Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Lecture with Computer Exercises: Modelling and Simulating Social Systems with MATLAB

Project Report

Emegency Evacuation

Waldburger Dominik \& Zehnder Matthias

Zurich
May 2010

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe, keine anderen als die angegebenen Quellen-Hilsmittel verwenden habe, und alle Stellen, die wörtlich oder sinngemäss aus veröffentlichen Schriften entnommen wurden, als solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Gruppenarbeit nicht, auch nicht auszugsweise, bereits für andere Prüfung ausgefertigt wurde.

Zehnder Matthias

Agreement for free-download

We hereby agree to make our source code for this project freely available for download from the web pages of the SOMS chair. Furthermore, we assure that all source code is written by ourselves and is not violating any copyright restrictions.

Waldburger Dominik Zehnder Matthias

Contents

1 Individual contributions 6
2 Introduction and Motivations 6
3 Description of the Model 7
3.1 Introduction 7
3.2 The auditoriums 7
3.2.1 Our auditoriums 7
3.3 Time descretisation 10
3.4 The decision pyramid 10
3.5 Step one 11
3.6 Step two 11
3.7 Step three 11
4 Implementation 12
4.1 Introduction 12
4.2 No subdiscretization 12
4.3 Input 12
4.4 Ground structure 13
4.4.1 waym 13
4.4.2 studm 14
4.4.3 studc 15
4.4.4 studl 15
4.5 Stumble and decision making 15
4.5.1 studt 15
4.5.2 studp 16
4.5.3 wayt 16
4.6 Visualisation and statistics 16
4.6.1 p 17
4.6.2 stats 17
4.7 Simulation.m 17
4.8 preperation.m 19
4.9 pressure.m 19
4.10 border.m 21
4.11 dulr.m udrl.m 21
4.12 picture.m 21
4.13 stumble.m 21
4.14 waytime.m 21
4.15 directway.m 21
4.16 alternivway.m 21
4.17 statistic.m 21
4.18 step1.m 22
4.19 step2.m 23
4.20 step3.m 24
4.21 laststep.m 26
4.22 pictureshow.m 27
5 Simulation Results and Discussion 28
5.1 Results 28
5.2 Discussion 34
5.2.1 Influence of exit door distribution 34
5.2.2 Influence of Aisle width 35
5.2.3 Influence of different room layouts 35
5.2.4 Model weaknesses 35
6 Summary and Outlook 36
7 References 37
8 Code 38
8.1 Simulation.m 38
8.2 preperation.m 40
8.3 step1.m 41
8.4 step2.m 44
8.5 step3.m 46
8.6 alternivway.m 48
8.7 border.m 49
8.8 dulr.m 49
8.9 udrl.m 49
8.10 stumble.m 49
8.11 picture.m 50
8.12 statistic.m 50
8.13 directway.m 51
8.14 laststep.m 52
8.15 pressure.m 53
8.16 pictureshow.m 54
8.17 maps.m 55

1 Individual contributions

At the beginning of our project we worked a lot together to bring our ideas down to a model. We defined in detail how our model should work and simulate our problem. We defined our parameters which we wanted to investigate in detail.

In the further working Dominik Waldburger was responsible for the implementation. Especally he took care that the interfaces between the different functions were functionable. We both worked on the different functions.

Matthias Zehnder was at the end of the project responsible for the report. Dominik Waldburger contributed the part of the implementation.

2 Introduction and Motivations

Emergency evacuation in a building like the ETH Hauptegebäude is a very important topic. We all hope that there will never be a situation where an emergency evacuation is necessary.

We wanted to investigate the dynamics of students in case of an emergency, when they have to leave the auditorium in a hurry. We wanted to analyze the influence of different arrangements of seats, doors and escape routes.

For us it was interesting to discuss how a model could evaluate the fastest way to the exit. Also in this problem we asked us how the model can determine if a detour is better than the direct way out. We placed special emphasis on modeling this decision making process in cases where more than one person is demanding the same empty space on the evacuation route or in cases where a detour would be faster than the direct way out.

