
Lecture with Computer Exercises:
Modelling and Simulating Social Systems with

MATLAB

Project Report

Success-driven
Migration Applied to

Spatial Games

Damian Karrer & Dominik Spicher

Zürich
May 2010

- 1 -

Statement of Originality
We hereby declare having conducted this report independently, having used no other than the

declared references and having highlighted all passages taken from them. Furthermore we declare

having created all parts of this report for this project uniquely.

Damian Karrer Dominik Spicher

- 2 -

Agreement for Free-Download
We hereby agree to make our source code of this project freely available for download from the

web pages of the SOMS chair. Furthermore, we assure that all source code is written by ourselves

and is not violating any copyright restrictions.

Damian Karrer Dominik Spicher

- 3 -

Table of contents

1 Individual Contributions 5

2 Introduction 6

3 Game-theoretic Aspects 7

4 Description of the Model and Implementation 9

5 Simulation Results and Discussion 10

6 Summary and Outlook 16

7 References 17

8 Appendix A: MATLAB-Code 18

- 4 -

1 Individual Contributions
Dominik implemented a first version of the simulation script. Damian refined it, and fixed some

(major) bugs. Both the various simulations and their interpretation were done by both of us. Most of

the introduction and the sections on game-theoretic aspects were written by Dominik, while Damian

concentrated on the sections concerning the model and the simulation results.

- 5 -

2 Introduction
Cooperation or co-operation is the process of working or acting together, which can be

accomplished by both intentional and non-intentional agents. In its simplest form it

involves things working in harmony, side by side, while in its more complicated forms, it

can involve something as complex as the inner workings of a human being or even the

social patterns of a nation.[1]

Cooperation among individuals is, as suggested by the above description, ubiquitous in our world.

Often though, it is unclear how cooperation among selfish individuals can be achieved. This holds

in particular for the Prisoner's Dilemma, where individuals are tempted to defect, even though

bilateral cooperation would achieve the highest combined profit. In [2], it is shown that for this

game, there exist mechanisms which can promote cooperation or even allow it to burst in a

defecting environment under noisy conditions.

In this paper, we analyse the effect of those mechanisms, i.e. imitation and success-driven

migration in two different games, the Prisoner's Dilemma and the Snowdrift Game. We first want to

reproduce some of the results of the paper for the Prisoner's Dilemma. Taking a similar approach for

the Snowdrift Game, we want to investigate in what ways those mechanisms can similarly support

and promote migration here. It can be expected that cooperation will be easier to achieve for this

game, because the potential risk of defecting is higher than in the Prisoner's Dilemma. It remains to

be shown how cooperation in the Snowdrift Game reacts to imitation and success-driven migration.

In order to do so, we design a generic MATLAB program to simulate either game. We will run

experiments under different noise conditions and compare the influence of success-driven migration

on cooperation. For the Snowdrift Game it is already suggested in [2] that cooperators and cheaters

will coexist in the imitation-only case, whereas for the Prisoner's Dilemma overall defection is

expected.

Our research questions are as follows:

• To what extent does success-driven migration promote cooperation in the Snowdrift Game

in a noisy environment?

• How does this effect compare to the results gained for the Prisoner's Dilemma?

- 6 -

3 Game-theoretic Aspects

3.1 Games

3.1.1 Prisoner's Dilemma

The Prisoner's Dilemma is a game between two individuals which are both presented with the

options to either cooperate or defect. The payoffs for the two

individuals are such, that defecting is the dominant strategy.

However, and this applies especially to the iterated version (cf.

section 3.2), the payoffs would be higher for bilateral cooperation

than for bilateral defection. Figure 1 shows a payoff matrix for

the Prisoner's Dilemma.

The importance of the game and the vast attention it has received in research stems from the fact

that it models a situation which is very common in politics, economics and everyday life. For

example, consider two parties sharing a limited natural resource. In the long term, it would be better

for both to consume as little as possible of it. However, they both are tempted to use more of it to

gain a short-term advantage.

If we denote the reward for bilateral cooperation by R, the punishment for bilateral defection by P,

the temptation to unilaterally defect by T and the “sucker's payoff” by S, the Prisoner's Dilemma is

characterized by T > R > P > S and 2R > T + S.

