
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Evacuation Bottleneck

Daniel Zünd & Simon Schmid

Zürich

May 2010



Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe, keine
anderen als die angegebenen Quellen-Hilsmittel verwenden habe, und alle Stellen,
die wörtlich oder sinngemäss aus veröffentlichen Schriften entnommen wurden, als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Gruppenarbeit
nicht, auch nicht auszugsweise, bereits für andere Prüfung ausgefertigt wurde.

Daniel Zünd Simon Schmid

2



Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Daniel Zünd Simon Schmid

3



Contents

1 Individual contributions 5

2 Introduction and Motivations 6

3 Description of the Model 7
3.1 Model Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Wall Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Door Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 People Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Potential field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Exit Selection 12
4.1 Mathematical Formulation of the Model . . . . . . . . . . . . . . . . 12

5 Implementation 15
5.1 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Simulation Results and Discussion 16
6.1 Exit Time Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Summary and Outlook 19

4



1 Individual contributions

For the implementation, Daniel Zünd did most of the continuous model and Simon
Schmid implemented most of the best response dynamics. The report was a teamwork
of both, both wrote, reviewed each other and corrected it.

5



2 Introduction and Motivations

People tend to form a crowd in states of emergency. The typical flight behaviour
is moving away from the source of danger. In open space people would diffuse in
all directions but if there are boundaries like walls or a street the only way out is
an exit. Usually, exits are small in comparison to the crowd so the flow of people
through the exit will be larger than the exit’s capacity. The result manifests itself
as a bottleneck. The typical appearance of a bottleneck is a semi-circular crowd
around the exit. The main objective of every evacuation plan is a sufficient amount
of exits which are well distributed so that the crowd splits up in smaller crowds.
The interesting point here is that the crowd will not spread evenly because of the
individual and collective behaviour of human beings. People tend to head towards
known and visible exits which aren’t crowded. This preference for a specific exit may
change depending on the circumstances. Our simulation is focused on how people
chose an exit and how this decision affects the collective behaviour.

6



3 Description of the Model

3.1 Model Overview

This section is a brief description of the model we implemented. We have chosen a
continous model for our simulation. The benefit of a continuous simulation is that
infinitesimal movements are possible and we think, it shows the movement of people
in a more natural way.

The room is a two dimensional space, which includes three different types of
agents. The first are the people, which need to be evacuated, and the second are
the wall elements. The third kind are the door agents, which define a door. The big
difference between the three kinds, is that the door and wall agents can not move.
The agents on the other side, need to move, so that they can get out of the room.
They move according to potentials, in whose radius they are. Since we are working
with potential fields, the agents want to go into the direction of the negative gradient
of the sum of all fields. This is mathematically described as:

m
δ2xp
δt2

= −
N∑

q=1,q 6=p

∇xpVagent(|xp−xq|)−∇xpVdoor(|xp−xq|)−
W∑
q=1

∇xpVwall(|xp−xq|)

where

� Vagent . . . potential-field of other people.

� Vwall . . . potential-field of wall elements.

� Vdoor . . . potential-field of the door, an agent is heading for.

Since the wall and door elements do not move, they build a static field together. The
dynamic part of the field comes from the moving people. Each person in the room
induces a field, that repels the other agents. So this one has a strong influence on
how the people move in the room. In other words, the doors and walls introduce a
static field on the whole room, and the people a dynamic field. This allows us to
simulate realistic escape dynamics.

The model is chosen according to a homework from the lecture Simulations using
Particles by Prof. Petros Koumoutsakos.

It is known, that people try to follow each others, as long as there is a constant
flow. Once the flow stagnates, it is a matter of patience before people start to panic.
In this situation people push each other towards the exit, trying to get out of the
room. Instead of moving on faster this behaviour will cause clogging. If this happens
people on the margin of the crowd will perhaps reconsider their decision an move

7



away from the crowded exit to an uncrowded one, even if the door was familiar to
them. In conclusion this means people will follow only moving people.

In our model, the people choose their door according to some game theoretical
approach (6). The agents will calculate the opportunity costs of each exit by weight-
ing the queue in front of the door, the distance to the door and individual preference
factors like familiarity and visibility of the door. The individual preference factors
and velocities are distributed randomly on initialization.

3.2 Wall Potentials

The simulation takes the natural behaviour of avoiding to walk close to walls into
account by using repulsive wall potentials inversely proportional to the distance from
the walls. Actually the walls are formed by a row of fixed agents.

Vwall(r) = kW
1

r

The range of the wall effect is restricted up to the distance Dmax from the walls.
This prevents taking a wall into account which is on the other side of the room. kW
is a constant, which describes, how strong the repulsive force of the wall is.

3.3 Door Potentials

The door potentials behave almost like the wall potential, the big difference here is,
that they are attracting. This means that they are proportional to the square of the
distance an agent is away from it.

Vdoor(r) = kD(r + s)2

kD is another constant describing the strength of the attracting force caused by the
door. The shifting s factor is needed because the potential mentioned above would
have a zero gradient if the radius is zero. The door is formed by a row of door agents
which are uniformly distributed on the door’s width.

3.4 People Potentials

The potentials of the people is pretty much like the potential of the walls. It also
repels people, which are close.

Vagent(r) = kA
1

r

What we used in our simulation is that the agents have an other constant kA in front
of the 1

r
.

8



Figure 1: An example of an empty room

3.5 Potential field

All the various potentials result in a single force which acts on the agent. The agent
reacts according to this field and moves, as mentiond above, along the negative
gradient of the sum of all potentials. The following pictures show how the static part
of a room may look like. The figure 1 illustrates an empty room. The static field of
this figure looks like the plots shown in figure 2 and 3. For these plots, the field was
calculated, as if an agent was heading for the door which is on the west side of the
room 1.

If we also want to take the dynamic potentials into account, the room looks like
in figure 4 and 5. On those plots, the room has been filled with ten agents at random
positions.

1The plots are limited to a maximum value of 2500. Otherwise the values could go up to infinity, if we
hit a wall element exactly. In that case, we would not see anything of the rest, just a plain area.

9



Figure 2: Contour plot of room in figure 1

Figure 3: 3D of static potential field of the room in figure 1

10



Figure 4: Contour plot of room in figure 1 with 10 agents randomly positioned

Figure 5: 3D of static potential field of the room in figure 1 with 10 agents randomly
positioned

11



4 Exit Selection

In emergency evcuation, the selection of the exit route is one of the most important
decisions. We take this into account in our simulation by the implementation of the
paper ”Exit Selection with Best Response Dynamics” (6). The paper describes an
algorithm about how people choose an appropriate exit based on the game theoretic
concept of best response dynamics. In the model the agents are the player and the
strategies are the possible target exits.

We assume that agents will select the fastest evacuation route. Despite of the
time related factor we include two other factors: familiarity and visibility of the exits.
The estimated evacuation time of an agent is the sum of the estimated moving time
and the estimated queueing time. The estimated moving time is estimated simply by
dividing the distance to the exit by the velocity of the agent. The estimated queuing
time depends on the exit’s capacity and on the number of the other agents that are
heading towards the exit and are closer to it than the agent itself. The estimated
queuing time binds the decision of a single agent to the decision of other agents. In
conclusion, this means the fastest exit route for a specific agent may change during
the evacuation.

The familiarity and visibility factor constrain the set of possible exits. These
factors can be seen as binary flags and the number of possible combinations form the
preference groups. Every door will be divided into a preference group. Agents will
select an exit from the nonempty group that has the best preference. The doors in
other preference groups are not of any interest.

4.1 Mathematical Formulation of the Model

The agents are refered with indices i and j, where i, j ∈ N = {1, 2, 3, ..., N}. Exits
can be seen as strategies, exits are denoted by ek, k ∈ K = {1, 2, ..., K}. Strategies
are denoted by si ∈ {e1, ..., eK} = Si, i ∈ N where Si is a strategy set.

The agent’s strategies are concluded by

s := (s1, ..., sN) ∈ S1 × · · · × SN = S

The strategies of all other agents but agent i is defined by

s−i := (si, ..., si−1, si+1, ..., sN) ∈ S−i

The estimated moving time depends on the agent i’s position ri and the exit ek’s
position bk. The positions of the agents are in the set r := (r1, ..., rN). So the
distance between agent i and the exit ek is

d(ek; ri) = ||ri − bk||

12



The estimated moving time is the division of the distance d(ek; ri) by agent i’s velocity
v0i

τi(ek; ri) =
1

v0i
d(ek; ri)

The estimated queueing time is defined by the sum of all agents but agent i heading
towards exit ek and are closer to exit ek divided by the exit ek’s capacity βk.

The subset of all agents j 6= i who are closer to ek than agent i is given by

Λi(ek, s−i; r) = {j 6= i|sj = ek, d(ek; rj) ≤ d(ek; ri)}

The number of elements in the subset Λi(ek, s−i; r) is denoted by

λi(ek, s−1; r) = |Λi(ek, s−i; r)|

The exit ek’s capacity βk is a scalar value telling us how many agents can pass the
exit ek at once.