Various parameters have been investigated like the width of the aisles, the placements of the exits and a seat arrangement other than straight rows. A special safety aspect we looked into was the pressure behind exiting people build up by the length of the queue.

A further aspect we considered was optimizing the time discretisation by elimination of the influence of the implementation itself.

We always have been fully aware of the fact that the model would never be able to represent the reality. We tried to brake down our model to a level detailed enough to allow us to transfer the conclusions into real world. We especially tried to further develop the approach shown in the lecture to get e better understanding in modeling such problems.

3 Description of the Model

3.1 Introduction

Basically, for our model we take the idea of a Cellular Automata like the one we discussed in the lecture. However, unlike in the lecture, where the decision was based solely on the neighbor cells, in our model, it is based on the empty spaces, the demands for them and the pressure for the demands as well as the benefit to move to a particular space.

3.2 The auditoriums

The auditoriums in our Model are two dimensional matrices, where each point in the matrix describes either a person, a desk, a wall, an exit or a free space. We do not distinguish between walls and desks, so it is not possible to climb desks. Allowed exit routes lead only through free spaces. To be able to compare various room layouts, we always choose the same room area, meaning the same matrix dimensions. This means that the number of people vary from room to room. Basic layouts of the model rooms derives from the auditoriums in the HPH and in the HG.

3.2.1 Our auditoriums

Legend: grey $=$ wall \quad white $=$ door green to yellow $=$ people w . dif. pressures
Auditorium one:

Auditorium two:

Auditorium three:

Auditorium four:

Auditorium five:

Auditorium six:

3.3 Time descretisation

In order to avoid influence of the implementation on the time discretisation we prohibit that the checking order influences the decision of the people. The model fulfills that by comparing the demand weights for multiple allocations for a free space. Furthermore, the steps are taken only after all comparisons have been done and the priorities have been set.

3.4 The decision pyramid

Where is the nearest exit? Which one is the shortest way? Would a detour be faster? Do I have a free space to move to?

The decision for the next move of a person is based on these aspects. To take this decision our model works in three steps. In the first step the decision is sought based on free spaces, the closeness to the exit, demands and the pressure of others. If no clear decision can be taken in a a second step the model takes a random decision. In a third step the model checks for blocked people which could benefit from a detour. Our model also takes care of the possibility that a person can stumble in which case a possible move cannot be taken.

3.5 Step one

In the first step a person looks at the four places around him. He checks if the places are free and wether they bring him closer to the exit. If a place fulfills these requirements, it checks if there are others demanding the same free space. If there is no such demand it reserves this space. If there are other demands on a particular free space the model compares the pressure, that is the queue length behind the people, and makes the reservation based on the highest pressure. If no clear decision can be taken no one gets the space in step one.

3.6 Step two

In the second step the model decides among the candidates with the same pressure which one gets the reservation. In our model we use a random generator for this decision.

3.7 Step three

For all people with adjacent free spaces but without reservations the model checks the availability and the benefit of a possible detour. To do that the model checks whether the person is already on a detour or not.

If not he looks for a detour and the benefit of taking it, based on the increasing length of the way and the projected time on the direct way. If there is a positive match it makes the reservation.

If he is on a detour it checks whether the detour is still available and still would be a benefit, then he remains on the detour, if not he goes back to the direct way.

4 Implementation

4.1 Introduction

In this chapter we describe the implementation of our model in MATLAB illustrated by some selected parts of the code. The full code can be found in the chapter Code.

