
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Pedestrian Dynamics

Robert Gantner & Patrick Wyss

Zurich

May 2010

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe, keine
anderen als die angegebenen Quellenhilfsmittel verwendt habe, und alle Stellen, die
wörtlich oder sinngemäss aus veröffentlichen Schriften entnommen wurden, als solche
kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Gruppenarbeit nicht,
auch nicht auszugsweise, bereits für andere Prüfungen ausgefertigt wurde.

Patrick Wyss Robert Gantner

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Patrick Wyss Robert Gantner

2

Contents

1 Individual contributions 4

2 Introduction and Motivations 4

3 Description of the Model 4
3.1 Room Representation and Floor Field 4
3.2 Timestep . 5
3.3 Conflicts . 5
3.4 Update Procedure . 5

4 Implementation 6
4.1 Overview . 6
4.2 Initialization . 6
4.3 Agent Loop . 6
4.4 Updating a Room . 7
4.5 Move Agents between Floors . 7
4.6 Finishing the Time Loop . 7

5 Simulation Results and Discussion 7
5.1 Evacuation Time vs. Number of Agents 8
5.2 Evacuation Time vs. Number of Floors 8
5.3 Evacuation Time vs. Friction Parameter µ 9
5.4 Evacuation Time vs. kS and kD . 9
5.5 Heterogeneous Agent Distributions 11

6 Summary and Outlook 12

7 References 13

A Code Listing 14
A.1 simulation.m . 14
A.2 createRoom.m . 16
A.3 createRoom2.m . 18
A.4 staticFF.m . 20
A.5 agentloop.m . 22
A.6 updateroom.m . 24
A.7 drawFloor.m . 25

3

1 Individual contributions

The entire project was concepted, pro-
grammed and debugged by both authors
simultaneously. Therefore, it is not pos-
sible to seperate the work into individual
contributions.

2 Introduction and Motiva-
tions

The general security awareness of our
society is continuously increasing, espe-
cially with respect to creating emergency
exit plans. The design and layout of a
room or building contributes directly to
the efficiency of such plans. Because it
is not possible to conduct empirical ex-
periments in real-life panic situations, one
must rely on simulation models which ac-
curately describe these situations.
In our project, we were interested in
examining the differences between two
building configurations. We wanted to
find out if a simple model could yield ba-
sic results describing the effect of such
layouts.

3 Description of the Model

In this project, we first recreated an
agent-based model found in [3] and de-
scribed in detail in [1]. Here we will give
a basic overview of this model, along with
our additions to it.

3.1 Room Representation and
Floor Field

The model is based on a square matrix
representing the room in which the agents
“live”. Depending on the value of each
field one can designate it as a wall, door,
agent, or a free field. Once the basic
structure of this matrix is defined (mean-
ing the walls and doors), a so-called static
force field can be computed. This force
field can be interpreted as a potential de-
pending on the distance to the exits (see
figure 1).

0

2

4

6

8

10

12

14

16

18

Fig.1: Static floor field for the ground level.

Additionally, a dynamic floor field is
used during the simulation to represent
the näıve following of other pedestrians.
Like the name says, it is updated during
the simulation. This is done by simply in-
creasing the entries in the dynamic field
corresponding to each occupied room en-
try. [1]
In order to avoid a situation in which the
dynamic floor field dominates the tran-
sition probability (and thus creating an

4

oscillatory situation), we decided to nor-
malize the dynamic floor field after each
timestep.
In this paper we regard agents as obsta-
cles – this means that if an agent oc-
cupies a cell, no other agent can move
there in the current timestep. The rea-
son for this is that if the agent currently
on the destination cell does not move or
is moved back by the conflict resolution
algorithm, another conflict unnecessarily
occurs. (See section 3.3)

3.2 Timestep

In each timestep, we update the room
matrix by moving around the pedestrians
with certain probabilities. These prob-
abilities are calculated according to the
two floor fields. The following formula is
used for this:

Pij = Nξij exp(kDDij − kSSij)

where P is a 3 × 3 matrix containing
the probabilities of moving in each di-
rection as well as staying in the current
cell, N−1 =

∑
i,j Pij is a normalization

constant, ξij = 1 if the cell in direction
ij is free and 0 otherwise, kS is the coef-
ficient of the static floor field, kD is the
coefficient of the dynamic floor field, and
S and D are the respective floor fields. [3]

3.3 Conflicts

If more than one agent tries to move to
the same cell, a conflict is encountered.
We resolve these conflicts according to
the theory in [3]. With a probability of

µ, every agent involved in the conflict is
moved back to his original cell. With
probability 1 − µ, one randomly chosen
agent is allowed to stay.

3.4 Update Procedure

1. Calculate Probabilities
The probabilities are computed for
each agent according to the formula
explained above.

2. Calculate New Positions
According to these probabilities,
each agent moves to a new cell.
The origin and destination cells are
stored in order to be able to detect
conflicts.