3.1.2 Snowdrift Game

The Snowdrift Game (also called “Chicken”) is similar to the Prisoner's Dilemma but the worst

possible outcome is for both actors do defect. A common

example illustrates this game: Two drivers drive towards each

other on a collision course. If one player swerves (i.e. cooperates)

and the other doesn't, he will be called a “chicken”. However if

both refuse to swerve (i.e. defect), they will both die. A typical

payoff matrix is shown in figure 2. The Snowdrift Game is

characterized by T > R > S > P. It is similar to the Prisoner's Dilemma in that a situation of mutual

cooperation is unstable because of T > R. The difference, however, is that the payout for bilateral

defection is lower than the payout of unilateral cooperation for the cooperator (i.e. S > P rather than

P > S). Therefore, there exists no dominant strategy for the Snowdrift Game.

- 7 -

A / B cooperate defect
cooperate 1 / 1 0 / 1.3

defect 1.3 / 0 0.1 / 0.1

Fig 1: Payoff matrix for the Prisoner's
Dilemma

A / B cooperate defect
cooperate 3 / 3 2 / 4

defect 4 / 2 0 / 0

Fig 2: Typical payoff matrix for the
Snowdrift Game

3.2 Iterated and Spatial Games

To make the games described above more interesting, one can consider two extensions to them: In

the iterated version, players not play the game once, but many times. This might allow them,

depending on the model that is used, to play according to a specific strategy and even decide how to

play depending on the former actions of the other player.

For the spatial version of a game, one places many agents on a grid, where each agent plays the

game with its neighbors. This allows for some interesting mechanisms to take place, for example

migrating into a “better” neighborhood.

We will consider a combination of the two, i.e. the iterated spatial versions of the two games.

3.3 Neighborhoods

When considering spatial games, it is useful to define neighborhoods of a cell. We work with two

different neighborhoods, the Moore neighborhood and the von Neumann neighborhood. They are

visualized in figure 3.

- 8 -

(a) (b)
Fig. 3: The Moore (a) and von Neumann (b) neighborhood of
order one

4 Description of the Model and Implementation
We consider the spatial version of the Prisoner's Dilemma and the Snowdrift Game on a

rectangular grid with periodic boundary conditions (thus the grid is actually treated as a torus, with

the left- and rightmost as well as the upper- and lowermost cells treated as neighbors). At the

beginning of the experiment, agents are randomly distributed on the grid up to a specified density (a

parameter). In each time step, agents get updated in a randomly order. The agents play the game

with their four direct neighbors (von Neumann neighborhood of order one), resulting in their

current income. Each one then first performs migration (if it is switched on), then imitation (if on).

For both migration and imitation, the kind of neighborhood and its order are parameters of the

experiment. We have implemented two different migration strategies:

– Concrete migration: An agent looks at the mean income of all the neighbors of the cell it

inspects and chooses to migrate to the cell with the highest one.

– Hypothetical migration: An agent fictitiously plays the game with the neighbors of the cell it

inspects, that is, it calculates its bargain if it were located there. The agent will migrate to the

cell with the highest hypothetical payoff.

Of course, only empty cells are considered as possible places to migrate to.

The games can be simulated either with or without noise. We consider three different kinds of

noise: Noise 1 means that each agent will spontaneously change its strategy with probability r. If so,

it becomes a cooperator with probability q, and with probability 1-q it turns into a defector. If an

agent mutates its strategy, it will not imitate another agent in this time step (thus, normal imitation,

if set on, is performed with probability 1-r). Both parameters r and q can be set at the beginning of

the run. Noise 1 provides a certain level of independence of the final fraction of cooperators from

the initial state [2]. With noise 2, there will be random relocations. An agent is selected with

probability r (which is the same parameter as for noise 1) to randomly relocate, i.e. move to an

arbitrary free square. If an agent relocates randomly, it won't additionally perform normal

migration. This noise poses a challenge for possible clusters of cooperation to survive, because they

can be invaded by randomly relocating defectors [2]. For noise 3, strategy mutations and random

relocations are combined. An agent which is selected with probability r first randomly relocates and

then mutates its strategy.

During execution, various values are collected for statistics, for example the number of migrated

agents or the mean income of a cooperator and a cheater. Examples of those results are shown in

section five.

- 9 -

5 Simulation Results and Discussion
The choice of the parameters was done in accordance to the experiment parameters in [2]. This

allowed us to a certain degree to check our models for bugs in the implementation. For the

Prisoner's Dilemma the values are T = 1.3, R = 1, P = 0.1 and S = 0. For the Snowdrift Game, we

used the values T = 4, R = 3, P = 0, S = 2. The other simulation parameters are the same for both

games.