4.2 No subdiscretization

As mentioned we like to avoid a subdiscretization. That's why we can't save just the position of all students in the room. For each student we have to save the actual position and the position he'd like to go in the next step. To implement this in MATLAB we save the information in an s ($\mathrm{s}=$ number of students) x 2 or $\mathrm{s} \times 4$ matrices with alternate access:
$\mathrm{t}=$ the global discretization time variable

Function	$\mathrm{t}=1$	$\mathrm{t}=2$	$\mathrm{t}=3$	$\mathrm{t}=4$	$\mathrm{t}=$ odd	$\mathrm{t}=\mathrm{even}$
$\bmod (\mathrm{t}+1,2)+1$	1	2	1	2	1	2
$\bmod (\mathrm{t}, 2)+1$	2	1	2	1	2	1
$2^{*} \bmod (\mathrm{t}+1,2)+1$	1	3	1	3	1	3
$\bmod (\mathrm{t}+1,2)+2$	2	4	2	4	2	4

4.3 Input

The input for the simultion is an $\mathrm{n} \mathrm{x} \mathrm{m} \mathrm{integer-matrix} \mathrm{of} \mathrm{a} \mathrm{room} \mathrm{with} \mathrm{the} \mathrm{information}$ about the walls $(=-1)$, the exits $(=1)$ and the places of the students $(=2)$. The border-cells have to be a wall or an exit and for every student there have to be a way to an exit. For better handling the room-matrix get split in two matrices waym and studm and the students get numbered.

For example:

| -1 |
| ---: |
| -1 | 1 | 0 | 1 | -1 |
| -1 | 1 | 0 | 1 | -1 |
| -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 |
| -1 | -1 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 |
| -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 |
| -1 | -1 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | -1 | -1 |
| -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 |
| -1 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 |
| -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 |
| -1 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | -1 |
| -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 |
| 1 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 2 | 1 |
| 1 | 0 | 1 |
| -1 |

4.4 Ground structure

The ground structure is provided by the four files: waym, studm, studc, studl

4.4.1 waym

Waym stands for way-map. It's an n x m integer-matrix with the same dimension as the given room. It contains the information about walls $(=-1)$ and exits $(=1)$. In the other cells, the floor cells, is the number of steps written for the shortest way to an exit. This allows a fast request if a field is on the way to the nearest exit.

An example of a waym-matrix:
$\left.\begin{array}{lllllllllllllllllllllllllll}-1 & -1 \\ -1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & -1 \\ -1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & -1 \\ -1 & -1 & -1 & -1 & -1 & 6 & 7 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 7 & 6 & -1 & -1 & -1 & -1 & -1 \\ -1 & -1 & 10 & 9 & 8 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 8 & 9 & 10 & -1 & -1 \\ -1 & -1 & -1 & -1 & -1 & 8 & 9 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 9 & 8 & -1 & -1 & -1 & -1 & -1 \\ -1 & -1 & 12 & 11 & 10 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 10 & 11 & 12 & -1 & -1 \\ -1 & -1 & -1 & -1 & -1 & 10 & 11 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 11 & 10 & -1 & -1 & -1 & -1 & -1 \\ -1 & 14 & 13 & 12 & 11 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 11 & 12 & 13 & 14 & -1 \\ -1 & -1 & -1 & -1 & -1 & 9 & 10 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 10 & 9 & -1 & -1 & -1 & -1 & -1 \\ -1 & 12 & 11 & 10 & 9 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 9 & 10 & 11 & 12 & -1 \\ -1 & -1 & -1 & -1 & -1 & 7 & 8 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 8 & 7 & -1 & -1 & -1 & -1 & -1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\ \hline-1 & -1\end{array}\right]$

4.4.2 studm

Studm stands for student-map. It's a $\mathrm{n} x \mathrm{~m}$ integer-matrix with the same dimansion as waym. The position of each student is saved and reserved by his number in the corresponding cell. So fast answers to the questions if there's a student on this field or which student is on this field is provided without searching the coordinates of all students.