3. Detect and Resolve Conflicts
Each new position is compared to
the other destination positions in
order to determine new conflicts.
After this is done for each agent, the
conflicts are resolved as described
above.

4. Update Room
Now that there are no conflicts, the
room can be updated. If an agent
moves to a cell marked as a door, it
is removed. If the agent is not on the
first floor, it is moved to the same
position on the next lowest floor.
In the case that this position is al-
ready occupied, it is moved back to
its original position. [1]

5

4 Implementation

4.1 Overview

To better explain our implementation, we
first provide an overview of each function.
Then, an in-depth explanation of the sim-
ulation is provided.

• simulation.m
This file contains the main loops. It
calls the other functions and man-
ages the dynamic floor field.

• createRoom.m
This file creates the initial room ma-
trix and populates it with agents.
The following values are used: 1:
free floor, 2: wall, 3: agent, 4: door.
See also [2].

• staticFF.m
The staticFF function calculates the
static floor field for a given room
matrix using the Dijkstra shortest-
path algorithm.

• agentloop.m
This function implements the agent
loop. It is responsible for computing
probabilities, storing the movement
of agents and detecting conflicts.

• updateroom.m
In this function, all conflicts are re-
solved. Subsequently, the agents are
moved to their new positions. Out-
going agents are removed.

• drawRoom.m
This function is responsible for
drawing the room.

• drawFloor.m
This function draws multiple floors.

4.2 Initialization

First, a number of matrices are initial-
ized. Since multiple floors must be cre-
ated, the createRoom function is called
for each floor. This is accomplished by
storing the floors in a cell array named
room. The i-th floor would then be
room{i}.
For each floor, the static floor field must
be computed. This is accomplished by
storing the static floor field in a cell array
named S{i}. Since the parameter that
is really used is S · kS, which does not
change during the simulation, this mul-
tiplication can be computed once at the
beginning. The result is stored in the cell
array SkS{i} which is used for further
computation.
Since we also use a dynamic floor field,
it must be initialized at the beginning.
We name it D{i}, also indexed according
to the room it represents. At the begin-
ning of the simulation it contains matri-
ces composed only of zeros.

4.3 Agent Loop

The agent loop is the first procedure ex-
ecuted within each timestep. Its argu-
ments are a room, the static floor field
multiplied with the parameter kS, the dy-
namic floor field, and the parameter kD.
The agent loop, as the name implies,
loops over the number of agents. For
each agent, it computes the probabilities
of moving to a different cell. This is de-

6

scribed in 3.2.
After the probabilities are calculated, a
destination cell can be selected. The se-
lected destination, along with the origin
(current position of the agent), is stored
in two vectors, inew and jnew. The for-
mat for the k-th agent is: inew(k, :) =
[destination, origin]. The reason both
origin and destination are stored is to al-
low the conflict resolution procedure to
move an agent back to his original posi-
tion if he is not chosen to proceed.
Now that the new positions are known,
conflicts can be detected. Once a collision
is detected, it is stored in the conflict
vector.
This concludes the agentloop procedure.
The vectors inew, jnew and conflict are
returned to the main program for further
processing.

4.4 Updating a Room

The first operation in updateroom is the
resolution of conflicts. This is done with
a probability of 1− µ, where µ is the so-
called friction parameter. The higher it
is, the lower the probability of resolving
a conflict becomes.
If a conflict shall be resolved, one agent
is chosen at random to move to the des-
tination. All others are moved back to
their original position, which is why the
old positions are also stored in inew and
jnew.
Next, all outgoing agents are detected.
This is done by comparing each door’s co-
ordinates to the agents’ positions. The
outgoing agents are stored in a vector
named outgoing and returned, in order

to move agents around between floors.

4.5 Move Agents between Floors

In our multi-floor model, the agents are
moved between floors after one timestep
over all the floors is finished. The outgo-
ing agents from each floor are placed in
the floor below, provided the correspond-
ing cell is free. If this is not the case,
the agent is moved back up to his origi-
nal position. The agents exiting from the
lowest floor are just removed since they
have completely escaped the building.

4.6 Finishing the Time Loop

At the end of the time loop, the cur-
rent number of agents per floor is stored
for further analysis. The floors are then
drawn and if everyone has left the build-
ing the program is stopped.

5 Simulation Results and
Discussion

In our tests we analyzed various scenarios
using different room geometries. First,
everything was simulated with empty
rooms. Then, more realistic situations
were modeled with a room configuration
resembling that of an office building. The
ground floor (see figure 2) contains an exit
of size 3; the upper floors have offices and
corridors. Two possible stairway configu-
rations were analyzed: stairways in the
corners and in the center (as in figure
3). The total number of stairways in each
case are the same.

