
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Modelling of a primitive stock market with MATLAB

Steven Müllener & Thomas Walti

Zurich

May 2008

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe, keine anderen
als die angegebenen Quellen-Hilsmittel verwenden habe, und alle Stellen, die wörtlich
oder sinngemäss aus veröffentlichen Schriften entnommen wurden, als solche kenntlich
gemacht habe. Darüber hinaus erkläre ich, dass diese Gruppenarbeit nicht, auch nicht
auszugsweise, bereits für eine andere Leistung ausgefertigt wurde.

Steven Müllener Thomas Walti

2

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code is
written by ourselves and is not violating any copyright restrictions.

Steven Müllener Thomas Walti

3

Inhaltsverzeichnis

1 Individual contributions 5
1.1 Steven Müllener . 5
1.2 Thomas Walti . 5

2 Introduction and Motivations 5

3 Description of the Model 6

4 Implementation 8
4.1 Modules . 8
4.2 Parameter Initialisation . 8
4.3 Agent Initialisation . 9
4.4 Code Structure . 10

5 Simulation Results 11
5.1 Expected Results . 11
5.2 Simulation Results . 11

6 Summary and Conclusions 17

7 Matlab Source-code 19
7.1 market.m . 19
7.2 trading.m . 23
7.3 hist volat.m . 24
7.4 opinion prop.m . 25
7.5 price formation.m . 27
7.6 supply demand.m . 28

8 References 29

4

1 Individual contributions

1.1 Steven Müllener

• Implementation of the basic framework in MATLAB

• Module-based structure

• Price formation algorithm

• Concept of clustering and the associated algorithm

• Thorough analysis of parameters and their influence

1.2 Thomas Walti

• Mathematical concept of historical volatility and log price returns

• Statistical analysis of the model in MATLAB

• Concept of fat-tailed distributions

• Preparation of the plots for inclusion in the report

Needless to say, the points listed above just represent areas of specialisation and re-
sponsibility. Large parts of the work has been conducted by both authors often elucidating
the material in collaboration.

2 Introduction and Motivations

A simple stock market model prevalently is based on agents trading one type of share.
The market price is given by the price where the same number of shares are offered by
the sellers as are ordered by the buyers. Therefore, every agent is either a seller or a buyer
at a given point in time.

One of the more famous stock market models of a rather simple nature is the Genoa
market microstructure circumscribed by M. Raberto et al. presented in (1). In cited paper
some information about the model is given but the authors omitted to provide further
details about the implementation as well as to further specify several parameters used in
the model.

Consequently, in this report a simple stock market based on the Genoa market mi-
crostructure is described which was implemented and tested in MATLAB. The aim was to
stay as close to the Genoa market model as possible and where there was no information
about how a certain part of the algorithm was designed, several options were analysed

5

and the one with the lowest disturbing impact on the simulation results has eventually
been chosen.

An expected outcome of the simulation should yield typical features of a real-world
stock market. In this report a few of these features will be named and later on in the
simulation results section the named features will be looked out for.

3 Description of the Model

In this section the starting point for modelling a primitive stock market will be explained.
What is more, the concepts of historical volatility and opinion propagation as two methods
for expanding a primitive stock market towards a more realistic model of a real-world stock
market behaviour are explained.

At first, a simple round- and agent-based market was implemented where every agent
starts with a certain amount of money and a certain amount of shares, each of the same
type and valued at a normalised price of 1. At the beginning of each round (hereafter
referred to as “time-step”), each agent is randomly chosen to be either seller or buyer
with equal probability.