We have a 49x49 grid, of which we fill half the squares with agents at initialisation. The agents are

distributed randomly and cooperators and cheaters both make up 50% at the beginning.

The applied migration strategy is hypothetical, the migration range is a Moore neighborhood of

order five. The agents imitate others in a von Neumann neighborhood of order one.

For the noise, we set both the parameters r and q to 0.05, which means randomly resetting the

strategy (noise 1) will produce much more defectors than cooperators.

We first want to investigate what formations, if any, the agents build after a relatively big number

of iterations. In order to make a statement about the effects of imitation and success-driven

migration, we consider a specific run of the simulation. In addition, we run the experiment for the

four different noise conditions to see if those effects are robust with respect to strategy mutation and

random relocation.

Figures 4 and 5 show an example run after 100 iterations for the Prisoner's Dilemma and the

Snowdrift Game respectively. Cooperators are blue, whereas defectors are red; white indicates

empty cells.

- 10 -

Imitation only Migration only Imitation and Migration

N
o

no
is

e

(a) (b) (c)

N
oi

se
 1

(d) (e) (f)

N
oi

se
 2

(g) (h) (i)

N
oi

se
 3

(j) (k) (l)

Fig. 4: Simulation results for Prisoner's Dilemma

- 11 -

Imitation only Migration only Imitation and Migration

N
o

no
is

e

(a) (b) (c)

N
oi

se
 1

(d) (e) (f)

N
oi

se
 2

(g) (h) (i)

N
oi

se
 3

(j) (k) (l)

Fig. 5: Simulation results for Snowdrift Game

- 12 -

5.1 Prisoner's Dilemma
The results we got for the Prisoner's Dilemma are in accordance with the results from the given

paper [2].

5.2 Snowdrift Game
In the migration only cases one can clearly see the effects of strategy mutations (e, k), as most

individuals change their strategy to defecting. Without strategy mutation (b, h) the number of

defectors and cooperators stays the same. Through migration the agents organise themselves in

groups to achieve higher incomes.

As the expected payoff for cooperation is higher than that for defection in the Snowdrift Game , it

is to be expected that the addition of migration to imitation raises the number of cooperating agents.

This effect is much smaller with noise 1 (f), however, as compared to the other cases with both

imitation and migration (c, i, l).

With noise 1 there is strategy mutation (f). Agents that mutate their strategy turn with probability

0.95 to defectors. As there are much more cooperators, the new defectors are almost exclusively

surrounded by cooperators and therefore their income is very high. Because of that, they get

imitated immediately. This effect is reflected in about 200 imitations of defectors per time step (cf.

figure 6). In spite of this, their total number stays more or less constantly at 400 (figure 7). So we

can conclude that the environment is generally hostile for defectors, but because of the

aforementioned strategy mutation followed by imitation effect, the defectors are not being wiped

out.

Because there is no relocation at all without migration and without noise (a), defectors survive as

there are no cooperators in their imitation range or else because the payoff of the cooperators in

- 13 -

Fig. 6 Fig. 7

Simulation values for the Snowdrift Game with noise 1, imitaion and migration

range is statically lower. With random relocation however (g), the remaining cheaters sooner or later

get relocated and imitate cooperators, and are thus wiped out completely. With added migration (i),

the cooperators migrate into large groups for higher payoff, whereas without migration (g) the

pattern is speckled.

5.3 Comparison
In the Snowdrift Game it is more attractive to cooperate than in the Prisoner's Dilemma, as the

imitation only cases show.

The difference between the two games is further made apparent when comparing the migration

only cases without noise (b). In both games the defectors seek to be adjacent to cooperators to earn

the temptation T. But while in the prisoners dilemma S is smaller than P, which makes cooperators

avoid contact with cheaters, in the Snowdrift Game P is higher than S. This makes it more

acceptable for cooperators to have cheaters as neighbors, while at the same time the cheaters earn

less from their kind. This results in a more speckled pattern, as defectors in the Snowdrift Game

migrate into groups of cooperators, while in the Prisoner's Dilemma they surround the cooperators

and feed from them. This can also be observed with noise 2 added (h).

In the migration only case with strategy mutation (e, k), the defectors in the Prisoner's Dilemma

migrate into large groups, as they still earn the punishment P. In the Snowdrift Game, however, P is

the smallest payoff and zero in our simulations. Therefore it doesn't matter for a defector whether it

is located next to other defectors or empty cells, which results in a more speckled pattern.