7

Fig.2: Ground Floor

Fig.3: Higher Floors (Stairway in Center)

If nothing is stated, the following pa-
rameters were used: gridsize: 100, numa-
gents: 90 (per floor), kS = 1.5, kD = 3,
µ = 0.25.

5.1 Evacuation Time vs. Number
of Agents

In an empty room, the evacuation time
depends linearly on the number of agents
once a certain minimum density has been
reached.
If the density is less than this minimum,
the total evacuation time is more or less
constant because there are barely any
conflicts. The only factor contributing to
the total evacuation time is the time the
agent with the longest trajectory needs
to reach the exit. The expectation value
of this trajectory can be regarded as con-
stant because the probability of having
at least one agent in a certain area barely
changes and approaches 1.
In our simulation, this minimum density
was reached at around 180 agents per
10000 grid cells (see figure 4).

180 360 540 720 900 180 360 540 720 900
100

150

200

250

300

350

400

450

500

550

Number of Agents

Ev
ac

ua
tio

n
Ti

m
e

Fig.4: Evacuation Time vs. Number of Agents
(One Floor)

5.2 Evacuation Time vs. Number
of Floors

The total evacuation time in the office
building model was found to depend lin-

8

early on the number of floors for the
tested geometries.

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

Number of Floors

Ev
ac

ua
tio

n
Ti

m
e

Center Stairs
Corner Stairs

Fig.5: Evacuation Time vs. Number of Floors

As is evident from figure 5, our of-
fice model shows that placing stairs in
the corners results in shorter evacuation
times (on average) than placing them in
the center. This is due to the higher num-
ber of conflicts arising when stairways are
beside each other.

5.3 Evacuation Time vs. Friction
Parameter µ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
350

400

450

500

550

600

650

700

750

800

µ

N
um

be
r o

f T
im

es
te

ps

Fig.6: Time vs. µ

The total evacuation time was mea-
sured for different µ values. Since a
higher µ value leads to less conflict res-
olution, we expected that the evacuation
time increases with increasing µ. As can
be seen in figure 6 this was confirmed by
our simulations.

5.4 Evacuation Time vs. kS and kD

The dependence on kS and kD was de-
termined by simulating both versions of
our office building model (stairs in cen-
ter, stairs in corners) with four floors for
different (kS, kD) pairs. The simulation
was repeated 10 times and the resulting
times averaged to gain a more balanced
measurement. This task required quite
some time, in total approximately 6.25
days of serial computation. Luckily, we
had access to a Brutus account capable
of running the matlab code, reducing the
time to about 5 hours. Further optimiza-
tions were achieved by parallelizing over
the kD loop and loading a pre-computed
static floor field instead of recomputing
the same one every time.
This parallelization was achieved by call-
ing a script that runs simulations for dif-
ferent kS values (10 times each) with dif-
ferent parameters for kD on distributed
nodes. The details are, however, beyond
the scope of this project.
The resulting data summarized in figures
7-9. (Note that each simulation was al-
lowed a maximum of 2000 timesteps.)

9

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

kS

k D

400

600

800

1000

1200

1400

1600

1800

2000

Fig.7: Number of timesteps for different (kS , kD) pairs.
(Stairs in corners)

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

kS

k D

500

1000

1500

2000

Fig.8: Number of timesteps for different (kS , kD) pairs.
(Central stairs)

As can be seen, the number of
timesteps for a complete evacuation of
the building changes extremely quickly
depending on the parameters kD and kS.
The value of kD either causes the dynamic
floor field to not influence the probability
at all, or it is so large that the proba-
bility is essentially only influenced by the
dynamic floor field, removing the effect of
the static floor field on the probabilities.
The clumping of the agents caused by

large kD values also results in more con-
flicts, causing a longer evacuation time.

0

0.5

1

1.5

2

2.5

3
0

5

10

15

20

25

0

500

1000

1500

2000

kD
kS

Fig.9: Number of timesteps for different (kS , kD) pairs.
(Stairs in corners)

As can be seen in figure 10, once a
certain kS value has been reached, the
evacuation time can no longer be short-
ened by increasing kS. This is of course
because if the potential is very large, ev-
ery agent will move in the direction of
the shortest path and hardly take any de-
tours. Increasing the potential even more
has no additional effect on the probabili-
ties. This can be observed for both corner
and central stairs.

0 0.5 1 1.5 2 2.5 3
200

400

600

800

1000

1200

1400

kS

Ev
ac

ua
tio

n
Ti

m
e

Central Stairs
Corner Stairs

Fig.10: Time vs. kS (4 Floors)

10

5.5 Heterogeneous Agent Distri-
butions

After analyzing the effects of the above
mentioned parameters, we changed the
distribution of the agents in the building.
Each odd floor has 120 agents, each even
floor 60. The number of agents per floor
was plotted against the time (see figures
11 and 12). These results were obtained
by simulating a total of 50 times and av-
eraging the results.