Sellers then define a lower bound price influenced by the current share’s market price.
The limit-price is computed as follows: limit-pricesell:= p/N(µ,σ) where p is the instanta-
neous market price and N(µ,σ) denotes a random draw from a gaussian distribution with
expectation value µ=1.01. The variance is proportional to the historical volatility. This
functional dependence establishes the link between nervous markets and agent uncertain-
ty. Putting it in other words: when volatility is high, uncertainty towards the true price
of the market grows and traders place orders with a broader distribution of limit-prices.
Buy orders are created almost analogous to sell orders: limit-pricebuy:= p·N(µ,σ). The
amount of cash assigned to a buy order is a random fraction of the agent’s available cash.
Similarly, the amount of shares offered in a sell order is a random fraction of the agent’s
available shares. ’Random’ here indicates a draw from a uniform distribution in both
cases. By generating these limit-prices a spread of the average value of buy/sell orders
arises naturally. It is worth noting that so far all the random draws happen independently
of each other. However, they are subject to two constraints: the historical price volatility
and the finiteness of the resources available to each trader. During the price formation
process, the new price is set at the intersection of the demand and supply curves. The
demand function f(p) is the total quantity of assets ordered to buy at a certain price p
which is calculated by summing up all the assets demanded by buyers with a limit-price
higher or equal than the price under test p. Let us label the agents who are buyers by u,
the associated limit-price by bu and the assets ordered to buy by ab. The demand curve

6

then becomes:
f(p) :=

∑
u|bu≥p

abu

Similarly, the supply curve is calculated by summing over the assets every agent is willing
to sell at a certain price. Sellers are labeled by v, the associated limit-price by sv and the
assets ordered to sell are denoted by as. Hence we define the supply curve:

g(p) :=
∑

v|Sv≤p

asu

It is easy to see that the supply function is an decreasing step function of p and the
demand function is an increasing step function of p. If p is less the the market price
g(p) ≤ f(p). If conversely p is greater the the market price g(p) ≥ f(p). Therefore, to
determine the market price one has to iterate the price at which the inequality flips from
less than to greater than. There are two pathological cases. One in which the curves do
not intersect at all and one in which the two step functions have a common horizontal
segment. In the implementation this two rare cases have been respected in a way such
that the stock price can go to zero or become very high in just one time step. Especially
with just few agents and the opinion propagation model enabled, this possibility has to
be accounted for. For maximum efficiency, an algorithm inspired by a binary search has
been chosen in order to determine the current market price. In this algorithm, the possible
price interval is cut in halves. Then the half is kept where at the lower boundary more
stock are demanded whereas at the higher boundaries’ price more shares are offered for
sale. The other half is then discarded and the steps are repeated until the interval is small
enough.

The last section of this artificial market describes the modelling of opinion propagation.
In real-life markets one often can study mass psychological phenomena such as herd
behaviour periods of frenzied buying (bubbles) or selling (crashes). Many observers cite
these episodes as clear examples of herding behaviour being irrational and driven by
emotion. Individual investors join a crowd of others in a rush to get in or out of the
market (2). In a further analysis Pak et al. subdivided traders into groups of what they
called ’rational’ and ’noise’ traders (3). The latter group’s behaviour is governed solely
by studying the market dynamics. Not only for noise traders but also for rational traders
opinion propagation is a crucial factor to consider in every model.

The Genoa market makes use of clustering as a method of implementing opinion
propagation. At every time step each possible pair of traders is chosen to form a cluster
with a preliminarily defined possibility. If both of the two traders already are members of
a cluster, both of the clusters will merge into one single cluster. It goes without saying,
depending on the predefined parameters for the possibilities, clusters can become rather
large quickly. Then, at every time step a random cluster is chosen and activated with

7

a preliminarily defined possibility as well. Once a cluster is activated, all of its members
behave the same way for this time step meaning they all are sellers or buyers respectively.

Generally supporting the idea, the authors of this paper have found this method one
major drawback of the Genoa market when it comes to modelling bubbles or crashes
since after the single time-step when the cluster activation takes place, the cluster is
destroyed and therefore does not have any further influence on the market price. On the
other hand, as soon as historical volatility is considered, the activation of a big cluster is
followed by a growing market uncertainty of the agents and it can be argued that this
outcome is indeed a further reaching consequence of the herding behaviour.

4 Implementation

4.1 Modules

At first, the desired modules are being activated or disabled. Enabling a module leads to
much longer calculation time during execution of the main loop. Depending on several
parameters, duration of the calculation can be up to 120 times longer than without
trading, historical volatility and opinion propagation enabled.