5.4 Influence of the Migration Range
In a second experiment, taking a similar approach as in [3], we want to measure the influence of

the migration range on cooperation. We measure the number of cooperators after 100 iterations for

different neighborhoods, namely Moore neighborhoods of order zero (i.e. imitation only) to five.

We do this for each noise condition and for both games. Results are shown in figure 8.

As we can see, cooperation in the Prisoner's Dilemma benefits much more from migration than in

the Snowdrift Game, where cooperation is already on a high level for imitation only (cf. figure 5).

Furthermore, it becomes apparent, that for the used grid which is relatively small (49x49 cells), a

migration neighborhood with range greater than two doesn't amplify the level of cooperation much

more. This is important because a greater migration neighborhood significantly reduces the

numerical performance of our model.

- 14 -

(a
) P

ri
so

ne
r'

s D
ile

m
m

a
(b

) S
no

w
dr

ift
 G

am
e

Fig. 8: These plots show the average number of cooperators (of five runs) after 100
iterations for the two games. Vertical bars indicate the standard deviation in each
direction.

- 15 -

6 Summary and Outlook
In this section we provide answers to our research questions and elaborate on possible extensions

to our model.

To what extent does migration promote cooperation in the Snowdrift Game in a noisy

environment?

In the Snowdrift Game, cooperators migrate to each other to form large groups. Moreover,

defectors migrate too and eventually have cooperators in their migration range, thus enhancing

cooperation, as cooperators are generally more successful in the Snowdrift Game and therefore get

imitated. Noise 1 (strategy mutations) lessens the positive effect of migration on cooperation, while

the other forms of noise do not disturb cooperation.

How does this effect compare to the results gained for the Prisoner's Dilemma?

With both imitation and migration, the results are about the same for both the Snowdrift Game and

the Prisoner's Dilemma. With migration only however there are some differences. With strategy

mutation (noise 1 and noise 3) the defectors distribute themselves over the cooperators in the

Snowdrift Game, whereas in the Prisoner's Dilemma they rather surround small groups of

cooperators. In the migration only case without random relocation (no noise and noise 2) it can be

observe that in the Snowdrift Game it is not desirable for cheaters to migrate to each other, in

contrast to the Prisoner's Dilemma.

One could further study the effect of migration on the Snowdrift Game and the Prisoner's Dilemma

with slightly other rules or parameters. E.g. in our simulations we exclusively applied a von

Neumann imitation range and a hypothetical migration strategy. One could simulate the games with

a Moore imitation neighborhood and/or the concrete migration strategy. Success-driven migration

could also be applied to other spatial games.

- 16 -

7 References
[1] Wikipedia, „Cooperation“

http://en.wikipedia.org/wiki/Cooperation

[2] Helbing, Dirk; Yu, Wenjian, „The outbreak of cooperation among success-driven individuals
under noisy conditions“, PNAS, 2009

[3] Helbing, Dirk; Ju, Wenjian, „Migration as a mechanism to promote cooperation“, World
Scientifc, Advances in Complex Systems, 2008

- 17 -

http://en.wikipedia.org/wiki/Cooperation

8 Appendix A: MATLAB-Code

8.1 Main Script
%main script for simulation

%shared variables with functions. Convention: global variables start with
%an upper-case, local ones with a lower-case letter
global G M N R S T P Income NeighIncome

%------------
% Parameters
%------------
M = 49; %grid height
N = 49; %grid width
G = zeros(M,N); %grid
p = 0.5; %density of agents
tmax = 100; %number of iterations

game = 'sd'; %'sd' (snowdrift) or 'pd' (prisoner's dilemma)

migration = 'on';
rmig = 5; %migration range
migneigh = 'moore'; %'moore' or 'neumann'
mig_strategy = ...
 'hypothetical'; %'concrete' or 'hypothetical'

imitation = 'on';
rim = 1; %imitation range
imneigh = 'neumann'; %'moore' or 'neumann'

noise = 3; %0: no noise;
 %1: noise 1 (strategy mutation)
 %2: noise 2 (random relocation);
 %3: noise 3 (noise 1 & 2 combined)
r = 0.05; %probability of strategy mutation / random relocation
q = 0.05; %probability of turning into a cooperator
 %within a strategy mutation

plots = ('on');
%------------

%------------
% Payoffs
%------------
if strcmp(game,'pd')
 %these values are used for the prisoner's dilemma
 T = 1.3;
 R = 1;
 P = 0.1;
 S = 0;
elseif strcmp(game,'sd')
 %these values are used for the snowdrift game
 T = 4;
 R = 3;
 P = 0;
 S = 2;
else
 error('fail: wrong game parameter');