So the estimated queueing time is

1

βk
λi(ek, s−1; r) = |Λi(ek, s−i; r)|

The sum of the estimated moving time and estimated queueing time gives us the
estimated evacuation time for agent i through the exit ek

Ti(si, s−i; r) =
1

βk
λi(ek, s−1; r) + τi(ek; ri)

As a result of the game theoretic principle, the strategy of agent i is the best response
to the other agents’ strategies. This means every agent will choose the exit which
has the lowest evacuation time.

si = BRi(s−i; r) = arg min
s′i∈Si

Ti(s
′
i, s−i; r)

As we have mentioned before the effects of familiarity and visibility of exits can
constrain the group of possible exits for agent i, these conditions are taken into
account by defining two binary flags

fami(ek), vis(ek; ri), ∀ i ∈ N , k ∈ K

The binary flags give certain information about agent i:

fami(ek) =

{
1 if exit ek is familiar to agent i

0 if exit ek is not familiar to agent i

13



vis(ek; ri) =

{
1 if exit ek is visible to agent i

0 if exit ek is not visible to agent i

These factors are the criterias for dividing the exits in to groups with preference
numbers. There are four possible combinations which means there are four groups of
exits with preference numbers from one to four. The smaller the preference number
is, the more preferable the exit. The familiarity of an exit has a bigger influence
about how preferable an exit is. Studies have shown that evacuees prefere familiar
routes even if there is a shorter route (6). The visibility flag is important for the
calculation of the estimated queueing time beacause an agent is only able to estimate
the queue in front of a door if he can see the door.

According to the previous definition the doors will be grouped as shown in the
table below.

Preference number Exit group vis(ek; ri) fami(ek)
1 Ei(1) 1 1
2 Ei(2) 0 1
3 Ei(3) 1 0
4 No Preference 0 0

Table 1 The preference groups in which the exits will be divdided into. The
smaller the preference number, the more preferable the exit. The fourth preference
group describes people in panic which are not familiar with the exits and can not
see any either. (6)

Mathematically the selection of the door is defined as

si = BRi(s−i; r) = arg min
s′i∈Si

Ti(s
′
i, s−i; r)

s′i ∈ Ei(z)

The specific agent i chooses an exit from the non-empty Group Ei(z) which has the
best preference number z for him.

In addition to the paper we added an extra patience factor. The patience factor is
a simple comparison between the evacuation time of the preferable new exit and the
previously chosen exit. This is needed because it may happen that an exit in a better
preference group gets in sight. Despite the fact that the exit is in a better preference
group the evacuation time could take much longer. So the agent will not redecide if
the evacuation time of the new preferable exit is greater than the evacuation time
of the agent’s previous decision. This could be omitted if the number of exits is
significant higher than the number of possible preference groups.

14



5 Implementation

The simulation is split into several function files. The main file, where the whole
simulation is running, is the simulation.m. This file needs some information of the
room, the walls and doors, the agents and so on to run. What it exactly needs, can
be looked up in the comment of the file. To run some different kinds of simulation, we
provide with the code some initX.m (X ∈ 1 . . . 5) which construct different examples
of rooms and place the people at random positions. For an example of a running
matlab script please have a look at the first element in appendix A.

5.1 Time Integration

For the time integration we do an simple explicit euler. This means that we integrate
according to the following scheme:

vi+1 = vi + δt · ai

xi+1 = xi + δt · vi+1

The a is calculated as it was shown in the introduction of this report:

a =
δ2xp
δt2

=
1

m

(
−

N∑
q=1,q 6=p

∇xpVagent(|xp − xq|)−∇xpVdoor(|xp − xq|)−
W∑
q=1

∇xpVwall(|xp − xq|)

)

15



Figure 6: The rooms with and without piles used in the simulation.

6 Simulation Results and Discussion

The basic configuration of the simulation consists of a square room with a side length
of ten units. There are three evenly spread exits, located on the west side. The exits
are all of the same width and a capacity of one agent per timestep. The simulation
has two scenarios, the first one is an empty room without any obstacles and the
second scenario uses the same room geometry but there is a pile in the front of every
door. The piles are modelled as square blocks with a sidelength of one unit. They
use the same repulsive force as the wall does. (see figure 6)

There are five cases with 100, 200, 300, 400 and 500 agents. Every test case
consists of twelve runs. The average of these twelve runs will be used in the analysis.

6.1 Exit Time Comparison

We see some differences between the two room configurations. In the configuration
with the piles, it takes longer until the people start to leave the room. We think the
reason may be that everybody has a direct way to the doors and the doors are visible
to all if there are no piles. This means if the door is in sight, the people can estimate
the queueing time so they are able to choose the door with best response in the first
place. By having piles, the people only know the route to doors they are familiar
to. If people get behind the piles all doors are in the line of sight. This means
the possibilites of choosing an exit expands rapidly and the frequency of redicisions
increases. An other explanation for the slower evacuation in the pile scenario may
be that the pressure on the doors is lower. This causes a smaller force acting on the

16



Figure 7: Exit times for different numbers of people in the room without piles

people which results in a slower evacuation. In figure 7 and 8 one can see the number
of people in the room versus the time.

6.2 Decisions

We also have some plots were one can see, how many people changed their mind
per timestep. Here we can see a big difference between the two room configurations.
When we have piles, the number of people changing the door is much smaller then
without the piles but it goes much longer until we have a small number of redecisions
(figure 9 and 10). We think this makes perfectly sense, since due to the exit selection
we implemented, a person which does not know something about a door and does
not see it, would not go to that door even if it was nearest. We think this is how
people would act in reality too.

17



Figure 8: Exit times for different numbers of people in the room with piles

Figure 9: Number of redecisions of persons in the room without piles

18



Figure 10: Number of redecisions of persons in the room with piles

7 Summary and Outlook

A continuous model for evacuation scenarios was implemented. By running the
software, we get some charactersitics of the crowd, which also happen in reality.
Additionally, the choosing of the door was done by best response dynamics. Which
is a game theoretical approach. The implemented model shows crowd characteristics,
such as the circular form of the crowd in front of a door, the redecition of the preferred
door of people in the crowd and more.

For further work, one could possibly implement the model with different potential
fields instead of the ones used. Also one could extend the static fields in such a way,
that the geometry can be more complex then it is in our cases.

As a comparison, one could take the results from social experiments (9) for choos-
ing the door and look if they give the same result. One example of such an experiment
gave the following evacuation strategies:

1. I escaped according to the signs and instructions, and also broadcast or guide
by shop-girls (46.7%).

2. I chose the opposite direction to the smoking area to escape from the fire as
soon as possible (26.3%).

3. I used the door because it was the nearest one (16.7%).

4. I just followed the other persons (3.0%).

19



5. I avoided the direction where many other persons go (3.0%).

6. There was a big window near the door and you could see outside. It was the
most ”bright” door, so I used it (2.3%).

7. I chose the door which I am used to (1.7%).

20



References

[1] K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider. ’Extended floor
field CA model for evacuation dynamics.’ IEICE Trans Inf Syst (Inst Electron
Inf Commun Eng) VOL.E87-D;NO.3 (2006) pp(726-732).

[2] A. Kirchner, K. Nishinari and A. Schadschneider. ’Friction effects and clogging
in a cellular automaton model for pedestrian dynamics.’ PHYSICAL REVIEW
E67 056122(2003)

[3] D. Helbing, A. Johansson, J. Mathiesen, M. H. Jensen, and A. Hansen. ’Analyt-
ical Approach to Continuous and Intermittent Bottleneck Flows.’ PHYSICAL
REVIEW LETTERS PRL 97 168001 (2006)

[4] W. J. Yu, R. Chen, L. Y. Dong, and S. Q. Dai. ’Centrifugal force model for
pedestrian dynamics’. PHYSICAL REVIEW E72 026112 (2005)

[5] Takashi Nagatani ’Dynamical transition and scaling in a mean-field model of
pedestrian flow at a bottleneck’ Physica A 300 (2001) pp(558-566)

[6] Harri Ehtamo , Simo Heliövaara1 , Simo Hostikka , Timo Korhonen. ’Modeling
Evacuees Exit Selection with Best Response Dynamics’. Fire Safety Journal,
Volume 41, Issue 5, July 2006, Pages 364-369

[7] Hai-Jun Huang, Ren-Yong Guo. ’Static Floor Field and exit choice for pedestrian
evacuation in rooms with internal obstacles and multiple exits’. Phys. Rev. E
78, 021131 (2008)

[8] Andreas Schadschneider , Ansgar Kirchner , Katsuhiro Nishinari. ’CA Approach
to Collective Phenomena in Pedestrian Dynamics’. Lecture Notes In Computer
Science; Vol. 2493 (2002) pp(239-248)

[9] Liana Manukyan, ’Evacuation Bottleneck’, Modelling and Simulating Social Sys-
tems with MATLAB, ETH Zurich, December 2009

21



Appendix A: Matlab Code

1 %%% Matlab Socio %%%
2 % This is the main file, where the simulations should be started from.
3

4 doorW = [0.5,0.4];
5 cornerDist = [1,2];
6 pileDist = [0.5,0.5];
7 pileNr = [5,4];
8 nrP = 500;
9 xmax = 10;

10 ymax = 10;
11 patience = 0;
12

13 % initialization
14 [agentCoord, doorCoord, wallCoord, pileCoord, prefDoor, doorFam, v, rad, doorW,...
15 xmax, ymax] = init5(xmax, ymax, nrP, doorW, cornerDist, pileNr, pileDist);
16

17 % simulation
18 simulation(agentCoord, doorCoord, wallCoord, pileCoord, prefDoor,...
19 doorFam, v, rad, doorW, xmax, ymax, patience, false, '')