4.2 Parameter Initialisation

In this section global parameters are set. The more important ones are the following:

• N: Number of agents for the model

• timeSteps: number of trading phases (used in the main loop)

• clusterPairProbability: probability for an agent to pair with another agent in order
to form clusters. Each agent can pair with any other agent during each timeStep

• clusterActivateProbability: at each time step a cluster is randomly chosen and ac-
tivated with this probability

• globalBuyProb: probability that an agent is a buyer during a time step. normally
set to 0.5 so agents are sellers and buyers equiprobably.

• sellMu: expectation value for the price factor of a seller

• sellSigmaK: standard deviation for the price factor of a seller

• buyMu: expectation value for the price factor for a buyer

• buySigmaK: standard deviation for the price factor of a buyer

8

4.3 Agent Initialisation

An agent has several individual parameters. The more important ones are the following:

• cash: amount of money the agent currently posesses

• assets: number of assets the agent currently holds

• buyProb: probability that the agent is a buyer during the current time-step

• isBuyer: indicates whether the agent is a seller during the current time-step

• isSeller: indicates whether the agent is a buyer during the current time-step

• buyCash: holds the amount of money a buyer is willing to pay for assets

• buyQuant: holds the quantity of stocks a buyer wants to buy

• buyUpperLimit: determines the highest price a buyer is willing to pay for assets

• sellQuant: holds the quantity of stocks a seller wants to sell

• sellLowerLimit: determines the lowest price a seller is willing to sell his assets

• cluster: holds the index of the cluster which the agent is a member of

9

4.4 Code Structure

1 function [status] = market()
2 % This function is simulating a stock market
3

4 %% Modules
5 TRADING = 1;
6 HISTORICAL VOLATILITY = 1;
7 OPINION PROPAGATION CLUSTERS = 1;
8

9 %% Parameter Initialisation
10 ...
11

12 %% Agent Initialisation
13 ...
14

15 %% Main Loop
16 for t = 1:timeStep
17 %% Opinion Propagation
18 if OPINION PROPAGATION CLUSTERS
19 opinion prop()
20 end
21

22 for n = 1:N
23 %% Agent is Buyer or Seller during this time-step?
24 ...
25 %% Historial Volatility
26 if HISTORICAL VOLATILITY
27 hist volat(n)
28 end
29 %% Agent buy or sell parameters
30 ...
31 end
32

33 %% New Market Price
34 ...
35

36 %% Trading
37 if TRADING
38 trading()
39 end
40 end
41

42 %% PLOT THE DATA
43 ...
44

45 end

10

5 Simulation Results

5.1 Expected Results

In our model of the stock market the decision making process is based on drawing a
random number which itself is gaussian distributed. Therefore one would expect the
stock price to behave like Brownian motion. As long as clustering and volatility effects
are neglected the simulation should yield such a result. In a real life financial market
however, the stock price returns are not purely normally distributed. Empirically, one
usually encounters fat-tailed distribution densities. The main reason for this phenomena
is that decisions of traders are not made isolated or independently from other agents
actions. Hence, a mechanism has to be found where traders can influence each other
wether to sell or to buy shares. In correspondence to the Genoa model, as stated before,
clusters are implemented in order to account for this phenomena.

The financial time series have been simulated in three different modes:

• basic mode with limit-prices that are determined by a fixed gaussian function

• basic mode including limit-prices that exhibit a functional dependence on past price
volatility. The time window during which recent events are determinative was defined
to be 50 time-steps wide.

• the previous mode additionally including the formation of opinion networks (clu-
sters)

All modes were simulated for 1000 time-steps and 200 Agents. As mentioned above the
basic mode should lead to gaussian distributed log returns. The including of volatility
and clustering effects should give rise to deviations from such a behaviour. One expects
to see key stylised facts of financial time series (i.e. fat tails and volatility clustering). In
this section plots will be presented for each of the described modes.