- 18 -

end
%------------

%------------
% Initializations
%------------
agentscount = N*M*p; %number of agents
Income = zeros(M,N); %incomes (accumulated payoffs)
NeighIncome = zeros(M,N); %neighborhood incomes
cheatcount = 0; %number of cheaters
coopcount = 0; %number of cooperators
migcheat = []; %number of migrated cheaters
migcoop = []; %number of migrated cooperators
imcheat = []; %number of imitations of a cheater
imcoop = []; %number of imitations of a cooperator
inccoop = []; %cooperators incomes
inccheat = []; %cheaters incomes
%------------

%------------
% distribute agents randomly
%------------
curragents = 0; %current number of people on the grid
while curragents < agentscount
 indexi = floor(M*rand())+1;
 indexj = floor(N*rand())+1;
 if G(indexi,indexj) ~= 0
 continue;
 end
 % generate a random number between 1 and 2
 G(indexi,indexj) = floor(2*rand())+1;
 if G(indexi,indexj) == 1
 coopcount(1) = coopcount(1) + 1;
 curragents = curragents + 1;
 elseif G(indexi,indexj) == 2
 cheatcount(1) = cheatcount(1) + 1;
 curragents = curragents + 1;
 end
end
%------------

%claculation of initial incomes
for i=1:M
 for j=1:N
 calculate_income(i,j); %stored in Income
 end
end

% calculation of initial neighbourhood incomes
for i=1:M
 for j=1:N
 calculate_neighbourhood_income(i,j); %stored in NeighIncome
 end
end

%figure to plot the agents in
if strcmp(plots,'on')
 figure

- 19 -

 hold on
end

%------------
% simulation over time
%------------
for timestep = 1:tmax

 %reset the variables which have to be reset for every timestep
 migcount = 0; %number of migrated people
 migcoopcount = 0; %number of migrated cooperators
 migcheatcount = 0; %number of migrated cheaters
 imcoopcount = 0; %number of imitations of a cooperator
 imcheatcount = 0; %number of imitations of a cheater

 %for the number of cooperators and cheaters,
 %starting values for next iteration are those from the previous ones
 coopcount = [coopcount; coopcount(end)];
 cheatcount = [cheatcount; cheatcount(end)];

 if strcmp(plots,'on')
 colormap([1 1 1; 0 0 1; 1 0 0]); % Define colors: white, blue, red
 clf; % Clear figure
 imagesc(G, [0 2]); % Display grid
 pause(0.01);
 box on;
 end

 %store locations of all agents in agentcoord
 agentsleft = G ~= 0;
 agentcoord = [];
 for s = 1:M
 for t = 1:N
 if agentsleft(s,t)
 agentcoord = [agentcoord; s, t];
 end
 end
 end

 %while there are agents which have not been updated yet, choose one
 %randomly and update him
 while size(agentcoord,1) > 0
 randcoord = floor(size(agentcoord,1)*rand())+1;
 i = agentcoord(randcoord,1);
 j = agentcoord(randcoord,2);
 agentcoord = [agentcoord(1:randcoord-1,:);
 agentcoord(randcoord+1:end,:)];

 %the boolean variable noiseeffect indicates if a normal or noisy
 %update is taking place
 noiseeffect = (rand() < r);

 %those boolean variables store information if the income needs to
 %be racalculated and if the agent has moved
 recalcincome = false;
 relocated = false;

 %either perform random relocation ...
 if ((noise == 2) || (noise == 3)) && noiseeffect
 i2 = floor(M*rand())+1;
 j2 = floor(N*rand())+1;

- 20 -

 while (G(i2,j2) ~= 0)
 i2 = floor(M*rand())+1;
 j2 = floor(N*rand())+1;
 end
 G(i2,j2) = G(i,j);
 G(i,j) = 0;
 relocated = true;
 inew = i2;
 jnew = j2;
 recalcincome = true;

