4,2) == 0.1)
655 %is space is free, drive
656 if (plocal(3,3) == 1)
657 plocal next(3,3) = plocal(4,2);
658 pspeedlocal next(3,3) = 1;
659 camelocal next(3,3) = camelocal(4,2);
660 %if not, stay
661 else
662 plocal next(4,2) = plocal(4,2);
663 pspeedlocal next(4,2) = 0;
664 camelocal next(4,2) = camelocal(4,2);
665 end
666 end
667 %3 .step
668 if (plocal(3,3) == 0.1)
669 %if space is free and there is no car coming from the
670 %opposite side going straight ahead and no car coming
671 %from the right , drive
672 if (plocal(2,4) == 1 && plocal(1,4) == 1 && ...
673 plocal(2,5) == 1 && plocal(3,5) 6= 0.4)
674 plocal next(2,4) = plocal(3,3);
675 pspeedlocal next(2,4) = 1;
676 camelocal next(2,4) = camelocal(3,3);
677 %if not, stay
678 else
679 plocal next(3,3) = plocal(3,3);
680 pspeedlocal next(3,3) = 0;
681 camelocal next(3,3) = camelocal(3,3);
682 end
683 end
684 %4. step
685 if (plocal(2,4) == 0.1)
686 %if space is free, drive
687 if (plocal(1,4) == 1 && plocal(2,5) 6= 0.7 && ...
688 ¬(plocal(2,5) == 0.4 && camelocal(2,5) == 3))
689 plocal next(1,4) = plocal(2,4);
690 pspeedlocal next(1,4) = 1;
691 camelocal next(1,4) = camelocal(2,4);
692 %if not, stay
693 else
694 plocal next(2,4) = plocal(2,4);
695 pspeedlocal next(2,4) = 0;
696 camelocal next(2,4) = camelocal(2,4);

53

697 end
698 end
699

700 %car coming from below turning left
701 %1. step
702 if (plocal(6,4) == 0.1)
703 %if next two spaces are free and there is no car coming
704 %form right turning in front of this car, drive
705 if (plocal(5,4) == 1 && plocal(4,3) == 1 && ...
706 plocal(3,5) 6= 0.1 && plocal(4,4) == 1)
707 plocal next(5,4) = plocal(6,4);
708 pspeedlocal next(5,4) = 1;
709 camelocal next(5,4) = camelocal(6,4);
710 %if not, stay
711 else
712 plocal next(6,4) = plocal(6,4);
713 pspeedlocal next(6,4) = 1;
714 camelocal next(6,4) = camelocal(6,4);
715 end
716 end
717 %2. step
718 if (plocal(5,4) == 0.1)
719 %is space is free, drive
720 if (plocal(4,3) == 1)
721 plocal next(4,3) = plocal(5,4);
722 pspeedlocal next(4,3) = 1;
723 camelocal next(4,3) = camelocal(5,4);
724 %if not, stay
725 else
726 plocal next(5,4) = plocal(5,4);
727 pspeedlocal next(5,4) = 0;
728 camelocal next(5,4) = camelocal(5,4);
729 end
730 end
731 %3 .step
732 if (plocal(4,3) == 0.1)
733 %if space is free and there is no car coming from the
734 %opposite side going straight ahead and no car coming
735 %from the right , drive
736 if (plocal(3,2) == 1 && plocal(3,1) == 1 && ...
737 plocal(2,2) == 1 && plocal(2,3) 6= 0.4)
738 plocal next(3,2) = plocal(4,3);
739 pspeedlocal next(3,2) = 1;
740 camelocal next(3,2) = camelocal(4,3);
741 %if not, stay
742 else
743 plocal next(4,3) = plocal(4,3);
744 pspeedlocal next(4,3) = 0;
745 camelocal next(4,3) = camelocal(4,3);
746 end

54

747 end
748 %4. step
749 if (plocal(3,2) == 0.1)
750 %if space is free, drive
751 if (plocal(3,1) == 1 && plocal(2,2) 6= 0.7 && ...
752 ¬(plocal(2,2) == 0.4 && camelocal(2,2) == 4))
753 plocal next(3,1) = plocal(3,2);
754 pspeedlocal next(3,1) = 1;
755 camelocal next(3,1) = camelocal(3,2);
756 %if not, stay
757 else
758 plocal next(3,2) = plocal(3,2);
759 pspeedlocal next(3,2) = 0;
760 camelocal next(3,2) = camelocal(3,2);
761 end
762 end
763