5.2 Simulation Results

An interesting result of the simulation is that even in absence of clustering, the artificial
market exhibits some key stylised facts of financial time series (i.e. fat tails and
volatility) using just simple trading rules in a environment characterised by the
finiteness of agent resources, order limit-prices as well as the creation and matching of
demand and supply curves. However the plotted results show that there is only a small
deviation from the expected normal distribution.
If we include the ability of the agents to consider the past development we find that for
values above a certain σ the market dynamics react quiet sensitively. The higher the
recent volatility the higher is the agents uncertainty. Therefore price returns increase

11

dramatically. What is more, we can observe that large changes tend to be succeeded by
large changes whereas small changes tend to be succeeded by small changes i.e.
volatility clustering.
The last two plots show the results of the third simulation mode in which clusters are
formed. These clusters can be interpreted as a model for opinion propagation among the
agents. Hence decisions are not made independently. The consequence is a departure
from the gaussian probability density. The figures also show another remarkable fact.
The price tends to be more stable if the probability of clustering is set to a high value.

Fig.1 Results for the basic simulation mode i.e in absence of clustering or volatility
effects. The picture shows almost no deviation from the hypothesis of normal

distribution

12

Fig 2. Shows results for a simulation setting the volatility parameter σ to 6.5 and
respecting past volatility in a time window of 50 time-steps. Clustering is still inactive.

Market dynamics change very sensitive with respect to varying the parameter σ.

13

Fig 3. Upper plot: without volatility effects. Lower plot: volatility parameter σ is set to
6.5 and a time window of 50 time-steps is considered.

Fig 4. Shows results for a simulation setting the volatility parameter σ to 3.5 and
respecting past volatility in a time window of 50 time-steps. Clusters are formed with

probability 0.002 and activated with probability 0.4

14

Fig 5. Activation time and size of the activated clusters. Compare with stock price
development in Fig 4.

15

Fig 6. Simulated time series of the log return vs. gaussian normal distribution. Neither
volatility nor clustering is activated.

Fig 7. Simulated time series of the log return vs. gaussian normal distribution. Volatility
is activated but clustering disabled.

16

Fig 8. Simulated time series of the log return vs. gaussian normal distribution. Both
volatility and clustering are activated.

6 Summary and Conclusions

The artificial market is embedded in a trading environment characterised by the finiten-
ess of agent resources, order limit-prices, and the creation and matching of supply and
demand curves. The model exhibits some substantial properties of financial time series
such as fat tails and volatility clusters. Simulating the model without allowing the agents
to form opinion clusters already yields a rather surprising behaviour that deviates from a
gaussian distribution.

Including the functional dependence between recent volatility effects and the limit
price determining process has a measurable impact on market dynamics. Volatility clu-
sters are observed and the estimate of the probability density function of logarithmic
price returns tends to diverge from the normal distribution. The activation of clustering
gives also rise to fat tails. This reflects the fact that decisions of agents are not made
independently. In addition, the formation of networks has a somewhat stabilising effect
on the price time series.

This model is a computational tool where many experiments can be carried out
and that incorporates the key features of the Genoa market model. However, there are

17

some deficits in the model that can be addressed in future research. The creation and
annihilation of both agents and money can be introduced. Realistically, the market should
be populated with heterogenous groups of agents. Future projects may also include the
notion of short sells which is considered as contributing factor to undesirable market
volatility.

18

7 Matlab Source-code

7.1 market.m

1 function [] = market()
2 % This function simulates a primitive stock market
3

4 clear all
5 close('all','hidden')
6

7 %% Modules
8 TRADING = 1;
9 HISTORICAL VOLATILITY = 1;

10 OPINION PROPAGATION CLUSTERS = 1;
11

12 %% Parameter Initialisation
13 N = 200;
14 timeSteps = 100;
15 PercentageDone = 0;
16

17 % set global market parameters
18 stockPrice = ones(timeSteps,1);
19 activatedClusterSize = zeros(timeSteps,1);
20 clusters = zeros(N/2,1); % maximum number of possible clusters: N/2
21 clusterPairProbability = 0.0001;
22 clusterActivateProbability = 0.2;
23

24 % set global agent parameters
25 globalBuyProb = .5;
26 sellMu = 1.01;
27 sellSigmaK = 3.5;
28 buyMu = 1.01;
29 buySigmaK = 3.5;
30

31 % plot options
32 SUBPLOT NUMBER Y = 2;
33 SUBPLOT NUMBER X = 2;
34 figure(1)
35 hold on
36

37 %% Agent Initialisation
38 agent(N) = struct(...
39 'cash', 10000, ...
40 'assets', 10000, ...
41 'volatSigma', 1, ...
42 'volatTimeInt', 2, ...
43 'buyProb', 0.5, ...
44 'isBuyer', 0, ...