An example of a studm-matrix:
$\left.\begin{array}{llllllllllllllllllllllllll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 1 & 2 & 3 & 0 & 0 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 0 & 0 & 15 & 16 & 17 & 0 & 0 \\ 0 & 0 \\ 0 & 0 & 18 & 19 & 20 & 0 & 0 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 0 & 0 & 32 & 33 & 34 & 0 & 0 \\ 0 & 0 \\ 0 & 35 & 36 & 37 & 38 & 0 & 0 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 0 & 0 & 50 & 51 & 52 & 53 & 0 \\ 0 & 0 \\ 0 & 54 & 55 & 56 & 57 & 0 & 0 & 58 & 59 & 60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 0 & 0 & 69 & 70 & 71 & 72 & 0 \\ 0 & 0 \\ 0 & 73 & 74 & 75 & 76 & 0 & 0 & 77 & 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 0 & 0 & 88 & 89 & 90 & 91 & 0 \\ 0 & 0 \\ 0 & 0\end{array}\right]$

4.4.3 studc

Studc stands for student-coordinates. It's an sx 4 integer-matrix with the actual coordinates and the last or next coordinates of all students saved.
studc $(\mathrm{i}, 2 * \bmod (\mathrm{t}+1,2)+1)=$ actual x -coordinate of the i -th student
studc $(\mathrm{i}, 2 * \bmod (\mathrm{t}+1,2)+2)=$ actual y -coordinate of the i-th student
$\operatorname{studc}\left(\mathrm{i}, 2^{*} \bmod (\mathrm{t}, 2)+1\right)=$ last or next x -coordinate of the i-th student
$\operatorname{studc}\left(\mathrm{i}, 2^{*} \bmod (\mathrm{t}, 2)+2\right)=$ last or next x -coordinate of the i -th student

4.4.4 studl

Studl stands for student left in the room. It's an s x 2 boolean-matrix and saves the information if a student is still in the room and if he had already chosen his next step.
$\operatorname{studl}(\mathrm{i}, \bmod (\mathrm{t}+1,2)+1)=1$
i-th student is in the room and doesn't have chosen his next step
$\operatorname{studl}(\mathrm{i}, \bmod (\mathrm{t}+1,2)+1)=0$
studl $(\mathrm{i}, \bmod (\mathrm{t}, 2)+1)=1$
i-th student is in the room and has chosen his next step
$\operatorname{studl}(\mathrm{i}, \bmod (\mathrm{t}+1,2)+1)=0$
studl $(\mathrm{i}, \bmod (\mathrm{t}, 2)+1)=0$
i-th student left the room

4.5 Stumble and decision making

To simulate different running speeds or accidents we let the students randomly waiting for some rounds. For the decision-making-process we must be aware of the pressure on the student and the possibility of a faster detour for every student in the room. This information is saved in the variables: studt, studp and wayt

4.5.1 studt

Studt stands for student-time. Its is a s x 3 integer-matrix saving the time the student hase to wait because of stumbling, the time the student has waited and if the student is on an alternative way.
$\operatorname{studt}(\mathrm{i}, 1)=$ time to wait of the $\mathrm{i}-\mathrm{th}$ student
studt $(\mathrm{i}, 2)=$ time waited of the i-th student studt $(\mathrm{i}, 3)=1 \mathrm{i}$-th student is on alternative way (detour)
$\operatorname{studt}(\mathrm{i}, 3)=0 \mathrm{i}$-th student is not on alternative way (detour)

4.5.2 studp

Stutp stands for student-pressure. The pressure from up, down, right, left on the student is saved in a s x 4 double-matrix.
$\operatorname{studp}(\mathrm{i}, 1)=$ the pressure on the i -th student from up
$\operatorname{studp}(\mathrm{i}, 2)=$ the pressure on the i -th student from down
$\operatorname{studp}(\mathrm{i}, 3)=$ the pressure on the i -th student from right
studp $(\mathrm{i}, 4)=$ the pressure on the i-th student from left