764 %car coming from right turning left
765 %1. step
766 if (plocal(3,6) == 0.1)
767 %if next two spaces are free and there is no car coming
768 %form right turning in front of this car, drive
769 if (plocal(3,5) == 1 && plocal(4,4) == 1 && ...
770 plocal(2,3) 6= 0.1 && plocal(3,4) == 1)
771 plocal next(3,5) = plocal(3,6);
772 pspeedlocal next(3,5) = 1;
773 camelocal next(3,5) = camelocal(3,6);
774 %if not, stay
775 else
776 plocal next(3,6) = plocal(3,6);
777 pspeedlocal next(3,6) = 0;
778 camelocal next(3,6) = camelocal(3,6);
779 end
780 end
781 %2. step
782 if (plocal(3,5) == 0.1)
783 %is space is free, drive
784 if (plocal(4,4) == 1)
785 plocal next(4,4) = plocal(3,5);
786 pspeedlocal next(4,4) = 1;
787 camelocal next(4,4) = camelocal(3,5);
788 %if not, stay
789 else
790 plocal next(3,5) = plocal(3,5);
791 pspeedlocal next(3,5) = 0;
792 camelocal next(3,5) = camelocal(3,5);
793 end
794 end
795 %3 .step
796 if (plocal(4,4) == 0.1)

55

797 %if space is free and there is no car coming from the
798 %opposite side going straight ahead and no car coming
799 %from the right , drive
800 if (plocal(5,3) == 1 && plocal(6,3) == 1 && ...
801 plocal(5,2) == 1 && plocal(4,2) 6= 0.4)
802 plocal next(5,3) = plocal(4,4);
803 pspeedlocal next(5,3) = 1;
804 camelocal next(5,3) = camelocal(4,4);
805 %if not, stay
806 else
807 plocal next(4,4) = plocal(4,4);
808 pspeedlocal next(4,4) = 0;
809 camelocal next(4,4) = camelocal(4,4);
810 end
811 end
812 %4. step
813 if (plocal(5,3) == 0.1)
814 %if space is free, drive
815 if (plocal(6,3) == 1 && plocal(5,2) 6= 0.7 && ...
816 ¬(plocal(5,2) == 0.4 && camelocal(5,2) == 1))
817 plocal next(6,3) = plocal(5,3);
818 pspeedlocal next(6,3) = 1;
819 camelocal next(6,3) = camelocal(5,3);
820 %if not, stay
821 else
822 plocal next(5,3) = plocal(5,3);
823 pspeedlocal next(5,3) = 1;
824 camelocal next(5,3) = camelocal(5,3);
825 end
826 end
827

828 %%%
829 %cars leaving crossing
830

831 %car leaving to the top
832 if (plocal(1,4) 6= 1)
833 %if space free, leave crossing with speed 1
834 if (fp(1,1) == 1)
835 fp next(1,1) = 0.4;
836 fpspeed next(1,1) = 1;
837 %if space not free, stay
838 else
839 plocal next(1,4) = plocal(1,4);
840 pspeedlocal next(1,4) = 0;
841 camelocal next(1,4) = camelocal(1,4);
842 end
843 end
844

845 %car leaving to the left
846 if (plocal(3,1) 6= 1)

56

847 %if space free, leave crossing with speed 1
848 if (fp(2,1) == 1)
849 fp next(2,1) = 0.4;
850 fpspeed next(2,1) = 1;
851 %if space not free, stay
852 else
853 plocal next(3,1) = plocal(3,1);
854 pspeedlocal next(3,1) = 0;
855 camelocal next(3,1) = camelocal(3,1);
856 end
857 end
858

859 %car leaving to the bottom
860 if (plocal(6,3) 6= 1)
861 %if space free, leave crossing with speed 1
862 if (fp(3,1) == 1)
863 fp next(3,1) = 0.4;
864 fpspeed next(3,1) = 1;
865 %if space not free, stay
866 else
867 plocal next(6,3) = plocal(6,3);
868 pspeedlocal next(6,3) = 0;
869 camelocal next(6,3) = camelocal(6,3);
870 end
871 end
872