1 %%% Matlab Socio %%%
2 % This is the debug file for logging
3

4 doorW = [0.5,0.4];
5 cornerDist = [1,2];
6 pileDist = [0.5,0.5];
7 pileNr = [5,4];
8 nrP = 500;
9 xmax = 10;

10 ymax = 10;
11 patience = 0;
12

13 cases = [100,200,300,400,500]; % people count
14 evals = 12; % 12 runs
15

16 logfile = fopen('logfile.log', 'w');
17

18

19

20 for i=1:size(cases,2)
21

22 ppCnt = cases(1,i);
23 disp(strcat('Case Nr. ', num2str(i), ' − ', num2str(ppCnt), '\n'));
24

25 % −100,[peopleCount] // −100 defines a case

22



26 fprintf(logfile, strcat('−100,',num2str(ppCnt),'\n'));
27

28 for j=1:evals
29 disp(strcat('−−−> Run Nr. ', num2str(j), '\n'));
30

31 % −200,[runNr] // −200 defines a run
32 fprintf(logfile, strcat('−200,',num2str(j),'\n'));
33

34 % init
35 [agentCoord, doorCoord, wallCoord, pileCoord, prefDoor, doorFam, v, rad, doorW,...
36 xmax, ymax] = init5(xmax, ymax, ppCnt, doorW, cornerDist, pileNr, pileDist);
37

38 % simulate
39 simulation(agentCoord, doorCoord, wallCoord, pileCoord, prefDoor,...
40 doorFam, v, rad, doorW, xmax, ymax, patience, true, logfile);
41

42 end
43

44 end
45

46 fclose(logfile);

1 function [i] = simulation( agentCoord, doorCoord, wallCoord, pileCoord, ...
2 prefDoor, doorFam, v, rad, doorW, xmax, ymax, patience, debug, logf)
3 % The function simulation is the main file, where the simulation runs.
4 %
5 % INPUT:
6 % The *Coord Matrices should all be N x 2, where the N is the number of
7 % elements and 2 is the corresponding x and y coordinate.
8 % agentCoord ... The coordinates of the people.
9 % doorCoord ... The coordinates of the doors (i.e. the middle of the door)

10 % wallCoord ... The coordinates of the wall−"people". These are particles,
11 % which don't move, thus represent wall−elements.
12 % prefDoor ... This gives the currently prefered door of the people, it's
13 % a vector with one entry for each person in agentCoord. The
14 % index of the value corresponds to the person with the same
15 % index in the matrix agentCoord
16 % v ... These should be the initial velocities of the people. It
17 % should have the same size as agentCoord.
18 % rad ... This gives how big persons are.
19 % doorW ... For each Door, we need to know its size.
20 % xmax, ymax ... The dimensions of the room.
21 % patience ... This is a parameter, which describes how patience the
22 % people are with their door.
23 % debug ... Defines if we shall log anything
24 % logf ... Handle to logfile
25 %
26 % OUPUT:

23



27 % The return value indicates how long it took until all persons left the
28 % room.
29

30

31 colors = ['m', 'c', 'y', 'r', 'g', 'b'];
32

33 %% Parameters
34 % maximal running time
35 Time = 10;
36

37 % step size of the time integration
38 dt = 10ˆ−2;
39

40 % maximal velocity an agent can have
41 vmax = [10,10];
42

43 % how much one takes the old velocity into account
44 oldPartV = 0.5;
45

46 % the probability of reevaluate the doors to choose
47 probDoorUpdate = 1;
48

49 %% Statistics initialization
50 %initially door chosen
51 chosenDoor = [];
52 exitThrough = [];
53

54 for k=1:size(doorW,2)
55 chosenDoor(1,k) = length(prefDoor(prefDoor == k));
56 end
57 exitThrough = zeros(numel(doorW));
58

59

60 %% Time integration
61 % the time integration is done by a simple explicit euler time stepping
62 for i = 0:dt:Time
63 % i %#ok<NOPRT>
64

65 decisionChanges = 0;
66 activeAgents = 0;
67

68

69 % in which order the agents are updated
70 whichOne = randperm(size(agentCoord,1));
71

72 % update all the agents for this timestep
73 for j = 1:size(agentCoord,1)
74 currAgent = whichOne(j);
75

76 % coordinates of the current agent

24



77 currx = agentCoord(currAgent,1);
78 curry = agentCoord(currAgent,2);
79

80 % if the current agent has already left the room, continue.
81 if (currx > xmax | | curry > ymax | | currx < 0 | | curry < 0)
82 continue;
83 end
84

85 % reconsider the preferred door
86 oldPrefDoor = prefDoor(currAgent);
87

88 if (rand(1) ≤ probDoorUpdate)
89 [prefDoor(currAgent), doorFam] = ...
90 basic2(currAgent, agentCoord, v, prefDoor, doorCoord, ...
91 doorW, patience, wallCoord, pileCoord, doorFam, rad);
92 end
93

94 if oldPrefDoor 6= prefDoor(currAgent)
95 decisionChanges = decisionChanges + 1;
96 end
97

98 % calculate the current acceleration
99 dv = − force(currAgent, agentCoord, wallCoord, doorCoord, rad, ...

100 prefDoor(currAgent), doorW, xmax, ymax);
101

102 % update the velocity and ensure, it is not faster then the max
103 % velocity
104 v(currAgent, :) = 0.5 * max(min(oldPartV * v(currAgent,:) + dt * dv,...
105 vmax), −vmax);
106

107 % update the coordinates
108 agentCoord(currAgent, :) = agentCoord(currAgent, :) + dt ...
109 .* v(currAgent,:);
110

111 % test if we have left the room after this step
112 currx = agentCoord(currAgent,1);
113 curry = agentCoord(currAgent,2);
114 if (currx > xmax | | curry > ymax | | currx < 0 | | curry < 0)
115 agentCoord(currAgent,:) = [−100. −100];
116 v(currAgent,:) = [0,0];
117 exitThrough(prefDoor(currAgent)) = ...
118 exitThrough(prefDoor(currAgent)) + 1;
119 prefDoor(currAgent) = −1;
120 end
121

122 end
123

124

125

126 % plot everything if not in debug mode

25



127 if debug == false
128 figure(1);
129

130 plot(wallCoord(:,1), wallCoord(:,2), 's', 'MarkerEdgeColor', 'k', ...
131 'MarkerFaceColor','k', 'MarkerSize', 7);
132 hold on;
133

134

135

136 for k=1:size(doorW,2)
137 plot(agentCoord(prefDoor == k,1), agentCoord(prefDoor == k,2),...
138 'o', 'MarkerEdgeColor', colors(1,k), 'MarkerFaceColor',...
139 colors(1,k), 'MarkerSize', 7);
140 end
141

142 plot(agentCoord(prefDoor == 0,1), agentCoord(prefDoor == 0,2),...
143 'o', 'MarkerEdgeColor', 'k', 'MarkerFaceColor','k', ...
144 'MarkerSize', 7);
145

146 plot(wallCoord(:,1), wallCoord(:,2), 's', 'MarkerEdgeColor', 'k', ...
147 'MarkerFaceColor','k', 'MarkerSize', 7);
148 axis([−0.01, xmax+0.01, −0.01, ymax+0.01]);
149 daspect([1,1,1]);
150 set(gca,'XTickLabel','');
151 set(gca,'YTickLabel','');
152

153 % there has to be a folder "../bilder" that the pictures can be saved
154 % comment the next three lines if you don't want to save every step
155 %nameStr = sprintf('../bilder/2sociSim patience%03.1f %05.2f.png',...
156 % patience, i);
157 %saveas(1,nameStr,'png');
158 hold off;
159 end
160

161 for k=1:size(doorW,2)
162 chosenDoor(k) = length(prefDoor(prefDoor == k)) + exitThrough(k);
163 exitThrough(k) = 0;
164 end
165

166 activeAgents = length(prefDoor(prefDoor > −1));
167

168 if debug == true
169 % log
170 fprintf(logf, strcat(num2str(activeAgents),',',num2str(decisionChanges),'\n'));
171 end
172

173 % exit integration if no one is in the room left
174 if (isempty(prefDoor(prefDoor > −1)))
175 break;
176 end

26



177

178

179 end
180

181 %% Statistic plots
182 %figure(2);
183 %plot(chosenDoor(1:numel(chosenDoor(1,:)),:) * 100);
184 %xlabel('step number');
185 %ylabel('%');
186 %axis([0, index, 0, 100]);
187 %legend('upper door', 'lower door');
188 %title([num2str(exitThrough(1)),' / ', num2str(exitThrough(2))])
189

190

191 end

1 function [f] = force(agentNr, agentCoord, wallCoord, doorCoord, rad,...
2 prefDoor, doorW, xmax, ymax)
3 % calculates the force acting on the agent
4 % with the number agentNr
5 %
6 % INPUT:
7 % agentNr ... the number of the agent, we want to
8 % forces for.
9 % agentCoord ... the coordinates of all agents.