4.5.3 wayt

Wayt stands for way-time. It's a s x 6 double-matrix saving the shortest way-time on a direct and an alternative way. For the shortest way-time on the direct way it sums up the time the students on the direct way to the exit have to wait. For the shortest alternative way-time it sums up the time the students on the alternative way have to wait and adds the step backwards which must be taken.
wayt $(\mathrm{i}, 1)=$ the shortest way-time for the i -th student on a direct way to the exit wayt $(\mathrm{i}, 2)=$ the shortest way-time for the i-th student on a alternative way to the exit wayt $(\mathrm{i}, 2)=-1$ there exists no alternative way for the i-th student
wayt(i, 3:6) $=1$ there's a free field up, down, right, left on the way of the shortest alternative way
wayt(i, 3:6) $=0$ there's no free field

4.6 Visualisation and statistics

For the visualisation and the statistics we save the current situation in the variables: p and stats

4.6.1 p

P stands for picture. It's an $\mathrm{n} \mathrm{x} \mathrm{m} \mathrm{x} \mathrm{t} \mathrm{(t} \mathrm{number} \mathrm{of} \mathrm{discretization} \mathrm{steps)} \mathrm{3-}$ dimensional-double-matrix.
$p(:,:, t)=$ a picture of the actual situation of the room
$p(i, j, t)=1$ wall
$p(i, j, t)=2$ floor
$\mathrm{p}(\mathrm{i}, \mathrm{j}, \mathrm{t})=3$ exit
$p(\mathrm{i}, \mathrm{j}, \mathrm{t})=4+$ student plus his pressure

4.6.2 stats

Stats stands for statistics and is a s x $2 \times \mathrm{t} 3$-dimensional-double-matrix.
$\operatorname{stats}(\mathrm{i}, 1, \mathrm{t})=$ pressure of the $\mathrm{i}-\mathrm{th}$ student to the time t
$\operatorname{stats}(\mathrm{i}, 2, \mathrm{t})=$ time to wait of the $\mathrm{i}-\mathrm{th}$ student to the time t
$\operatorname{stats}(\mathrm{i},:, \mathrm{t})=[-1-1] \mathrm{i}$-th student left the room

4.7 Simulation.m

The Simulation.m is the main m-file which coordinates the different functions. First it deletes all potentially existing variables which could disturb the simulation and runs the preperation.m function.


```
% Simulate an emergency evacuation %
% choose a map 0-6 %
mapn = 1; %%
```



```
% clears possible existing files
clear waym wayt studm studc studt studl studp p bool t stats
* preperation
[waym,studm,studc,studt,studl] = preperation(maps(mapn));
        % waym = map with the shortestway to the doors
        % studm = who is where
        % studc = coordiates of each student
        % studp = pressure of each student from up, down, right, left
        % studt = time the student have to wait
        % studl = which students are left in the room
        % stats = pressure, time to wait for every student over time
```

Now the decision-making, stumble, visualisation and statistic variables get computed and the students walk as long as every student has left the room. In the end uninteresting variables get deleted.

```
bool = true; % Loop until nobody restes in the room
t = 1;
while (bool)
    % pressure
    studp = pressure (waym, studm, studc, studl, t);
    % picture
    p(:,:,t) = picture (waym, studm, studp);
    % stolpern
    studt = stumble(studp, studt, studl, t);
    % waytime
    wayt = waytime (waym, studm,studc,studt,studl,t);
    % statistic
    stats(:,:,t) = statistic(studp,studt,studl,t);
    % step 1
        [studm,studc,studt,studl] = step1 (waym,studm,studc,studp,studt,studl,t);
        % step2
        [studm,studc,studt,studl] = step2(waym,studm,studc,studt,studl,t);
        % step umweg?
        [studm,studc,studt,studl] = step3(wayt,studm,studc,studt,studl,t);
        % make final step: restlicher twaited +1, ttowait -1, ausgang löschen
        [studm,studc,studt,studl] = laststep(waym,studm,studc,studt,studl,t);
        t=t+1;
        % noch wer da?
        bool = sum(studl (:,mod}(t+1,2)+1))
    end
    % stats auswerten
    stats(:,:,t) = statistic(studp,studt,studl,t);
    clear i t bool mapn
```


4.8 preperation.m

The preperation.m splits the rawmap into the waym and the studm. For every free field of the waym it computes the number of steps for the shortest way to an exit and the students in the studm get numbered. For every student it reserves a line in studc, studt and studl.