19

45 'isSeller', 0, ...
46 'buyCash', 0, ...
47 'buyQuant', 0, ...
48 'buyUpperLimit', 0, ...
49 'sellQuant', 0, ...
50 'sellLowerLimit', inf, ...
51 'cluster', 0 ...
52);
53

54 for n = 1:N
55 agent(n).cash = 1000;
56 agent(n).assets = 1000;
57 agent(n).volatSigma = 0.02;
58 agent(n).volatTimeInt = 50;
59 agent(n).buyProb = globalBuyProb;
60 agent(n).isBuyer = 0;
61 agent(n).isSeller = 0;
62 agent(n).buyCash = 0;
63 agent(n).buyQuant = 0;
64 agent(n).buyUpperLimit = 0;
65 agent(n).sellQuant = 0;
66 agent(n).sellLowerLimit = inf;
67 agent(n).cluster = 0; % if member of cluster: [clusternumber] | else: [0]
68 end
69

70 global agent;
71 global N;
72 global t;
73 global globalBuyProb;
74 global clusterPairProbability;
75 global clusterActivateProbability;
76 global activatedClusterSize;
77 global clusters;
78 global stockPrice;
79 global buySigmaK;
80 global sellSigmaK;
81

82 %% Main Loop
83 for t = 1:timeSteps
84

85 %% Opinion Propagation
86 if OPINION PROPAGATION CLUSTERS
87 opinion prop()
88 end
89

90 for n = 1:N
91

92 %% Agent is Buyer or Seller during this time-step?
93 if rand(1)<agent(n).buyProb
94 agent(n).isSeller = 0;

20

95 agent(n).isBuyer = 1;
96 % buyCash update
97 agent(n).buyCash = rand(1)*agent(n).cash;
98 else
99 agent(n).isSeller = 1;

100 agent(n).isBuyer = 0;
101 % sellQuant update
102 agent(n).sellQuant = round(rand(1)*agent(n).assets); %av
103 end
104

105 %% Historial Volatility
106 if HISTORICAL VOLATILITY
107 hist volat(n)
108 end
109

110 %% Agent buy or sell parameters
111 if (agent(n).isBuyer == 1)
112 agent(n).buyUpperLimit = stockPrice(t)*...
113 (normrnd(buyMu,agent(n).volatSigma));
114 agent(n).buyQuant = round(agent(n).buyCash/agent(n).buyUpperLimit);
115 else
116 agent(n).sellLowerLimit = stockPrice(t)/...
117 abs(normrnd(sellMu,agent(n).volatSigma));
118 end
119

120 end
121

122 %% New Market Price
123 stockPrice(t+1) = price formation(stockPrice(t));
124

125 %% Trading
126 if TRADING
127 trading()
128 end
129

130 if PercentageDone 6= round(100*(t/timeSteps))
131 PercentageDone = round(100*(t/timeSteps))
132 end
133

134 end
135

136 %% PLOT THE DATA
137 % Stock price
138 subplot(SUBPLOT NUMBER Y,SUBPLOT NUMBER X,1)
139 plot(stockPrice)
140 % Log price return of the Stock price
141 subplot(SUBPLOT NUMBER Y,SUBPLOT NUMBER X,2)
142 stockPriceReturnLog = log(stockPrice(2:end))-log(stockPrice(1:end-1));
143 plot(100*stockPriceReturnLog)
144 % Probplot of the log price return

21

145 subplot(SUBPLOT NUMBER Y,SUBPLOT NUMBER X,3)
146 probplot(stockPriceReturnLog)
147 % Estimate of the PDF
148 subplot(SUBPLOT NUMBER Y,SUBPLOT NUMBER X,4)
149 ksdensity(stockPriceReturnLog)
150