10 % wallCoord ... the coordinates of the wall−elements.
11 % coorCoord ... the coordinates of the doors.
12 % rad ... the size of the agents in agentCoord.
13 % prefDoor ... the number of the prefered door of agent with agentNr.
14 %
15 % OUTPUT:
16 % The forces acting on agent with agentNr as a two dimensinal vector.
17

18 % parameter for the wall
19 wallR = 1.5;
20

21 % initialize the forces
22 f = [0,0];
23 potA = zeros(2,1);
24 potD = potA;
25 potW = potA;
26

27 % first calculate forces from agents
28 for i = 1:size(agentCoord,1)
29

30 % we don't have a force coming
31 % form ourselves.
32 if (i == agentNr)

27



33 continue;
34 end;
35

36 acor = agentCoord(agentNr,:);
37 bcor = agentCoord(i,:);
38 dist = norm(acor − bcor);
39 % only calculate the force, if we are in
40 % the others radius
41 if (rad(i) > dist)
42 potA = potAgent(acor, bcor);
43 f = f + potA(:)';
44 end
45 end
46

47 % then the wall−forces
48 for i = 1:size(wallCoord,1);
49 dist = norm(agentCoord(agentNr, :) − wallCoord(i,:));
50 % only calculate the force, if we are
51 % within the radius of a wall element.
52 if (dist < wallR)
53 potW = potWall(agentCoord(agentNr, :), wallCoord(i,:));
54 f = f + potW(:)';
55 end
56 end
57

58 % and finally door−force
59

60 % if he has no door preference, let him move around randomly
61 if prefDoor > 0
62

63 potD = potDoor(agentCoord(agentNr,:), doorCoord(prefDoor,:),...
64 doorW(prefDoor), xmax, ymax);
65

66 f = f + potD(:)';
67 end
68 end

1 function [prefDoorID, door fams] = basic2(aid, agent coords, ...
2 agent speeds, agent prefs, door coords, door caps, patience,...
3 wall coords, pile coords, door fams, peopleRad)
4 % This function calculates the door we prefere at our current
5 % position and velocity.
6 %
7 % aid = Agent ID
8 % agents = Vector of all Agents
9 % agent coords = Agent Positions

10 % agent speeds = Agent Speeds
11 % agent prefs = Agent's Preferred Doors

28



12 % doors = Vector of all Doors
13 % door coords = Door Positions
14 % door caps = Door Capacitivities
15 % patience = how much better an other door needs to be to be chosen
16

17 % init
18 agent pos = agent coords(aid,:)';
19 agent vel = agent speeds(aid,:)';
20 door caps = door caps';
21

22 d weights = [];
23 d vis = [];
24

25 prefDoorID = 0;
26

27

28 old door = agent prefs(aid);
29

30 % get weigthing for doors
31

32 for i=1:size(door coords,1)
33

34 d vis(i) = is vis(aid, i, agent coords, door coords, wall coords,...
35 pile coords);
36

37 if is fam(aid, i, door fams) == 1 && d vis(i) == 1
38 % door is visible and familiar
39 d weights(i) = 1;
40 elseif is fam(i, i, door fams) == 1 && d vis(i) == 0
41 % door is familiar but not visible
42 d weights(i) = 2;
43 elseif is fam(aid, i, door fams) == 0 && d vis(i) == 1
44 % door is visible but not familiar
45 d weights(i) = 3;
46 else
47 % door is invisible and not familiar
48 d weights(i) = 4;
49 end
50

51 end
52

53 % select the group with the best (lowest) preference numbers
54

55 bPrefNr = min(d weights);
56

57 % worst case, person doesn't know any doors and can't see any
58 if bPrefNr == 4
59 % he goes panic!!!!
60 prefDoorID = 0;
61 end

29



62

63 if bPrefNr < 4
64

65 % get best group of door indices
66 bDoorInd = find(d weights == bPrefNr)';
67 d time = zeros(size(bDoorInd,1), 1);
68 d time raw = zeros(size(bDoorInd,1), 1);
69

70 % loop through these doors and find the one with the
71 % best waiting time
72

73 for i=1:size(bDoorInd,1)
74

75 % door capacity (people per time step it can take
76 bk = 1/(door caps(bDoorInd(i))*10);
77

78 % estimated moving time:
79 est mtime = distance time(norm(agent pos −...
80 door coords(bDoorInd(i),:)'), agent vel);
81

82 % estimated queueing time
83 est qtime = bk * get queue count(bDoorInd(i), aid,...
84 agent coords, agent prefs, door coords);
85

86

87 % we cannot calculate the queue time if the door is not visible!
88 d time raw(i) = est mtime + est qtime;
89 est qtime = d vis(bDoorInd(i))*est qtime;
90

91 d time(i) = est mtime + est qtime;
92

93 end
94

95 % get the best one!
96

97 prefDoorID = bDoorInd(find(d time == min(d time), 1, 'first'));
98 end
99

100 % calculate time of old door
101

102 % door capacity (people per time step it can take
103 bk = 1/(door caps(old door)*10);
104

105 % estimated moving time:
106 est mtime = distance time(norm(agent pos −...
107 door coords(old door,:)'), agent vel);
108

109 % estimated queueing time
110 est qtime = bk * get queue count(old door, aid, agent coords,...
111 agent prefs, door coords);

30



112

113

114 % we cannot calculate the queue time if the door is not visible!
115 est qtime = d vis(old door)*est qtime;
116

117 old time = est mtime + est qtime;
118

119 % compare new preferable door and the old one, only take the new one
120 % if it is better!
121 if old time ≤ d time raw(find(d time == min(d time), 1, 'first'))
122 prefDoorID = old door;
123 end
124

125

126 end

1 function [pot] = potAgent(xp, xq)
2 % potential between agents with positions
3 % xp and xq
4

5 pot = zeros(2,1);
6

7 div = (xp(1)ˆ2 − 2*xp(1)*xq(1) + xq(1)ˆ2 + ...
8 xp(2)ˆ2 − 2*xp(2)*xq(2) + xq(2)ˆ2 )ˆ(3/2);
9

10 pot(1) = − 15.84893192 * (xp(1) − xq(1))/ div;
11 pot(2) = − 15.84893192 * (xp(2) − xq(2))/ div;
12

13 end

1 function [pot] = potWall(xp, xq)
2 % potential between agent xp and wall−element at xq.
3 pot = zeros(2,1);
4

5 div = (xp(1)ˆ2 − 2*xp(1)*xq(1) + xq(1)ˆ2 + ...
6 xp(2)ˆ2 − 2*xp(2)*xq(2) + xq(2)ˆ2 )ˆ(3/2);
7

8 pot(1) = − 5 * (xp(1) − xq(1))/ div;
9 pot(2) = − 5 * (xp(2) − xq(2))/ div;

1 function [pot] = potDoor(xp, xq, width, xmax, ymax)
2 % Potential between an agent and doors
3 % The doors are not just a point source, they are
4 % stretched, so that the the field is computed
5 % from multiple points,

31



6 %
7 % INPUT:
8 % xp ... position of an agent.
9 % xq ... position of a door middle.

10 % width ... width of the door xq.
11 % xmax ... roomwidth in x direction.
12 % ymax ... roomwidth in y direction.
13

14 % initial potential from the door
15 pot = zeros(2,1);
16

17 % describes the how far the points in the stretched
18 % potential are from each other.
19 eps = 0.01;
20

21 % make the potential field not only from a point.
22 if (xq(1) ≥ xmax | | xq(1) ≤ 0)
23 yCoords = (0:eps:width)' + xq(2) − width/2;
24 iter = [xq(1) * ones(size(yCoords)), yCoords];
25 else
26 xCoords = (0:eps:width)' + xq(1) − width/2;
27 iter = [xCoords, xq(2) * ones(size(xCoords))];
28 end
29

30 % iterate over all created points from above
31 iterSize = size(iter,1);
32 for i = 1:iterSize
33 div = norm(xp − iter(i,:));
34 pot(1) = pot(1) + 60 * (div + 4) * (xp(1) − iter(i,1)) / (div *iterSize);
35 pot(2) = pot(2) + 60 * (div + 4) * (xp(2) − iter(i,2)) / (div *iterSize);
36 end

1 function [ time ] = distance time(dist, speed)
2 % Calculate Travelling Time if we can hold our speed
3 time = dist / sqrt(speed(1)ˆ2 + speed(2)ˆ2);
4

5 end

1 function [queue] = get queue count(did, aid, agent coords, agent prefs,...
2 door coords)
3 % This function computes, how many people are in front of agent did
4 % and are heading for the same door
5 %
6 % did = Door ID
7 % aid = Agent ID
8 % agents = Vector of all Agents
9 % agent coords = Agent Coordinates

32



10 % agent prefs = Agent's preferred Door
11 % doors = Vector of all Doors
12 % door coords = Door Coordinates
13

14

15 % Returns queue count of agents heading in direction of Door did
16

17

18 agent dist = norm(agent coords(aid,:)' − door coords(did,:)');
19 queue = 0;
20

21 for i=1:size(agent coords, 1)
22

23 c did = agent prefs(i);
24

25 % exclude our agent and agents heading for a different door %
26 if(i == aid | | c did 6= did)
27 continue
28 end
29

30

31 c dist = norm(agent coords(i,:)' − door coords(c did,:)');
32

33 if(c dist ≤ agent dist)
34 queue = queue + 1;
35 end
36 end
37

38 end

1 function [vis] = is vis(aid, did, agent coords, door coords,...
2 wall coords, pile coords)
3

4 % input:
5 % aid: agent id
6 % did: door id
7 % agent coords: coordinate matrix of all agents
8 % door coords: coordinate matrix of all doors
9 % wall coords: coordinate matrix of all walls