 %... or normal migration
 elseif strcmp(migration,'on')
 %parameters for migration candidate
 imax = i;
 jmax = j;
 if strcmp(mig_strategy,'concrete')
 maxincome = NeighIncome(i,j);
 elseif strcmp(mig_strategy,'hypothetical')
 maxincome = Income(i,j);
 else
 error('fail: wrong migration strategy parameter');
 end
 %search for largest income in area specified
 %by the migration radius and neighborhood
 if strcmp(migneigh,'moore')
 neighbours = mooreneigh(rmig);
 elseif strcmp(migneigh,'neumann')
 neighbours = neumannneigh(rmig);
 else
 error('fail: wrong migration neighbourhood parameter');
 end
 for ik = 1:length(neighbours)
 i2 = i + neighbours(ik,1);
 j2 = j + neighbours(ik,2);
 %ensure dynamic grid boundaries
 if (i2 < 1)
 i2 = i2 + M;
 end
 if (i2 > M)
 i2 = i2 - M;
 end
 if (j2 < 1)
 j2 = j2 + N;
 end
 if (j2 > N)
 j2 = j2 - N;
 end
 if (G(i2,j2) == 0)
 if strcmp(mig_strategy,'concrete')
 if NeighIncome(i2,j2) > maxincome
 imax = i2;
 jmax = j2;
 maxincome = NeighIncome(i2,j2);
 end
 elseif strcmp(mig_strategy,'hypothetical')
 hinc = calculate_hypothetical_income(i2,j2,G(i,j));
 if hinc > maxincome
 imax = i2;
 jmax = j2;
 maxincome = hinc;

- 21 -

 end
 else
 error('fail: wrong migration strategy parameter');
 end
 end
 end
 %check if a migration candidate was found
 if (imax ~= i || jmax ~= j)
 G(imax,jmax) = G(i,j);
 G(i,j) = 0;
 migcount = migcount + 1;
 recalcincome = true;
 relocated = true;
 inew = imax;
 jnew = jmax;
 if G(imax,jmax) == 1
 migcoopcount = migcoopcount + 1;
 elseif G(imax,jmax) == 2
 migcheatcount = migcheatcount + 1;
 end
 end
 end

 if recalcincome
 % recalculate incomes which have changed
 % => cells in moore-neighbourhood of range 1 of origin
 % and destination
 calculate_income(i,j);
 calculate_income(i2,j2);
 neighbours = mooreneigh(1);
 for ik = 1:8
 calculate_income(i+neighbours(ik,1),j+neighbours(ik,2));
 calculate_income(i2+neighbours(ik,1),j2+neighbours(ik,2));
 end
 % recalculate neighbourhood incomes which have changed
 % => cells in moore-neighbourhood of range 2 of origin
 % and destination
 calculate_neighbourhood_income(i,j);
 calculate_neighbourhood_income(i2,j2);
 neighbours = mooreneigh(2);
 for ik = 1:24
 calculate_neighbourhood_income(i+neighbours(ik,1),j+neighbours(i
k,2));
 calculate_neighbourhood_income(i2+neighbours(ik,1),j2+neighbours
(ik,2));
 end

 end
 if relocated
 i = inew;
 j = jnew;
 end
 recalcincome = false;
 %either perform strategy mutation ...
 if ((noise == 1) || (noise == 3)) && noiseeffect
 mutatetocoop = (rand() < q);
 if mutatetocoop && (G(i,j) == 2)
 G(i,j)=1;
 cheatcount(end)=cheatcount(end)-1;
 coopcount(end)=coopcount(end)+1;
 recalcincome = true;

- 22 -

 elseif ~mutatetocoop && (G(i,j) == 1)
 G(i,j)=2;
 cheatcount(end)=cheatcount(end)+1;
 coopcount(end)=coopcount(end)-1;
 recalcincome = true;
 end

 %... or normal imitation
 elseif strcmp(imitation,'on')
 if G(i,j) == 0
 continue
 end
 %parameters for imitation candidate
 maxincome = Income(i,j);
 imax = i;
 jmax = j;

 if strcmp(imneigh,'moore')
 neighbours = mooreneigh(rim);
 elseif strcmp(imneigh,'neumann')
 neighbours = neumannneigh(rim);
 else
 error('fail: wrong imitation neighbourhood parameter');
 end

 for ik = 1:length(neighbours)
 i2 = i + neighbours(ik,1);
 j2 = j + neighbours(ik,2);
 %ensure dynamic grid boundaries
 if (i2 < 1)
 i2 = i2 + M;
 end
 if (i2 > M)
 i2 = i2 - M;
 end
 if (j2 < 1)
 j2 = j2 + N;
 end
 if (j2 > N)
 j2 = j2 - N;
 end
 if Income(i2,j2) > maxincome
 imax = i2;
 jmax = j2;
 maxincome = Income(i2,j2);
 end
 end
 %check if an imitation candidate was found
 if ((imax ~= i) || (jmax ~= j)) && (G(imax,jmax) ~= 0) && (G(i,j) ~=
G(imax,jmax))
 if (G(imax,jmax) == 1) && (G(i,j) == 2)
 G(i,j)=1;
 cheatcount(end)=cheatcount(end)-1;
 coopcount(end)=coopcount(end)+1;
 imcoopcount = imcoopcount + 1;
 recalcincome = true;
 elseif (G(imax,jmax) == 2) && (G(i,j) == 1)
 G(i,j)=2;
 cheatcount(end)=cheatcount(end)+1;
 coopcount(end)=coopcount(end)-1;
 imcheatcount = imcheatcount + 1;