151 figure(2)
152 plot(activatedClusterSize)
153

154

155 end

22

7.2 trading.m

1 function [] = trading()
2 % This function is simulating a stock market
3 % INPUT:
4 %
5 % OUTPUT:
6 %
7

8 global agent
9 global N

10 global t
11 global stockPrice
12

13 % lower bound of stocks to trade
14 [f,g] = supply demand(stockPrice(t+1));
15 tradeVolume = min(f,g);
16 tradedSell = 0;
17 tradedBuy = 0;
18 for n = 1:N
19 if agent(n).isSeller == 1
20 if stockPrice(t+1)≥agent(n).sellLowerLimit && tradedSell<tradeVolume
21 % This seller sells
22 numAssetsToSell = min(agent(n).sellQuant, tradeVolume-tradedSell);
23 agent(n).assets = agent(n).assets-numAssetsToSell;
24 tradedSell = tradedSell + numAssetsToSell;
25 agent(n).cash = agent(n).cash + (numAssetsToSell * stockPrice(t+1));
26 end
27 else if stockPrice(t+1)≤agent(n).buyUpperLimit && tradedBuy<tradeVolume
28 % This buyer buys
29 numAssetsToBuy = min(agent(n).buyQuant, tradeVolume-tradedBuy);
30 agent(n).assets = agent(n).assets+numAssetsToBuy;
31 tradedBuy = tradedBuy + numAssetsToBuy;
32 totalBuyPrice = numAssetsToBuy * stockPrice(t+1);
33 agent(n).cash = agent(n).cash - totalBuyPrice;
34 end
35 end
36 end

23

7.3 hist volat.m

1 function [] = hist volat(n)
2 % This function is simulating a stock market
3 % INPUT:
4 %
5 % OUTPUT:
6 %
7

8 global agent
9 global t

10 global stockPrice
11 global buySigmaK
12 global sellSigmaK
13

14 %calculate volatSigma
15 if t==1
16 agent(n).volatSigma = 0;
17 else
18 if t < agent(n).volatTimeInt
19 stockPricesRecent = stockPrice(1:t);
20 logPriceReturn = log(stockPricesRecent(2:end)./...
21 stockPricesRecent(1:end-1));
22 else
23 stockPricesRecent = stockPrice(t-agent(n).volatTimeInt+1:t);
24 logPriceReturn = log(stockPricesRecent(2:end)./...
25 stockPricesRecent(1:end-1));
26 end
27 if (agent(n).isBuyer == 1)
28 agent(n).volatSigma = buySigmaK * std(logPriceReturn);
29 else
30 agent(n).volatSigma = sellSigmaK * std(logPriceReturn);
31 end
32 end

24

7.4 opinion prop.m

1 function [] = opinion prop()
2 % This function is simulating a stock market
3 % INPUT:
4 %
5 % OUTPUT:
6 %
7 global agent
8 global N
9 global t

10 global globalBuyProb
11 global clusterPairProbability
12 global clusterActivateProbability
13 global activatedClusterSize
14 global clusters
15 % Pairing
16 % Reset last buyProb at first (changed for activated clusters)
17 agent(N).buyProb = globalBuyProb;
18 %keyboard
19 for i = 1:N-1
20 % Reset all buyProb to globalBuyProb (changed for activated clusters)
21 agent(i).buyProb = globalBuyProb;
22 for j = i+1:N
23 % form pair with Pa
24 if rand(1)<clusterPairProbability && ...
25 ((agent(i).cluster6=agent(j).cluster) | |agent(i).cluster==0)
26 % form pair:
27 % if i agent is member of cluster:
28 % set j agent (and all his cluster members)
29 % to i cluster (and free j cluster)
30 if agent(i).cluster6=0
31 if agent(j).cluster6=0
32 clusters(agent(j).cluster)=0;
33 clusterToChange = agent(j).cluster;
34 for k = 1:N
35 if agent(k).cluster==clusterToChange
36 agent(k).cluster=agent(i).cluster;
37 end
38 end
39 end
40 agent(j).cluster=agent(i).cluster;
41 % elseif j agent is member of cluster (and i is not):
42 % set i agent to j cluster
43 elseif agent(j).cluster6=0
44 agent(i).cluster = agent(j).cluster;
45 % else
46 % form new cluster and reserve slot in cluster-arr