10 % pile coords: coordinate matrix of all piles
11

12 % output:
13 % returns 1 if door is visible to agent
14 % returns 0 if door is invisible for agent
15

16

17 % is door "did" visible to agent "aid" Default: true
18 vis = 1;

33



19

20 % door doesnt exist
21 if did == 0
22 % not visible
23 vis = 0;
24 return;
25 end
26

27 % accuracy (resolution) same as walls/piles
28 Weps = 0.1;
29

30 % get agent's position
31 agentCX = agent coords(aid, 1);
32 agentCY = agent coords(aid, 2);
33

34 % get the door's position
35 doorCX = door coords(did, 1);
36 doorCY = door coords(did, 2);
37

38 % gradient of the line between agent and the middle of the door
39 lineGrad = (doorCY − agentCY)/(doorCX − agentCX);
40

41

42 % rectangle between agent and door (interval)
43 rectLeft = doorCX;
44 rectRight = agentCX;
45 rectTop = agentCY;
46 rectBottom = doorCY;
47

48 % swap boundaries of rectangle if necessary
49 if rectLeft > rectRight
50 tmpLeft = rectLeft;
51 rectLeft = rectRight;
52 rectRight = tmpLeft;
53 end
54

55 if rectBottom > rectTop
56 tmpBottom = rectBottom;
57 rectBottom = rectTop;
58 rectTop = tmpBottom;
59 end
60

61

62 % loop through all piles
63 for i=1:size(pile coords,1)
64

65 % pile coordinates
66 pileX = pile coords(i, 1);
67 pileY = pile coords(i, 2);
68

34



69 % check if pile is out of the rectangle
70 if pileX < rectLeft | | pileX > rectRight...
71 | | pileY < rectBottom | | pileY > rectTop
72 % if yes, the pile is not of any interest, skip
73 continue;
74 end
75

76 % check if pile is on the sight−line!
77 tmpY = round((lineGrad * (pileX − agentCX) ...
78 + agentCY)*(1/Weps))/(1/Weps);
79

80 if pileY == tmpY
81 %hold on;
82 %plot([agentCX, doorCX], [agentCY, doorCY]);
83

84 % the pile is in the agent's sightline to the door
85 % the door is not visible to the agent
86 vis = 0;
87 return;
88 end
89

90 end
91

92

93 end

1

2 function [fam] = is fam(aid, did, famDoors)
3 % input:
4 % aid: agent id
5 % did: door id
6 % famDoors: a matrix with a row for each agent and one column for
7 % ...each door with a binary flag (known/unknown)
8

9 % output:
10 % returns 0 if door (did) is not familiar to agent (aid)
11 % returns 1 if door (did) is familiar to agent (aid)
12 fam = 0;
13

14 if famDoors(aid, did) 6= 0
15 fam = 1;
16 end
17

18

19 end

1 function [agentCoord, doorCoord, wallCoord, pileCoord, prefDoor, doorFam, ...

35



2 v, rad, doorW, xmax, ymax] = init1(xmax, ymax, nrPeople, doorW)
3 % This function creates a world, where we have four doors, which are
4 % located in the middle of all the walls. With:
5 % − the first door in the north
6 % − the second door in the south
7 % − the third door in the east
8 % − the fourth door in the west
9 %

10 % INPUT:
11 % xmax, ymax ... the dimensions of the room
12 % nrPeople ... how many people it will have in the room
13 % doorw ... the widths of the doors, Must contain four
14 % values. If a value is smaller or equal to
15 % zero, the door will not be place.
16 %
17 % OUTPUT:
18 % agentCoord ... The coordinates of the people.
19 % doorCoord ... The coordinates of the doors (i.e. the middle of the door)
20 % wallCoord ... The coordinates of the wall−"people". These are particles,
21 % which don't move, thus represent wall−elements.
22 % prefDoor ... This gives the currently prefered door of the people, it's
23 % a vector with one entry for each person in agentCoord. The
24 % index of the value corresponds to the person with the same
25 % index in the matrix agentCoord
26 % v ... These should be the initial velocities of the people. It
27 % should have the same size as agentCoord.
28 % rad ... This gives how big persons are.
29 % doorW ... For each Door, we need to know its size.
30 % xmax, ymax ... The dimensions of the room.
31 % patience ... This is a parameter, which describes how patience the
32 % people are with their door.
33

34 %% Parameters
35 Deps = 0;
36 Weps = 0.1;
37 peopleRad = 0.75;
38

39 %% The room
40 wallCoord = [];
41

42 middlex = xmax/2;
43 middley = ymax/2;
44

45 % test if doorwidths are smaller or equal to the maximum size
46 % of the wall, else shrink it to that size
47 doorW(1) = min(doorW(1), xmax);
48 doorW(2) = min(doorW(2), xmax);
49 doorW(3) = min(doorW(3), ymax);
50 doorW(4) = min(doorW(4), ymax);
51

36



52 % construct the north wall
53 leftN = (0:Weps:(middlex − doorW(1)/2))';
54 rightN = (middlex + doorW(1)/2:Weps:xmax)';
55 northWall = [ leftN, ymax * ones(length(leftN), 1)];
56 northWall = [northWall; [rightN, ymax * ones(length(rightN), 1)]];
57

58 % construct the south wall
59 leftS = (0:Weps:(middlex − doorW(2)/2))';
60 rightS = (middlex + doorW(2)/2:Weps:xmax)';
61 southWall = [ leftS, zeros(length(leftS), 1)];
62 southWall = [southWall; [rightS, zeros(length(rightS), 1)]];
63

64 % construct the east wall
65 lowerE = (0:Weps:middley − doorW(3)/2)';
66 upperE = (middley + doorW(3)/2:Weps:ymax)';
67 eastWall = [xmax * ones(length(lowerE), 1), lowerE];
68 eastWall = [eastWall; [xmax * ones(length(upperE), 1), upperE]];
69

70 % construct the west wall
71 lowerW = (0:Weps:middley − doorW(4)/2)';
72 upperW = (middley + doorW(4)/2:Weps:ymax)';
73 westWall = [zeros(length(lowerW), 1), lowerW];
74 westWall = [westWall; [zeros(length(upperW), 1), upperW]];
75

76 % put all the walls into one matrix
77 wallCoord = [wallCoord; northWall; southWall; westWall; eastWall];
78

79 pileCoord = [];
80 doorFam = ones(nrPeople, numel(doorW(doorW 6= 0)));
81 %% Doors
82 doorCoord = [];
83 fak = 2;
84

85 % set the doors
86 % if the width of a door is smaller or equal to zero, it will
87 % not be placed
88 if (doorW(1) > 0)
89 doorCoord = [doorCoord; [middlex, ymax+Deps * doorW(1)/fak]];
90 end
91

92 if (doorW(2) > 0)
93 doorCoord = [doorCoord; [middlex, −Deps * doorW(2)/fak]];
94 end
95

96 if (doorW(3) > 0)
97 doorCoord =[doorCoord; [xmax+Deps * doorW(3)/fak, middley]];
98 end
99

100 if (doorW(4) > 0)
101 doorCoord =[doorCoord;[−Deps * doorW(4)/fak, middley]];

37



102 end
103 doorW = doorW(doorW > 0);
104

105

106 %% People
107 % place the people
108 agentCoord = rand(nrPeople,2) .* repmat([xmax, ymax],nrPeople, 1);
109 prefDoor = ceil(rand(nrPeople,1) .* size(doorCoord,1));
110 rad = peopleRad * ones(nrPeople,1);
111 v = zeros(nrPeople, 2);
112

113 % test if the people have chosen a valid door
114 for i = 1:nrPeople
115 while (doorW(prefDoor(i)) == 0)
116 prefDoor(i) = ceil(rand(1) * size(doorCoord,1));
117 end
118 end
119

120 % set value and direction of the initial velocities
121 % of the people
122 for i = 1:nrPeople
123 dir = doorCoord(prefDoor(i),:) − agentCoord(i,:);
124 v(i,:) = (dir./norm([xmax,ymax])) * norm([15,15]);
125 end
126

127 end

1 function [agentCoord, doorCoord, wallCoord, pileCoord, prefDoor, doorFam,...
2 v, rad, doorW, xmax, ymax] = init2(xmax, ymax, nrPeople, doorW, doorDist)
3 % This function gives a room back, which has two doors at one wall,
4 % the west wall
5 %
6 % INPUT:
7 % xmax, ymax ... the dimensions of the room.
8 % nrPeople ... how many people it will have in the room.
9 % doorW ... the width of the doors.