873 %car leaving to the bottom
874 if (plocal(4,6) 6= 1)
875 %if space free, leave crossing with speed 1
876 if (fp(4,1) == 1)
877 fp next(4,1) = 0.4;
878 fpspeed next(4,1) = 1;
879 %if space not free, stay
880 else
881 plocal next(4,6) = plocal(4,6);
882 pspeedlocal next(4,6) = 0;
883 camelocal next(4,6) = camelocal(4,6);
884 end
885 end
886

887 end

57

7.2.5 connection.m

1 function [cNew,dNew] = connection(aOld,bOld,cOld,posNew,m,n,length)
2 %%%
3 %CONNECTION Deside to which street a certain street connects to
4 %
5 %INPUT:
6 %AOLD column index of intersection
7 %BOLD, row index of intersection
8 %COLD, column index in t of old position
9 %posNEW, position in new street

10 %M, number of columns in city map
11 %N, number of rows in city map
12 %LENGTH, Length of a street
13 %
14 %OUTPUT:
15 %CNEW, Column index in t of new position
16 %DNEW, Row index in t of new position
17 %
18 %A project by Bastian Buecheler and Tony Wood in the GeSS course "Modelling
19 %and Simulation of Social Systems with MATLAB" at ETH Zurich.
20 %Spring 2010
21 %%%
22

23 %street heading up from intersection
24 if (mod(cOld,4) == 1)
25 %if there is a intersections above, connect to it
26 if (aOld > 1)
27 cNew = (aOld - 2) * 4 + 3;
28 dNew = (bOld - 1) * length + posNew;
29 %otherwise connect to other side of map
30 else
31 cNew = (m - 1) * 4 + 3;
32 dNew = (bOld - 1) * length + posNew;
33 end
34 end
35

36 %street heading left from intersection
37 if (mod(cOld,4) == 2)
38 %if there is a intersection to the left, connect to it
39 if (bOld > 1)
40 cNew = aOld * 4;
41 dNew = (bOld - 2) * length + posNew;
42 %otherwise connect to other side of map
43 else
44 cNew = aOld * 4;
45 dNew = (n - 1) * length + posNew;
46 end

58

47 end
48

49 %street heading down from intersection
50 if (mod(cOld,4) == 3)
51 %if there is a intersection below, connect to it
52 if (aOld < m)
53 cNew = aOld * 4 + 1;
54 dNew = (bOld - 1) * length + posNew;
55 %otherwise connect to other side of map
56 else
57 cNew = 1;
58 dNew = (bOld - 1) * length + posNew;
59 end
60 end
61

62 %street heading right from intersection
63 if (mod(cOld,4) == 0)
64 %if there is a intersection to the right, connect to it
65 if (bOld < n)
66 cNew = (aOld - 1) * 4 + 2;
67 dNew = bOld * length + posNew;
68 %otherwise connect to other side of map
69 else
70 cNew = (aOld - 1) * 4 + 2;
71 dNew = posNew;
72 end
73 end

59

7.2.6 pdestination.m

1 function [pfirst] = pdestination
2 %%%
3 %PDESTINATION Deside where a car is going
4 %
5 %OUTPUT:
6 %PFIRST = 0.1 car turns right
7 % = 0.4 car goes straight ahead
8 % = 0.7 car turns left
9 %

10 %A project by Bastian Buecheler and Tony Wood in the GeSS course "Modelling
11 %and Simulation of Social Systems with MATLAB" at ETH Zurich.
12 %Spring 2010
13 %%%
14

15 %decide which direction car is going
16 u = randi(12,1);
17 %probabilty 6/12 car goes straight ahead
18 if (u ≤ 6)
19 pfirst = 0.4;
20 end
21 %probabilty 3/12 car turns right
22 if (u ≥ 7 && u ≤ 9)
23 %indicate right
24 pfirst = 0.7;
25 end
26 %probabilty 3/12 car turns left
27 if (u ≥ 10 && u ≤ 12)
28 pfirst = 0.1;
29 end
30

31 end

60