- 23 -

 recalcincome = true;
 end
 end
 end

 % recalculate incomes which have changed
 % => cells in moor-neighbourhood of range 1 of origin
 if recalcincome
 calculate_income(i,j);
 neighbours = mooreneigh(1);
 for ik = 1:8
 calculate_income(i+neighbours(ik,1),j+neighbours(ik,2));
 end
 % recalculate neighbourhood incomes which have changed
 % => cells in moore-neighbourhood of range 2 of origin
 calculate_neighbourhood_income(i,j);
 neighbours = mooreneigh(2);
 for ik = 1:24
 calculate_neighbourhood_income(i+neighbours(ik,1),j+neighbours(i
k,2));
 end
 end
 end
 if coopcount(end) == 0
 inccoop = [inccoop;0];
 else
 inccoop = [inccoop;sum(sum(Income(G==1)))/coopcount(end)]; %mean
income of cooperators
 end
 if cheatcount(end) == 0
 inccheat = [inccheat;0];
 else
 inccheat = [inccheat;sum(sum(Income(G==2)))/cheatcount(end)]; %mean
income of cheaters
 end
 migcheat = [migcheat;migcheatcount];
 migcoop = [migcoop;migcoopcount];
 imcoop = [imcoop;imcoopcount];
 imcheat = [imcheat;imcheatcount];
end
%------------

%------------
% plot the collected values
%------------
if strcmp(plots,'on')
 %plots the number of cooperators and cheaters
 figure
 plot(0:tmax,coopcount,'b',0:tmax,cheatcount,'r','LineWidth',2);
 title('number of agents','FontSize',16);
 xlabel('timesteps','FontSize',12);
 ylabel('# agents','FontSize',12);
 legend('cooperators','cheaters');
 box on
 grid on

 %plots the number of migrated people distinguishing
 %between cooperators and defectors
 figure
 plot(1:tmax,migcoop,'b',1:tmax,migcheat,'r','LineWidth',2);
 title('number of migrated agents','FontSize',16);

- 24 -

 xlabel('timesteps','FontSize',12);
 ylabel('# of migrated people','FontSize',12);
 legend('cooperators','cheaters');
 box on
 grid on

 %plots the number of imitations distinguishing
 %imitation of cooperators and defectors
 figure
 plot(1:tmax,imcoop,'b',1:tmax,imcheat,'r','LineWidth',2);
 title('number of imitations','FontSize',16);
 xlabel('timesteps','FontSize',12);
 ylabel('imitations','FontSize',12);
 legend('imitated a cooperator','imitated a cheater');
 box on
 grid on

 %plots the mean income of cooperators and cheaters
 figure
 plot(1:tmax,inccoop,'b',1:tmax,inccheat,'r','LineWidth',2);
 title('mean income of agents','FontSize',16);
 xlabel('timesteps','FontSize',12);
 ylabel('mean income','FontSize',12);
 legend('cooperators','cheaters');
 box on
 grid on
end
%------------

8.2 Auxiliary Functions
function a = neumannneigh(n)
%returns the relative coordinates of all the members of the
%vonNeumann-neighbourhood of order n, (0,0) excluded
%each row in a corresponds to a cell
 a = [];
 for i = -n:n
 for j = -abs(n-abs(i)):abs(n-abs(i))
 if (i ~= 0) || (j ~= 0)
 a = [a;i,j];
 end
 end
 end
end

function a = mooreneigh(n)
%gives the relative coordinates of all the members of the Moore
%neighbourhood of order n, (0,0) excluded
%each row in a corresponds to a cell
 a = [];
 for k = -n:n
 for l = -n:n
 if (k == 0) && (l == 0)
 continue
 end

- 25 -

 a = [a;k,l];
 end
 end
end

function calculate_income(i,j)
 %calculates income of the player in cell (i,j) (stored in Income(i,j)
 %=> plays with its 4 neighbours in the Neumann-Neighbourhood of range 1
 global G M N R S T P Income