0 100 200 300 400 500 600 700 800
0

50

100

150

200

250

Timestep

N
um

be
r o

f A
ge

nt
s

1st Floor
2nd Floor
3rd Floor
4th Floor
5th Floor
6th Floor
7th Floor
8th Floor
9th Floor

Fig.11: Number of Agents vs. Timesteps
(Stairs in corners)

0 200 400 600 800 1000 1200
0

50

100

150

200

250

Timestep

N
um

be
r o

f A
ge

nt
s

1st Floor
2nd Floor
3rd Floor
4th Floor
5th Floor
6th Floor
7th Floor
8th Floor
9th Floor

Fig.12: Number of Agents vs. Timesteps
(Central Stairs)

As can be clearly seen, the two floor
geometries yield very different results. In
figure 11, the configuration with stairs in
the corners has conjestion on the fourth
floor. With central stairs, this conjestion
is mainly present in floors two and three
(see figure 12).
In figure 13, the results can be seen for a
homogeneous agent distribution.

11

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

0 500 1000
0

50

100

150

200

250

Timesteps

N
um

be
r o

f A
ge

nt
s

Floor1
Floor2
Floor3
Floor4
Floor5
Floor6
Floor7
Floor8
Floor9
Floor10

Fig.13: Number of agents per floor. From upper left to lower right: increasing number of floors.

6 Summary and Outlook

Our implementation of the floor field
model provides a basis for simulating
multiple floors concurrently. The office
building model we used to test differ-
ent staircase configurations allows for a

coarse analysis of the evacuation time. Of
course, the results presented herein have
not been verified by empirical observa-
tions and should be understood as purely
theoretical conclusions; any direct appli-
cation to real-world scenarios would re-
quire an empirically confirmed model.

12

7 References

[1] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz. Simulation of
pedestrian dynamics using a two-dimensional cellular automaton. Physica A:
Statistical Mechanics and its Applications, 295(3-4):507 – 525, 2001.

[2] Lea Müller and David Hasenfratz. Pedestrian dynamics. Lecture with Computer
Exercises: Modelling and Simulating Social Systems with MATLAB, page 48,
May 2009.

[3] Daichi Yanagisawa, Ayako Kimura, Akiyasu Tomoeda, Ryosuke Nishi, Yushi
Suma, Kazumichi Ohtsuka, and Katsuhiro Nishinari. Introduction of frictional
and turning function for pedestrian outflow with an obstacle. Phys. Rev. E,
80(3):036110, Sep 2009.

13

A Code Listing

A.1 simulation.m

1 % simulation.m
2 % input:
3 % gridSize: dimension of NxN room
4 % numAgent: number of agents
5 % kS: static floor field coupling parameter
6 % kD: dynamic floor field coupling parameter
7 % mu: probability that conflict is not resolved
8 % tmax: number of timesteps
9 % p: time of pause between timesteps

10 % numfloors: number of floors to simulate, floor 1 is lowest floor
11 % stairposition: 0 −> corner stairs, 1 −> central stairs
12 %
13 % output:
14 % t: time
15 % n: number of agents in the room
16 function [tt,nn] = simulation(gridSize,numAgent,kS,kD,mu,tmax,p,...
17 numfloors,stairposition)
18

19 close all
20

21 % define default values − use if function called with too few arguments
22 if nargin < 1, gridSize = 100; end
23 if nargin < 2, numAgent=gridSize; end
24 if nargin < 3, kS = 1.5; end
25 if nargin < 4, kD = 0.01; end
26 if nargin < 5, mu = 0.25; end
27 if nargin < 6, tmax = 100000; end
28 if nargin < 7, p = 0.01; end
29 if nargin < 8, numfloors = 3; end
30 if nargin < 9, stairposition = 0; end
31

32 % initialization
33 N = gridSize;
34 numfloors2 = numfloors;
35 nn = []; % vector of n's to return
36

37 % create the room
38 room{1} = createRoom(gridSize, numAgent);
39 for i=2:numfloors
40 room{i} = createRoom2(gridSize, numAgent);
41 if mod(i,2) == 0
42 if stairposition == 0 % stairs in corners
43 %add stairs for even floors
44 room{i}(98,96) = 4; room{i}(3,96) = 4;

14

45 room{i}(3,5) = 4; room{i}(98,5) = 4;
46 else %central stairs
47 room{i}(48,52:53) = 4; room{i}(52,52:53) = 4;
48 end
49 else
50 if stairposition == 0 % stairs in corners
51 %add stairs for odd floors
52 room{i}(98,94) = 4; room{i}(3,94) = 4;
53 room{i}(3,7) = 4; room{i}(98,7) = 4;
54 else %central stairs
55 room{i}(48,47:48) = 4; room{i}(52,47:48) = 4;
56 end
57 end
58 end
59