10 % doorDist ... the distance of between the two doors.
11 %
12 % OUTPUT:
13 % agentCoord ... The coordinates of the people.
14 % doorCoord ... The coordinates of the doors (i.e. the middle of the door)
15 % wallCoord ... The coordinates of the wall−"people". These are particles,
16 % which don't move, thus represent wall−elements.
17 % prefDoor ... This gives the currently prefered door of the people, it's
18 % a vector with one entry for each person in agentCoord. The
19 % index of the value corresponds to the person with the same
20 % index in the matrix agentCoord
21 % v ... These should be the initial velocities of the people. It

38



22 % should have the same size as agentCoord.
23 % rad ... This gives how big persons are.
24 % doorW ... For each Door, we need to know its size.
25 % xmax, ymax ... The dimensions of the room.
26 % patience ... This is a parameter, which describes how patience the
27 % people are with their door.
28

29 %% Parameters
30 % some parameters for the doors
31 Deps = 0;
32 fak = 2;
33

34 % the distance between two wall elements
35 Weps = 0.1;
36

37 % the size of the people
38 peopleRad = 0.75;
39

40 %% the room
41 % we will have here only two doors. which will be next to each other.
42 pileCoord = [];
43 doorFam = ones(nrPeople, 2);
44

45 % the full walls
46 northWall = 0:Weps:xmax;
47 northWall = northWall(:);
48 northWall = [northWall, ymax * ones(size(northWall))];
49

50 southWall = 0:Weps:xmax;
51 southWall = southWall(:);
52 southWall = [southWall, zeros(size(southWall))];
53

54 eastWall = 0:Weps:ymax;
55 eastWall = eastWall(:);
56 eastWall = [xmax * ones(size(eastWall)), eastWall];
57

58 % constuction of the wall, which contains the doors.
59 doorDist = min(ymax/2, doorDist);
60 doorW(1) = min(doorW(1), (ymax − doorDist)/2);
61 doorW(2) = min(doorW(2), (ymax − doorDist)/2);
62

63 lower = 0:Weps: ymax/2 − doorW(2) − doorDist/2;
64 middle = (0:Weps:doorDist) + ymax/2 − doorDist/2;
65 upper = ymax/2 + doorDist/2 + doorW(1):Weps:ymax;
66 lower = lower(:); middle = middle(:); upper = upper(:);
67

68 westWall = [ zeros(size(lower)), lower; zeros(size(middle)), middle; ...
69 zeros(size(upper)), upper];
70

71 % put all the walls into one matrix

39



72 wallCoord = [northWall; southWall; westWall; eastWall];
73

74 %% Doors
75 doorCoord = [−Deps * doorW(1)/fak, ymax/2 + doorDist/2 + doorW(1)/2; ...
76 −Deps * doorW(2)/fak, ymax/2 − doorDist/2 − doorW(2)/2];
77

78

79 %% People
80 % place the people
81 agentCoord = rand(nrPeople,2) .* repmat([xmax, ymax],nrPeople, 1);
82 prefDoor = ceil(rand(nrPeople,1) .* size(doorCoord,1));
83 rad = peopleRad * ones(nrPeople,1);
84 v = zeros(nrPeople, 2);
85

86 % test if the people have chosen a valid door
87 for i = 1:nrPeople
88 while (doorW(prefDoor(i)) == 0)
89 prefDoor(i) = ceil(rand(1) * size(doorCoord,1));
90 end
91 end
92

93 % set value and direction of the initial velocities
94 % of the people
95 for i = 1:nrPeople
96 dir = doorCoord(prefDoor(i),:) − agentCoord(i,:);
97 v(i,:) = (dir./norm([xmax,ymax])) * norm([15,15]);
98 end

1 function [agentCoord, doorCoord, wallCoord, pileCoord, prefDoor, doorFam,...
2 v, rad, doorW, xmax, ymax] = init3(xmax, ymax, nrPeople, doorW,...
3 distToCorner)
4 % This function creates a world, where the two doors are at one corner
5 % The first door lies in the west wall, the second in the south wall
6 %
7 % INPUT:
8 % xmax, ymax ... the dimensions of the room
9 % nrPeople ... how many people it will have in the room

10 % doorW ... the width of the doors (doorW(1), west
11 % door; doorW(2), southDoor)
12 % distToCorner ... the distance of the doors form the corner
13 % in south−west
14 %
15 % OUTPUT:
16 % agentCoord ... The coordinates of the people.
17 % doorCoord ... The coordinates of the doors (i.e. the middle of the door)
18 % wallCoord ... The coordinates of the wall−"people". These are particles,
19 % which don't move, thus represent wall−elements.
20 % prefDoor ... This gives the currently prefered door of the people, it's

40



21 % a vector with one entry for each person in agentCoord. The
22 % index of the value corresponds to the person with the same
23 % index in the matrix agentCoord
24 % v ... These should be the initial velocities of the people. It
25 % should have the same size as agentCoord.
26 % rad ... This gives how big persons are.
27 % doorW ... For each Door, we need to know its size.
28 % xmax, ymax ... The dimensions of the room.
29 % patience ... This is a parameter, which describes how patience the
30 % people are with their door.
31

32 %% Parameters
33 % some parameters for the doors
34 Deps = 0;
35 fak = 2;
36

37 % the distance between two wall elements
38 Weps = 0.1;
39

40 % the size of the people
41 peopleRad = 0.75;
42

43 %% the room
44 % boarder walls
45 pileCoord = [];
46 doorFam = ones(nrPeople, 2);
47

48 % the full walls
49 northWall = 0:Weps:xmax;
50 northWall = northWall(:);
51 northWall = [northWall, ymax * ones(size(northWall))];
52

53 eastWall = 0:Weps:ymax;
54 eastWall = eastWall(:);
55 eastWall = [xmax * ones(size(eastWall)), eastWall];
56

57 % correct the parameters if they are to big.
58 distToCorner(1) = min(ymax, distToCorner(1));
59 distToCorner(2) = min(xmax, distToCorner(2));
60

61 doorW(1) = min(doorW(1), ymax − distToCorner(1));
62 doorW(2) = min(doorW(2), xmax − distToCorner(2));
63

64 % the construction of the south wall, which includes
65 % one door
66 southLeft = 0:Weps:distToCorner(2);
67 southLeft = southLeft(:);
68 southRight = distToCorner(2) + doorW(2):Weps:xmax;
69 southRight = southRight(:);
70 southWall = [southLeft, zeros(size(southLeft));...

41



71 southRight, zeros(size(southRight))];
72

73 % the construction of the west wall, which includes
74 % one door
75 westLower = 0:Weps:distToCorner(1);
76 westLower = westLower(:);
77 westUpper = distToCorner(1) + doorW(1):Weps:ymax;
78 westUpper = westUpper(:);
79 westWall = [ zeros(size(westLower)), westLower;...
80 zeros(size(westUpper)), westUpper];
81

82 % put all the walls into one matrix
83 wallCoord = [northWall; southWall; westWall; eastWall];
84

85 % set the doors
86 doorCoord = [−Deps * doorW(1)/fak, distToCorner(1) + doorW(1)/2; ...
87 distToCorner(2) + doorW(2)/2, −Deps * doorW(2)/fak];
88 doorW = doorW(1:2);
89

90 %% People
91 % place the people
92 agentCoord = rand(nrPeople,2) .* repmat([xmax, ymax],nrPeople, 1);
93 prefDoor = ceil(rand(nrPeople,1) .* size(doorCoord,1));
94

95

96

97 rad = peopleRad * ones(nrPeople,1);
98 v = zeros(nrPeople, 2);
99

100 % test if the people have chosen a valid door
101 for i = 1:nrPeople
102 while (doorW(prefDoor(i)) == 0)
103 prefDoor(i) = ceil(rand(1) * length(doorW));
104 end
105 end
106

107 % set value and direction of the initial velocities
108 % of the people
109 for i = 1:nrPeople
110 dir = doorCoord(prefDoor(i),:) − agentCoord(i,:);
111 v(i,:) = (dir./norm([xmax,ymax])) * norm([15,15]);
112 end

1 function [agentCoord, doorCoord, wallCoord, pileCoord, prefDoor, doorFam,...
2 v, rad, doorW, xmax, ymax] = init4(xmax, ymax, nrPeople, ...
3 doorW, distToCorner, pileNr, pileDist)
4 % This function creates a world, where the two doors are at one corner
5 % The first door lies in the west wall, the second in the south wall

42



6 % additionally, the doors have piles in front of it.
7 %
8 % INPUT:
9 % xmax, ymax ... the dimensions of the room

10 % nrPeople ... how many people it will have in the room
11 % doorW ... the width of the doors (doorW(1), west
12 % door; doorW(2), southDoor)
13 % distToCorner ... the distance of the doors form the corner
14 % in south−west
15 % pileNr ... for each door the number of piles in front
16 % pileDist ... the distance of the piles from the door (2dim vector)
17 %
18 % OUTPUT:
19 % agentCoord ... The coordinates of the people.
20 % doorCoord ... The coordinates of the doors (i.e. the middle of the door)
21 % wallCoord ... The coordinates of the wall−"people". These are particles,
22 % which don't move, thus represent wall−elements.
23 % prefDoor ... This gives the currently prefered door of the people, it's
24 % a vector with one entry for each person in agentCoord. The
25 % index of the value corresponds to the person with the same
26 % index in the matrix agentCoord
27 % v ... These should be the initial velocities of the people. It
28 % should have the same size as agentCoord.
29 % rad ... This gives how big persons are.
30 % doorW ... For each Door, we need to know its size.
31 % xmax, ymax ... The dimensions of the room.
32

33 %% Parameters
34 % some parameters for the doors
35 Deps = 0;
36 fak = 2;
37

38 % the distance between two wall elements
39 Weps = 0.1;
40 Peps = 0.5;
41

42 % the size of the people
43 peopleRad = 0.75;
44

45 %% the room
46 % boarder walls
47 wallCoord = [];
48 pileCoord = [];
49

50 % the full walls
51 northWall = 0:Weps:xmax;
52 northWall = northWall(:);
53 northWall = [northWall, ymax * ones(size(northWall))];
54