4.9 pressure.m

For all students in the room and for all directions (up down left right),

```
1 \square function[studp] = pressure (waym, studm, studc, studl, t)
2 - quant = size(studl); % quantity of students
studp = zeros(quant (1,1),4); % set p to 0
for s = 1:quant(1,1) % for all students
    if studl (s, mod (t+1,2)+1) % }t\mathrm{ ungerade 1; gerad 2 % for all students left
        for i = 1:4 % for all directions
            x = studc ( }3,2*\operatorname{mod}(t+1,2)+1); % t ungerade 1; gerade 
            y = studc (s,2*mod (t+1,2) +2); % t ungerade 2; gerade 4
            [dx,dy] = udrl(i); % up down right left
            bool = true;
```

it looks field per field. Is there a student for which the field in my direction is on the direct way? On direct way means that the number of the field in waym is smaller than the number of the actual position.

Yes: It adds 1 divided by the number of field on the way of the other student to the pressure in this direction

No: It stops.

4.10 border.m

A simple function which returns if (x, y) is in the matrix.

4.11 dulr.m udrl.m

Two short functions containing two polynomials to have access to the neighbour fields in a for-loop.

4.12 picture.m

This function makes a picture of the actual situation as described in chapter 4.6.1.

4.13 stumble.m

Every student who hasn't to wait gets randomly a time to wait. The probability of stumble is:

The intensity of stumble is a random number between 1 and $\min \left(\frac{\text { pressure }}{2}+1,20\right)$

4.14 waytime.m

For every student it computes with the functions directway.m and alternivway.m the direct way-time and the alternative-way-time with the connected direction.

4.15 directway.m

Directway.m is a recursive function which sums up the students and their time to wait on the direct way to the exit and returns the shortest way.

4.16 alternivway.m

Alternivway.m is also a recursive function similar to directway.m but now it looks through the alternatives ways and add additionally the step backwards which must be taken.

4.17 statistic.m

This creates the stats variable.

4.18 step1.m

Step1.m checks for every not waiting student if there's a free adjacent field on the direct way without flip and checks the neighbour fields of the adjacent field for the possible combatant. Flip means that the student flips between the actual an the last position.

```
\square \text { function[studm, studc, studt, studl] = step1(waym,studm,studc,studp,studt,studl,t)}
quant = size(studl); % Anzahl Studenten
for steps = 1:4
    for s= 1:quant(1,1)
        if studl (s,mod}(t+1,2)+1) && not(studt (s,1)) % Stud im Raum, nicht wartend
            x = studc ( }3,2*\operatorname{mod}(t+1,2)+1); % t ungerade 1; gerade 3
            y = studc (s,2*\operatorname{mod}(t+1,2)+2); % t ungerade 2; gerade 4
            field = zeros(1,4); % mögliche Felder down up left right
            field2 = zeros(4,4); % mögliche Mitbesteiter down up left right
            for i = 1:4
            [dx,dy] = dulr(i); % down up left right
            if not(studm(x+dx,y+dy)) && waym(x+dx,y+dy) ...
                < waym(x,y) && waym(x+dx,y+dy) ~= -1 && not(x+dx...
                        == studc (s,2*mod (t,2) +1) && y+dy == ...
                        studc(s,2*mod}(t,2)+2)
                    % gibt es Felder frei, auf Weg, kein Flip
                field(1,i) = 1;
                for j = 1:4
                    [ddx,ddy] = udrl(j); % down up left right
                    if i ~= j && border(x+dx+ddx,y+dy+ddy,size(waym))
                        % nicht ausgehendes Feld, noch im Raum
                        if studm(x+dx+ddx, y+dy+ddy) && studl(studm(x+dx+ddx,y+dy+ddy),...
                                    mod(t+1,2)+1)&& not(studt(studm(x+dx+ddx,y+dy+ddy),1)) &&...
                                    waym (x+dx,y+dy) <waym (x+dx+ddx, y+dy+ddy)
                                    % Mitstudent?, nochnicht gelaufen, nicht wartend, auf Weg
                                    field2(i,j) = 1;
                    end
                        end
                end
            end
        end
```