60 % loop over floors to calculate static field and initialize dynamic field
61 for i=1:numfloors
62 % calculate static field
63 S{i} = staticFF(room{i});
64 SkS{i} = S{i}*kS;
65 % initialize dynamic floor field
66 D{i} = zeros(N);
67 end
68

69 % time loop
70 for t=1:tmax
71 % loop over floors
72 for f=1:numfloors2
73 % agent loop (returns new room matrix
74 %f
75 [inew, jnew, conflict] = agentloop(room{f},SkS{f},D{f},kD);
76 % update the room
77 [room{f},outgoing{f}] = updateroom(room{f},conflict,inew,jnew,mu);
78 % update dynamic field
79 D{f} = updatedynamicff(D{f}, room{f}, outgoing{f});
80 end
81

82 % insert outgoing agents of higher floors into lower floors
83 for i=2:numfloors2 % start at 2 because those exiting floor 1 are gone
84 if ¬isempty(outgoing{i})
85 for u=1:size(outgoing{i},1)
86 if room{i−1}(outgoing{i}(u,1),outgoing{i} (u,2)) == 1
87 room{i−1}(outgoing{i}(u,1),outgoing{i} (u,2)) = 3;
88 else
89 room{i}(outgoing{i}(u,3), outgoing{i}(u,4)) = 3;
90 end
91 end
92 end
93 end
94 % number of agents

15

95 n = [];
96 for f=1:numfloors2
97 agent = find(room{f} == 3);
98 n = [n ; length(agent)];
99 end

100 n = [n ; zeros(numfloors−numfloors2,1)];
101 % reduce number of floors that are looked at (speed)
102 if n(numfloors2) == 0
103 numfloors2 = numfloors2 − 1;
104 end
105 % remember how many total agents per timestep
106 nn = [nn,n];
107 % draw
108 drawFloor(room, numfloors);
109 pause(p);
110 % stop if everyone is evacuated
111 if sum(n) == 0
112 tt = 1:t;
113 return
114 end
115 end
116 tt = 1:t;
117 end
118

119

120 function [D] = updatedynamicff(D , room , outgoing)
121 % add 1 to fields where a person is
122 i = find(room==3);
123 for j=1:length(i)
124 k = i(j); % i is the room vector
125 D(k) = D(k)+1;
126 end
127 % add 1 to fields where a person exited
128 for j=1:size(outgoing,1)
129 D(outgoing(j,1),outgoing(j,2)) = D(outgoing(j,1),outgoing(j,2)) + 1;
130 end
131 %D = D/norm(D);
132 end

A.2 createRoom.m

1 % createRoom.m
2 % This function creates a quadratic room of size gridSize.
3 % numAgent defines the number of agents placed in the room.
4 % i: floor
5 % The following integer coding is choosen for the room matrix:
6 % 1 free floor 2 wall

16

7 % 3 agent 4 open door
8 function [room, posAgent] = createRoom(gridSize, numAgent, i)
9

10 % create room matrix
11 room = ones(gridSize);
12

13 % create the walls
14 room(:,1) = 2; room(:,gridSize) = 2;
15 room(1,:) = 2; room(gridSize,:) = 2;
16

17 % create obstacles
18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 room(22:32,16:26) = 2; room(68:78,16:26) = 2;
20 room(22:32,75:85) = 2; room(68:78,75:85) = 2;
21 room(8:92,40) = 2; room(8:92,60) = 2;
22

23 %stair room in the middle
24 room(40,40:60) = 2; room(60,40:60) = 2;
25 room(40:60,40) = 2; room(40:60,60) = 2;
26 room(45:55,50) = 2; room(50,45:55) = 2;
27 room(40,50) = 1; room(60,50) = 1;
28 room(50,40) = 1;
29

30 % add door
31 room(round(gridSize/2)−1, gridSize) = 4;
32 room(round(gridSize/2), gridSize) = 4;
33 room(round(gridSize/2)+1, gridSize) = 4;
34

35 % Add the agents in the middle (range 1/3 to 2/3 of the gridsize).
36 n=0;
37 while n6=numAgent %while used because of retrying in case of occupied field
38 % Calculate X−position.
39 xPos = round(rand*(gridSize/3)+gridSize/3);
40 % Calculate Y−position.
41 yPos = round(rand*(gridSize/3)+gridSize/3);
42 % Take position if it is free.
43 if room(xPos, yPos) == 1
44 n=n+1;
45 room(xPos, yPos) = 3;
46 % Save agent's position.
47 posAgent(n,1) = xPos;
48 posAgent(n,2) = yPos;
49