55 eastWall = 0:Weps:ymax;

43



56 eastWall = eastWall(:);
57 eastWall = [xmax * ones(size(eastWall)), eastWall];
58

59 % correct the parameters if they are to big.
60 distToCorner(1) = min(ymax, distToCorner(1));
61 distToCorner(2) = min(xmax, distToCorner(2));
62

63 doorW(1) = min(doorW(1), ymax − distToCorner(1));
64 doorW(2) = min(doorW(2), xmax − distToCorner(2));
65

66 % the construction of the south wall, which includes
67 % one door
68 southLeft = 0:Weps:distToCorner(2);
69 southLeft = southLeft(:);
70 southRight = distToCorner(2) + doorW(2):Weps:xmax;
71 southRight = southRight(:);
72 southWall = [southLeft, zeros(size(southLeft));...
73 southRight, zeros(size(southRight))];
74

75 % the construction of the west wall, which includes
76 % one door
77 westLower = 0:Weps:distToCorner(1);
78 westLower = westLower(:);
79 westUpper = distToCorner(1) + doorW(1):Weps:ymax;
80 westUpper = westUpper(:);
81 westWall = [ zeros(size(westLower)), westLower;...
82 zeros(size(westUpper)), westUpper];
83

84 % add the piles
85 if pileNr(1) > 0
86 if pileNr(1) == 1
87 westPiles = [pileDist(1), ...
88 (doorW(1)/2 + distToCorner(1))'];
89 else
90 westPiles = [ones(pileNr(1),1) * pileDist(1),...
91 ((0:Peps:Peps*(pileNr(1)−1)) + distToCorner(1) + ...
92 doorW(1)/2 − Peps*(pileNr(1)−1)/2)'];
93 end
94 wallCoord = [wallCoord; westPiles];
95 end
96

97 if pileNr(2) > 0
98 if pileNr(2) == 1
99 westPiles = [(doorW(2)/2 + distToCorner(2))',...

100 pileDist(2)];
101 else
102 westPiles = [((0:Peps:Peps*(pileNr(2)−1)) + distToCorner(2) + ...
103 doorW(2)/2 − Peps*(pileNr(2)−1)/2)', ...
104 ones(pileNr(2),1) * pileDist(2)];
105 end

44



106 wallCoord = [wallCoord; westPiles];
107 end
108

109 % put all the walls into one matrix
110 wallCoord = [wallCoord; northWall; southWall; westWall; eastWall];
111

112 % set the doors
113 doorCoord = [−Deps * doorW(1)/fak, distToCorner(1) + doorW(1)/2; ...
114 distToCorner(2) + doorW(2)/2, −Deps * doorW(2)/fak];
115 doorW = doorW(1:2);
116 doorFam = ones(nrPeople, 2);
117

118 %% People
119 % place the people
120 agentCoord = rand(nrPeople,2) .* repmat([xmax, ymax],nrPeople, 1);
121 prefDoor = ceil(rand(nrPeople,1) .* 2);
122 rad = peopleRad * ones(nrPeople,1);
123 v = zeros(nrPeople, 2);
124

125 % test if the people have chosen a valid door
126 % for i = 1:nrPeople
127 % while (doorW(prefDoor(i)) == 0)
128 % prefDoor(i) = ceil(rand(1) * length(doorW));
129 % end
130 % end
131

132 % set value and direction of the initial velocities
133 % of the people
134 for i = 1:nrPeople
135 dir = doorCoord(prefDoor(i),:) − agentCoord(i,:);
136 v(i,:) = (dir./norm([xmax,ymax])) * norm([5,5]);
137 end

1 function [agentCoord, doorCoord, wallCoord, pileCoord, prefDoor, doorFam,...
2 v, rad, doorW, xmax, ymax] = init5(xmax, ymax, nrPeople, doorW,...
3 distToCorner, pileNr, pileDist)
4 % This function creates a room with doors and piles
5 % The doors are specified in a CSV file called "doors.csv"
6 % The piles are specified in a CSV file called "piles.csv"
7 %
8 % INPUT:
9 % xmax, ymax ... the dimensions of the room

10 % nrPeople ... how many people it will have in the room
11 % doorW ... has no further use anymore
12 % distToCorner ... has no further use anymore
13 % pileNr ... has no further use anymore
14 % pileDist ... has no further use anymore
15 %

45



16 % OUTPUT:
17 % agentCoord ... The coordinates of the people.
18 % doorCoord ... The coordinates of the doors (i.e. the middle of the door)
19 % wallCoord ... The coordinates of the wall−"people". These are particles,
20 % which don't move, thus represent wall−elements.
21 % This matrix also contains the coordinates of the piles in
22 % the first column
23 % pileCoord ... The explicit coordinates of the piles (middle of the pile)
24 % prefDoor ... This gives the currently prefered door of the people, it's
25 % a vector with one entry for each person in agentCoord. The
26 % index of the value corresponds to the person with the same
27 % index in the matrix agentCoord
28 % doorFam ... Stores information about every agent. Tells us which doors
29 % an agent is familiar to.
30 % v ... These should be the initial velocities of the people. It
31 % should have the same size as agentCoord.
32 % rad ... This gives how big persons are.
33 % doorW ... For each Door, we need to know its size.
34 % xmax, ymax ... The dimensions of the room.
35

36 %% Parameters
37 % some parameters for the doors
38 Deps = 0;
39 fak = 2;
40

41 % the distance between two wall elements
42 Weps = 0.1;
43

44 % the size of the people
45 peopleRad = 0.75;
46

47 %% the room
48 % boarder walls
49 piles = [];
50

51 % get coordinates from CSV file
52 doors = csvread('doors.csv');
53 %piles = csvread('piles.csv');
54

55

56 % the full walls
57

58 % the construction of the north wall
59 northWall = 0:Weps:xmax;
60 northWall = northWall(:);
61 northWall = [northWall, ymax * ones(size(northWall))];
62

63 % the construction of the east wall
64 eastWall = 0:Weps:ymax;
65 eastWall = eastWall(:);

46



66 eastWall = [xmax * ones(size(eastWall)), eastWall];
67

68

69 % the construction of the south wall
70 southWall = 0:Weps:xmax;
71 southWall = southWall(:);
72 southWall = [southWall, 0 * ones(size(southWall)) ];
73

74 % the construction of the west wall
75 westWall = 0:Weps:ymax;
76 westWall = westWall(:);
77 westWall = [0 * ones(size(westWall)), westWall];
78

79

80 % place doors into wall
81

82 % hold door widths (capacities)
83 doorW = [];
84 % hold door coordinates
85 doorCoord = [];
86

87 % loop through all doors
88 for i=1:size(doors, 1)
89

90 % position
91 cDoorX = doors(i, 1);
92 cDoorY = doors(i, 2);
93

94 % capacity
95 cDoorW = doors(i, 3);
96

97 if cDoorX == 0
98 % west wall
99 startY = (cDoorY − (cDoorW / 2));

100 endY = (cDoorY + (cDoorW / 2));
101

102 % cut the door out of the wall
103 westWall = [westWall(1:(startY/Weps),:);...
104 westWall((endY/Weps):size(westWall),:)];
105 end
106

107 if cDoorX == xmax
108 % east wall
109 startY = (cDoorY − (cDoorW / 2));
110 endY = (cDoorY + (cDoorW / 2));
111

112 % cut the door out of the wall
113 eastWall = [eastWall(1:(startY/Weps),:);...
114 eastWall((endY/Weps):size(eastWall),:)];
115 end

47



116

117 if cDoorY == 0
118 % south wall
119 startX = (cDoorX − (cDoorW / 2));
120 endX = (cDoorX + (cDoorW / 2));
121

122 % cut the door out of the wall
123 southWall = [southWall(1:(startX/Weps),:);...
124 southWall((endX/Weps):size(southWall),:)];
125 end
126

127 if cDoorY == ymax
128 % north wall
129 startX = (cDoorX − (cDoorW / 2));
130 endX = (cDoorX + (cDoorW / 2));
131

132 % cut the door out of the wall
133 northWall = [northWall(1:(startX/Weps),:);...
134 northWall((endX/Weps):size(northWall),:)];
135 end
136

137 % add door to the door coordinates container
138 doorCoord(i,1) = cDoorX;
139 doorCoord(i,2) = cDoorY;
140 doorW(i) = cDoorW;
141

142 end
143

144 % init pile coordinates
145 pileCoord = [];
146

147 % loop through all piles
148 for i=1:size(piles, 1)
149

150 % coordinates
151 cPileX = piles(i, 1);
152 cPileY = piles(i, 2);
153

154 % pile width (default 1)
155 cPileW = 1;
156

157 startX = (cPileX − (cPileW / 2));
158 endX = (cPileX + (cPileW / 2));
159

160 startY = cPileY − (cPileW / 2);
161 endY = cPileY + (cPileW / 2);
162

163 % x and y coordinates of the pile
164 pileCoordX = [];
165 pileCoordY = [];

48



166

167 % cut pile into small piles (Weps)
168 for k=startY:Weps:endY
169

170 % store coordinates of current pile
171 pileCoordX = [startX:Weps:endX];
172 pileCoordX = pileCoordX(:);
173

174 % calculate Y coordinates
175 pileCoordY = k * ones(size(pileCoordX));
176

177 % append to other piles
178 pileCoord = [pileCoord;[pileCoordX, pileCoordY]];
179 end
180