25

47 else
48 k = 1;
49 while clusters(k)6=0; k=k+1; end
50 %if k 6= 1; keyboard; end
51 clusters(k)=1;
52 agent(i).cluster = k;
53 agent(j).cluster = k;
54 end
55 end
56 end
57 end
58

59 % Cluster activation
60 if rand(1)<clusterActivateProbability
61 % find nonzero clusters
62 activeClusters = find(clusters);
63 % random draw of a cluster (first element after randperm)
64 randElemNum = randperm(length(activeClusters));
65 %activeClusters = randperm(activeClusters);
66 % activate the cluster
67 if ¬isempty(activeClusters)
68 if rand(1)<0.5
69 buyProb = 0;
70 else
71 buyProb = 1;
72 end
73 tempSum = 0;
74 for k = 1:N
75 if agent(k).cluster == activeClusters(randElemNum(1));
76 agent(k).buyProb = buyProb;
77 agent(k).cluster = 0; % leave cluster
78 tempSum = tempSum + 1;
79 end
80 end
81 activatedClusterSize(t) = tempSum;
82 if activatedClusterSize > 0.95*N
83 %keyboard % Too big a cluster was activated
84 end
85 clusters(activeClusters(randElemNum(1)))=0; % free cluster
86 end
87 end
88

89 end

26

7.5 price formation.m

1 function [p] = price formation(marketPriceLast)
2

3 global agent
4 global N
5

6

7 %% Price Formation
8 pLower = 0;
9 pUpper = 10*marketPriceLast;

10

11 % check wether f(pLower)>g(pLower) AND f(pUpper)<g(pUpper) at beginning
12 % exit with old price if not
13 [f1,g1] = supply demand(pLower);
14 [f2,g2] = supply demand(pUpper);
15 if f1≤g1
16 p = 0;
17 elseif f2≥g2
18 p = 10 * marketPriceLast;
19 else
20 pTest = (pUpper+pLower)/2;
21 [f,g] = supply demand(pTest);
22 while((pUpper-pLower)>marketPriceLast/1000 && f6=g)
23 pTest = (pUpper+pLower)/2;
24 [f,g] = supply demand(pTest);
25 if f>g
26 pLower=pTest;
27 else
28 pUpper=pTest;
29 end
30 end
31 p = pTest;
32 end
33 end

27

7.6 supply demand.m

1 function [f,g] = supply demand(p)
2

3 global agent
4 global N
5

6 %% Supply/Demand values for given price p
7 f = 0;
8 g = 0;
9 for n = 1:N

10

11 %% Buy orders
12 if (agent(n).buyUpperLimit≥p)&&(agent(n).isBuyer)
13 f = f + agent(n).buyQuant;
14

15 %% Sell orders
16 elseif (agent(n).sellLowerLimit≤p)&&(agent(n).isSeller)
17 g = g + agent(n).sellQuant;
18

19 end
20

21 end
22

23 end

28

8 References

Literatur

[1] M. Raberto et al. Agent based simulation of a financial market Physica A 299
(2001) 319-327

[2] M. K. Brunnermeier Asset Pricing under Asymmetric Information: Bubbles, Cras-
hes, Technical Analysis, and Herding Oxford University Press (2001)

[3] P. Bak, M. Paczuski and M. Shubik Price Variations in a Stock Market with Ma-
ny Agents Cowles Foundation Discussion Papers 1132, Cowles Foundation, Yale
University. (1996)

[4] Ruey S. Tsay Analysis of Financial Time Series Wileysons.(2005)

[5] M. Raberto, Silvano Cincotti. Modelling and simulation of a double auction artificial
market Physica A 355 (2005) 34-35

[6] M.Raberto et al. Volatility in the Italian Stock Market: an Empirical Study, Quan-
titative Finance Papers (1999)

29