50 end
51 end
52 end

17

A.3 createRoom2.m

1 % createRoom2.m
2 % This function creates a quadratic room of size gridSize.
3 % numAgent defines the number of agents placed in the room.
4 % i: floor
5 % The following integer coding is choosen for the room matrix:
6 % 1 free floor 2 wall
7 % 3 agent 4 open door
8 function [room, posAgent] = createRoom2(gridSize, numAgent)
9

10 % create room matrix
11 room = ones(gridSize);
12

13 % create the walls
14 room(:,1) = 2; room(:,gridSize) = 2;
15 room(1,:) = 2; room(gridSize,:) = 2;
16

17 % create obstacles/room design, optimized for gridSize 100
18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 room(:,11) = 2; room(:,14) = 2;
20 room(:,30) = 2; room(:,70) = 2;
21 room(:,86) = 2; room(:,90) = 2;
22

23 room(9:11,11) = 1; room(90:92,11) = 1;
24 room(9:11,90) = 1; room(90:92,90) = 1;
25

26 room(8,1:10) = 2;
27 room(12,1:10) = 2; room(50,1:10) = 2;
28 room(89,1:10) = 2; room(93,1:10) = 2;
29

30 room(8,90:100) = 2;
31 room(12,90:100) = 2; room(50,90:100) = 2;
32 room(89,90:100) = 2; room(93,90:100) = 2;
33

34 room(2:5,14) = 1; room(2:5,30) = 1;
35 room(2:5,70) = 1; room(2:5,86) = 1;
36

37 room(96:99,14) = 1; room(96:99,30) = 1;
38 room(96:99,70) = 1; room(96:99,86) = 1;
39

40 room(6,14:86) = 2; room(48,14:86) = 2;
41 room(52,14:86) = 2; room(96,14:86) = 2;
42

43 %stair room in the middle
44 room(41:59,41:59) = 1;
45 room(40,40:60) = 2; room(60,40:60) = 2;
46 room(40:60,40) = 2; room(40:60,60) = 2;

18

47

48 room(45:55,50) = 2; room(50,45:55) = 2;
49

50 room(40,50) = 1; room(60,50) = 1;
51 room(50,40) = 1; room(50,60) = 1;
52

53 %corridors
54 room(49:51,14) = 1; room(49:51,30) = 1;
55 room(49:51,70) = 1; room(49:51,86) = 1;
56

57 room(6,49:51) = 1; room(96,49:51) = 1;
58 room(6:40,48) = 2; room(6:40,52) = 2;
59 room(60:95,48) = 2; room(60:95,52) = 2;
60

61 room(20,48) = 1; room(35,48) = 1;
62 room(65,48) = 1; room(80,48) = 1;
63 room(20,52) = 1; room(35,52) = 1;
64 room(65,52) = 1; room(80,52) = 1;
65

66 %doors for these rooms
67 room(8,6) = 1; room(8,95) = 1;
68 room(93,6) = 1; room(93,95) = 1;
69

70 room(30,11) = 1; room(70,11) = 1;
71 room(70,90) = 1; room(30,90) = 1;
72 room(30,14) = 1; room(70,14) = 1;
73 room(30,86) = 1; room(70,86) = 1;
74

75 room(6,50) = 1; room(96,50) = 1;
76

77 %exits/stairs design
78 %stairs are added in simulation
79 room(2:5,6) = 2;
80 room(2:5,95) = 2;
81 room(96:99,6) = 2;
82 room(96:99,95) = 2;
83

84 room(5,4:8) = 2;
85 room(5,93:97) = 2;
86 room(96,4:8) = 2;
87 room(96,93:97) = 2;
88

89 % Add the agents in the middle (range 1/3 to 2/3 of the gridsize).
90 n=0;
91 while n6=numAgent %while used because of retrying in case of occupied field
92 % Calculate X−position.
93 xPos = ceil(rand*100);
94 % Calculate Y−position.
95 yPos = ceil(rand*100);
96

19

97 % Take position if it is free.
98 if room(xPos, yPos) == 1
99 n=n+1;

100 room(xPos, yPos) = 3;
101 % Save agent's position.
102 posAgent(n,1) = xPos;
103 posAgent(n,2) = yPos;
104

105 end
106 end
107 end

A.4 staticFF.m

1 % staticFF.m
2 function [S] = staticFF(room)
3 % calculate static floor field
4 % 2010 Robert Gantner Patrick Wyss
5

6 %start at exit, calculate distance to all neighbors (max. 8).
7 % room size
8 N = size(room,1);
9 % find exits

10 e = find(room == 4);
11 assert(¬isempty(e),'no doors found');
12 % coordinates of exits
13 i = mod(e,N);
14 ind = find(i == 0);
15 i(ind) = N;
16 j = (e−i)./N+1;
17