 %ensure dynamic grid boundaries
 if (i < 1)
 i = i + M;
 end
 if (i > M)
 i = i - M;
 end
 if (j < 1)
 j = j + N;
 end
 if (j > N)
 j = j - N;
 end
 Income(i,j) = 0;
 if G(i,j) == 0
 return
 end
 % Iterate over the von Neumann neighbourhood and bargain
 neighbours = neumannneigh(1);
 for k=1:length(neighbours)
 i2 = i+neighbours(k,1);
 j2 = j+neighbours(k,2);
 %ensure dynamic grid boundaries
 if (i2 < 1)
 i2 = i2 + M;
 end
 if (i2 > M)
 i2 = i2 - M;
 end
 if (j2 < 1)
 j2 = j2 + N;
 end
 if (j2 > N)
 j2 = j2 - N;
 end
 % bargain (four different cases)
 if (G(i,j) == 1) && (G(i2,j2) == 1)
 Income(i,j)=Income(i,j)+R;
 end
 if (G(i,j) == 1) && (G(i2,j2) == 2)
 Income(i,j)=Income(i,j)+S;
 end
 if (G(i,j) == 2) && (G(i2,j2) == 1)
 Income(i,j)=Income(i,j)+T;
 end
 if (G(i,j) == 2) && (G(i2,j2) == 2)
 Income(i,j)=Income(i,j)+P;
 end
 end

- 26 -

end

function calculate_neighbourhood_income(i,j)
 %calculates the neighbourhood-income of the cell (i,j)
 %(stored in NeighIncome(i,j)), i.e. how much the players in the
 %Moore-Neighbourhood of range 1 of that cell earn

 global M N Income NeighIncome
 %ensure dynamic grid boundaries
 if (i < 1)
 i = i + M;
 end
 if (i > M)
 i = i - M;
 end
 if (j < 1)
 j = j + N;
 end
 if (j > N)
 j = j - N;
 end
 NeighIncome(i,j) = 0;
 % iterate over the Moore neighbourhood
 neighbours = neumannneigh(1);
 for k=1:length(neighbours)
 i2 = i+neighbours(k,1);
 j2 = j+neighbours(k,2);
 %ensure dynamic grid boundaries
 if (i2 < 1)
 i2 = i2 + M;
 end
 if (i2 > M)
 i2 = i2 - M;
 end
 if (j2 < 1)
 j2 = j2 + N;
 end
 if (j2 > N)
 j2 = j2 - N;
 end
 NeighIncome(i,j) = Income(i2,j2)+NeighIncome(i,j); % summation of all
the neighbourhood incomes
 end
end

- 27 -

function hypincome = calculate_hypothetical_income(i,j,me)
%calculates hypothetical income (not stored) for an agent
%of type me on (i,j) (used for hypothetical migration strategy)
 global G M N R S T P
 hypincome = 0;
 % Iterate over the Moore neighbourhood and bargain
 neighbours = neumannneigh(1);
 for k=1:length(neighbours)
 i2 = i+neighbours(k,1);
 j2 = j+neighbours(k,2);
 %ensure dynamic grid boundaries
 if (i2 < 1)
 i2 = i2 + M;
 end
 if (i2 > M)
 i2 = i2 - M;
 end
 if (j2 < 1)
 j2 = j2 + N;
 end
 if (j2 > N)
 j2 = j2 - N;
 end
 % bargain (four different cases)
 if (me == 1) && (G(i2,j2) == 1)
 hypincome = hypincome+R;
 end
 if (me == 1) && (G(i2,j2) == 2)
 hypincome = hypincome+S;
 end
 if (me == 2) && (G(i2,j2) == 1)
 hypincome = hypincome+T;
 end
 if (me == 2) && (G(i2,j2) == 2)
 hypincome = hypincome+P;
 end
 end
end

- 28 -

	1 Individual Contributions
	2 Introduction
	3 Game-theoretic Aspects
	3.1 Games
	3.1.1 Prisoner's Dilemma
	3.1.2 Snowdrift Game

	3.2 Iterated and Spatial Games
	3.3 Neighborhoods

	4 Description of the Model and Implementation
	5 Simulation Results and Discussion
	5.1 Prisoner's Dilemma
	5.2 Snowdrift Game
	5.3 Comparison
	5.4 Influence of the Migration Range

	6 Summary and Outlook
	7 References
	8 Appendix A: MATLAB-Code
	8.1 Main Script
	8.2 Auxiliary Functions