181

182 end
183

184 % put the walls and piles together
185 wallCoord = [pileCoord;northWall; southWall; westWall; eastWall];
186

187 %% People
188 % place the people
189 %agentCoord = rand(nrPeople,2) .* repmat([xmax, ymax],nrPeople, 1);
190

191 % ensure no agent will be placed inside of a pile
192 agentCoord = [];
193 i = 1;
194

195 while i ≤ nrPeople
196

197 % random coordinates
198 agentCX = rand() * xmax;
199 agentCY = rand() * ymax;
200

201 % position is ok by default
202 coordOk = true;
203

204 % loop through walls and piles
205 for k=1:size(wallCoord,1)
206

207 if abs(wallCoord(k,1)−agentCX) ≤ peopleRad &&...
208 abs(wallCoord(k,2)−agentCY) ≤ peopleRad
209 % to close to a wall or pile, retry
210 coordOk = false;
211 break;
212 end
213

214 end
215

49



216 if coordOk == false
217 % to close, retry
218 continue;
219 else
220 % coordinates ok, store
221 agentCoord(i,1) = agentCX;
222 agentCoord(i,2) = agentCY;
223 i = i + 1;
224 end
225 end
226

227 % set random door preferences
228 prefDoor = ceil(rand(nrPeople,1) .* size(doorCoord,1));
229

230

231 % setup random door acknowledges
232 doorFam = [];
233

234 for i=1:nrPeople
235 for j=1:size(doorCoord,1)
236 doorFam(i,j) = round(rand());
237 end
238 end
239

240 % test if the people have chosen a valid door
241 for i = 1:nrPeople
242 while (doorW(prefDoor(i)) == 0)
243 prefDoor(i) = ceil(rand(1) * length(doorW));
244 end
245 end
246

247

248 % set value and direction of the initial velocities
249 % of the people
250

251 rad = peopleRad * ones(nrPeople,1);
252 v = zeros(nrPeople, 2);
253

254 for i = 1:nrPeople
255 dir = doorCoord(prefDoor(i),:) − agentCoord(i,:);
256 v(i,:) = (dir./norm([xmax,ymax])) * norm([15,15]);
257 end

1 function [] = plotField(agentCoord, wallCoord, doorCoord, doorW, xmax, ymax)
2 % function that evaluates the field and gives then a
3 % contour plot and a 3d−plot of the field.
4 % the field is only calculated with the door which is the
5 % first one in the doorCoord input.

50



6 %
7 % INPUT:
8 % agentCoord ... the coordinates of the agents
9 % wallCoord ... the coordinates of the wall−agents

10 % doorCoord ... the coordinates of the doors−middle
11 % doorW ... the width of the doors
12 % xmax, ymax ... the size of room
13

14

15 % the number of points to be evaluated per dimension.
16 nrEvals = 200;
17

18 % some parameters
19 wallR = 1.5;
20 agentR = 0.75;
21

22 % initialization
23 sol = zeros(nrEvals,nrEvals);
24 evalx = linspace(0,xmax,nrEvals);
25 evaly = linspace(0,ymax,nrEvals);
26

27 % parellelized loop for the evaluation
28 % if you want multiple processes running
29 % you need to write the following into the
30 % command window: matlabpool open
31 parfor i = 1:length(evalx);
32 i %#ok<PFPRT>
33 for j = 1:length(evaly);
34 tsol = sol(i,:);
35

36

37 %% potential we got from the agents
38 for k = 1:size(agentCoord,1)
39 r = norm([evalx(i), evaly(j)] − agentCoord(k,:));
40 if (r ≤ agentR)
41 tsol(j) = tsol(j) + 10ˆ1.2 * 1/r;
42 end
43 end
44

45 %% potential we get from the walls
46 for k = 1:size(wallCoord,1)
47 r = norm([evalx(i), evaly(j)] − wallCoord(k,:));
48 if (r < wallR)
49 tsol(j) = tsol(j) + 1 * 1/r;
50 end
51 end
52

53 %% potential we get from the Door 1
54 r = norm([evalx(i), evaly(j)] − doorCoord(1,:));
55 tsol(j) = tsol(j) + 10 * (r+4)ˆ2;

51



56

57 % since the values can go to infinity
58 % this corrects those, that we still can
59 % see something in the plot
60 tsol(j) = min(tsol(j), 2500);
61 sol(i,:) = tsol;
62 end
63 end
64

65 % plot the 3d plot
66 figure(99);
67 [x,y] = meshgrid(evalx, evaly);
68 daspect([1,1,1]);
69 surfc(x,y,sol);
70

71 % plot the contour plot
72 figure(98);
73 daspect([1,1,1000]);
74 contourf(evalx,evaly, sol);

1 function[] = plotStats(logfile, plottitle)
2

3 % plots statistics for result CSV file logfile
4 % input:
5 % logfile: path to csv logfile
6 % plottitle: title for plot (ex. with piles / without piles)
7

8 % output:
9 % nothing − draws a plot!

10

11 % get raw data
12 raw data = csvread(logfile);
13

14 % containers
15 agent count = [];
16 door changes = [];
17

18 evac times = [];
19

20 cases = [];
21

22 case count = 0;
23

24 % colors for plot
25 colors = ['m', 'c', 'y', 'r', 'g', 'b'];
26

27 run rows = [];
28 run counts = [];

52



29

30 c rows = 0;
31

32 % collecting data
33 for i=1:length(raw data)
34

35 % −100 indicates a new case
36 if raw data(i,1) == −100
37

38 % output
39 disp(strcat(num2str(raw data(i,1)), ' − ', num2str(raw data(i,2))));
40

41 % increase case
42 case count = case count+1;
43

44 % store count of people
45 cases(case count) = raw data(i,2);
46

47 % reset values
48 run counts(case count) = 0;
49 run rows(case count) = 0;
50 c rows = 0;
51

52 agent count(1, case count) = 0;
53 door changes(1, case count) = 0;
54

55 continue;
56

57 end
58

59 % −200 indicates a run within a case
60 if raw data(i,1) == −200
61 % output
62 disp(strcat('−−−> ', num2str(raw data(i,1)), ' − ', num2str(raw data(i,2))));
63

64 % increase run count
65 run counts(case count) = run counts(case count) + 1;
66 % reset rows
67 c rows = 0;
68

69 continue;
70 end
71

72 % this is a data set
73

74 % increase rows for this run
75 run rows(case count) = run rows(case count) + 1;
76 c rows = c rows + 1;
77

78 % reserve space for stats

53



79 if size(agent count, 1) < c rows
80 agent count(c rows, case count) = 0;
81 end
82

83 % append agent count
84 agent count(c rows, case count) = ...
85 agent count(c rows, case count) + raw data(i,1);
86

87 % reserve space for stats
88 if size(door changes, 1) < c rows
89 door changes(c rows, case count) = 0;
90 end
91

92 % append door changes
93 door changes(c rows, case count) = ...
94 door changes(c rows,case count) + raw data(i,2);
95

96 end
97

98

99 % analyze data (calculating averages)
100 for i=1:case count
101 % loop through all cases
102

103 % average timesteps
104 evac times(i) = 0;
105 evac times(i) = round(run rows(1,i) / run counts(1,i));
106

107

108 % calculate average agent count
109 for j=1:size(agent count, 1)
110 agent count(j,i) = agent count(j,i) / run counts(1,i);
111

112 if j > evac times(i)
113 agent count(j,i) = 0;
114 end
115

116 end
117

118 % calculate average door changes
119 for k=1:size(door changes,1)
120 door changes(k,i) = door changes(k,i) / run counts(1,i);
121

122 if k > evac times(i)
123 door changes(k,i) = 0;
124 end
125 end
126

127 end
128

54



129

130 % setup plots
131

132 % first plot (agent count)
133 figure(98);
134 set(gca, 'XTick', 0:100:900);
135 set(gca, 'YTick', 0:100:max(cases));
136

137 axis([0 900 0 500]);
138

139 title(strcat({'Agents '},plottitle));
140

141 xlabel('Time Steps');
142 ylabel('Agent Count');
143

144 % second plot (decision count)
145 figure(99);
146

147 set(gca, 'XTick', 0:100:900);
148 set(gca, 'YTick', 0:10:300);
149

150 axis([0 900 0 100]);
151

152 title(strcat({'Decisions '}, plottitle));
153

154 xlabel('Time Steps');
155 ylabel('Decisions');
156

157 legend1 = cell(1, case count);
158 legend2 = cell(1, case count);
159

160

161 % loop through all cases an generate plot using average values
162 for i=1:case count
163

164 disp(strcat('Evac Time of Case ', num2str(i), ': ', num2str(evac times(i))));
165

166 % create legend
167 legend1{i} = sprintf('%d Agents\nAVG: %d Time Steps', cases(i), evac times(i));
168 legend2{i} = sprintf('%d Agents\nMax: %.2f\nAvg: %.2f', cases(i), ...
169 max(door changes(:,i)), mean(door changes(1:evac times(i),i)));
170

171

172

173 figure(98);
174 hold on;
175 plot(agent count(:,i), colors(i));
176

177

178 figure(99);

55



179 hold on;
180 plot(door changes(:,i), colors(i));
181

182

183 end
184

185 % set legend
186

187 figure(98);
188 legend(legend1);
189 figure(99);
190 legend(legend2);
191

192

193 end

56