18 % initialize S
19 S = inf(N,N,length(e));
20 % loop over all exits
21 for q = 1:length(e)
22 % initialize cut
23 cut(1,1) = i(q); % x−component of current exit
24 cut(1,2) = j(q); % y−component of current exit
25 % initialize oldcut
26 oldcut = [];
27 % initialize S
28 S(i(q),j(q),q) = 0;
29 % as long as there are still fields to look at
30 while ¬isempty(cut)
31 [cut, S(:,:,q)] = updatecut(room,cut,oldcut,N,S(:,:,q));
32 end
33 end

20

34 % take minimal value over third dimension (exits)
35 S = min(S,[],3);
36 end
37

38 function [newcut, S] = updatecut(room,cut,oldcut,N,S)
39 newcut = [];
40 for i=1:size(cut,1) % iterate over cut
41 n = neighbors(cut(i,:),N,room);
42 for j=1:size(n,1) % over all neighbors
43 % if the current value stored at S(neighbor) is larger than the
44 % distance to the cut value plus the distance to the neighbor, it
45 % should be overwritten.
46 if S(cut(i,1),cut(i,2))+n(j,3) < S(n(j,1),n(j,2))
47 % save new minimal distance to field
48 S(n(j,1),n(j,2)) = S(cut(i,1),cut(i,2))+n(j,3);
49 % add neighbor to cut
50 newcut = addtocut(newcut, oldcut, n(j,1), n(j,2));
51 end
52 % if this is not the case, the neighbor has already been reached−
53 % no need to add to cut.
54 end
55

56 end
57 end
58

59 function [neigh] = neighbors(x,N,room)
60 w = sqrt(2);
61 neigh = [[x 0]+[0 1 1];
62 [x 0]+[0 −1 1]; [x 0]+[1 0 1];
63 [x 0]+[−1 0 1]; [x 0]+[1 1 w];
64 [x 0]+[1 −1 w]; [x 0]+[−1 1 w];
65 [x 0]+[−1 −1 w]];
66 % i component in limits
67 i = find(neigh(:,1) ≤ 0);
68 j = find(neigh(:,1) > N);
69 % j component in limits
70 k = find(neigh(:,2) ≤ 0);
71 l = find(neigh(:,2) > N);
72 rem = [i;j;k;l];
73 if ¬isempty(rem), neigh(rem,:) = []; end
74 % test if neighbor is an obstacle or another door
75 rem = [];
76 for i=1:length(neigh);
77 if room(neigh(i,1),neigh(i,2)) == 2 | | room(neigh(i,1),neigh(i,2)) == 4
78 rem = [rem,i];
79 end
80 end
81 neigh(rem,:) = [];
82 end
83

21

84 function newcut = addtocut(cut, oldcut, ipos, jpos)
85 if isempty(cut)
86 newcut = [ipos, jpos];
87 else
88 % find all matching first requirement
89 ind = cut(:,1) == ipos;
90 % find all matching second requirement while looking only at those
91 % fulfilling the first requirement.
92 res = cut(ind,2) == jpos;
93 % same for oldcut (if not empty)
94 res2 = 0;
95 if ¬isempty(oldcut)
96 ind2 = oldcut(:,1) == ipos;
97 res2 = oldcut(ind2,2) == jpos;
98 end
99 if ¬any(res) && ¬any(res2)

100 %not found in cut AND not found in oldcut −> add
101 newcut = [cut ; ipos, jpos];
102 else
103 newcut = cut;
104 end
105 end
106 end

A.5 agentloop.m

1 % agentloop.m
2 function [inew,jnew,conflict] = agentloop(room,SkS,D,kD)
3 % loops over all agents
4

5 % norm D.
6 if norm(D) 6= 0, D = D/norm(D); end
7

8 N = size(room,1);
9 agent = find(room == 3);

10 n = length(agent);
11

12 i = mod(agent,N);
13 j = (agent−i)./N+1;
14 agent = [i j];
15

16 conflict = [];
17 inew=[]; jnew=[];
18

19 % neighbor matrix determining movement direction
20 nstep = [kron([−1;0;1],ones(3,1)) , kron(ones(3,1),[−1;0;1])];
21 for a = 1:n % a... current agent

22

22 % p(i,j) is probability for agent to go to cell i,j
23 % (only neighboring cells)
24 p = zeros(3);
25 for i=1:3
26 for j=1:3
27 % start at left upper edge
28 if room(agent(a,1)+i−2,agent(a,2)+j−2) == 2 | | ...
29 room(agent(a,1)+i−2,agent(a,2)+j−2) == 3
30 %continue
31 p(j,i) = 0;
32 % p = zeros at beginning, so this element is 0.
33 else
34 p(j,i) = exp(+kD*D(agent(a,1)+i−2,agent(a,2)+j−2)−...
35 SkS(agent(a,1)+i−2,agent(a,2)+j−2));
36 end
37 end
38 end
39 % if all neighbor cells are taken, agent has to stay
40 if sum(sum(p)) == 0, p(2,2) = 1; end
41 p = p./sum(sum(p));
42 % make vector with partial sums of probabilities
43 v(1) = p(1);
44 for k=2:length(p)ˆ2
45 v(k) = v(k−1)+p(k);
46 end
47 % determine index of where to go
48 l = find(rand≤v, 1); %,1 means first instance (minimal)
49 newindi = agent(a,1)+nstep(l,1);
50 newindj = agent(a,2)+nstep(l,2);
51 % move a person
52 % new position old position
53 inew(a,:) = [newindi agent(a,1)];
54 jnew(a,:) = [newindj agent(a,2)];
55

56 if exists(conflict,newindi,newindj) == 0
57 % look through inew,jnew if they have the same destination.
58 for t=1:size(inew,1)−1
59 if inew(t,1) == newindi
60 if jnew(t,1) == newindj
61 % now add to conflicts
62 %conflict = addifnexists(conflict, newindi, newindj);
63 conflict = [conflict; newindi, newindj];
64 break;
65 end
66 end
67 end
68 end
69 end
70

71 end

23

72

73 function found = exists(dest,i,j)
74 found = 0;
75 for t=1:size(dest,1)
76 if dest(t,1) == i
77 if dest(t,2) == j
78 found = 1;
79 end
80 end
81 end
82 end

A.6 updateroom.m

1 % updateroom.m
2 function [room , outgoing] = updateroom(room, conflict, inew, jnew, mu)
3 % resolve conflicts
4 % overview: conflict resolved with probability (1−mu)
5 % if conflict is resolved, chose an agent at random
6 % outgoing is vector containing agents leaving the room
7 outgoing = [];
8

9 % 1. resolve conflicts
10 for c = 1:size(conflict,1)
11 cindex = [];
12 % find indexes in inew vector of agents involved in conflict
13 for t=1:size(inew,1)
14 if inew(t,1) == conflict(c,1)
15 if jnew(t,1) == conflict(c,2)
16 cindex = [cindex , t];
17 end
18 end
19 end
20 if rand ≤ mu
21 % everyone goes back to where they were. delete from inew,jnew
22 inew(cindex,:) = [];
23 jnew(cindex,:) = [];
24 else
25 % chose one at random to stay
26 nconf = length(cindex); % number of agents in conflict
27 nth = ceil(rand*nconf); % select the nth of the nconf
28 cindex(nth) = []; % don't delete the one that stays
29 inew(cindex,:) = [];
30 jnew(cindex,:) = [];
31 end
32 end
33

24

34 % 2. detect outgoing agents
35 % first find all doors:
36 e = find(room == 4);
37 N = length(room);
38 % coordinates of exits (vectors)
39 i = mod(e,N); ind = find(i == 0);
40 i(ind) = N; j = (e−i)./N+1;
41

42 for q=1:length(e) % for all doors
43 delete = [];
44 for t=1:size(inew,1)
45 if inew(t,1) == i(q) % test if someone wants to move to current door
46 if jnew(t,1) == j(q)
47 outgoing =[outgoing;inew(t,1) jnew(t,1) inew(t,2) jnew(t,2)];
48 delete = [delete; t];
49 end
50 end
51 end
52 for tt=1:length(delete)
53 del = delete(tt);
54 % delete agent
55 room(inew(del,2),jnew(del,2)) = 1;
56 end
57 % don't update agent
58 inew(delete,:) = []; jnew(delete,:) = [];
59 end
60

61 % 3. update room matrix (conflicts have been resolved)
62 for i=1:size(inew,1)
63 % remove from origin
64 room(inew(i,2),jnew(i,2)) = 1;
65 % insert at destination
66 room(inew(i,1),jnew(i,1)) = 3;
67 end
68 end

A.7 drawFloor.m

1 % drawFloor.m
2 function drawFloor(room, numfloors)
3 c = sqrt(numfloors);
4 a = ceil(c);
5 if a*(a−1) ≥ numfloors, b = a−1;
6 else b = a;
7 end
8

9 for f=1:numfloors

25

10 subplot(a,b,f);
11 % define colors for each value in the matrix
12 % floor color white (empty cells)
13 myColorMap(1,:) = [1 1 1];
14 % wall color grey
15 myColorMap(2,:) = [21/255 21/255 21/255];
16 % agent color blue (agent)
17 myColorMap(3,:) = [54/255 100/255 139/255];
18 % open door color green
19 myColorMap(4,:) = [0/255 205/255 102/255];
20

21 % draws the 2D matrix as image using defined color map
22 colormap(myColorMap);
23 imagesc(room{f});
24 Title(strcat('Floor ',num2str(f)))
25 axis off;
26 end
27 end

26