Are there adjacent fields without combatants?

```
| 33- 
```

```
if sum(field) % gibt es freie Felder
```

if sum(field) % gibt es freie Felder
for i = 1:4 % Gibt es Felder ohne Konkurenz
for i = 1:4 % Gibt es Felder ohne Konkurenz
if field(1,i) % Feld frei?
if field(1,i) % Feld frei?
if sum(field2(i,:)) % there are other students
if sum(field2(i,:)) % there are other students
field(1,i) = 0;
field(1,i) = 0;
end
end
end
end
end

```
        end
```

Yes: Reserve the field, if there are multiple choose randomly.

```
41-
    if sum(field) % es gibt solche Felder ohne Konkurenz
    choosen = round(sum(field)*rand(1)+0.5); % random auswahl
    i = 1;
    while (choosen)
        if field(1,i)
                if choosen == 1
                        [dx,dy] = dulr(i);
                        studt (s,2) = 0;
                    studt (s,3) = 0;
                        studc}(s,2*\operatorname{mod}(t,2)+1)=x+dx
                        studc (s,2*\operatorname{mod}(t,2)+2)= y+dy;
                    studl (s,mod}(t+1,2)+1)=0
                    studl (s,\operatorname{mod}(t,2)+1)=1;
                    studm(studc (s,1),studc (s,2)) = s;
                    studm(studc (s,3),studc (s,4)) = s;
                    choosen = choosen-1;
                else
                    choosen = choosen-1;
                end
        end
        i= i+1;
    end
```

No: Does the student have the higher pressure then the combatant to a field?

else % gibt es Felder wo grösster Druck?
else % gibt es Felder wo grösster Druck?
field(1,:) = (sum((field2')) > 0); % freies Feld
field(1,:) = (sum((field2')) > 0); % freies Feld
for i = 1:4 % grösserer Druck?
for i = 1:4 % grösserer Druck?
if field(1,i)
if field(1,i)
[dx,dy] = dulr(i);
[dx,dy] = dulr(i);
for j = 1:4
for j = 1:4
if field2(i,j) % steht da jemand
if field2(i,j) % steht da jemand
[ddx,ddy] = udrl(j);
[ddx,ddy] = udrl(j);
field(1,i) = field(1,i)*(studp(s,i) >...
field(1,i) = field(1,i)*(studp(s,i) >...
studp(studm(x+dx+ddx,y+dy+ddy),j));
studp(studm(x+dx+ddx,y+dy+ddy),j));
% = 0, wenn nicht grösserer Druck als alle andern
% = 0, wenn nicht grösserer Druck als alle andern
end
end
end
end
end
end
end
end

If yes reserve the field.
This runs four times. So it's sure that no student has longer any pressure advantage to a field.

4.19 step2.m

Step2 is similar to step1, but now no student has longer any pressure advantage. So the student now is allowed to reserve a field is randomly chosen.

```
65-
else % wer darf ziehen?
    field(1,:) = (sum((field2')) > 0); % freies Feld
    for i=1:4
        if field(1,i)
                field(1,i) = (round((sum(field2(i,:))+1)*rand(1)+0.5) == 1);
            end
    end
```

This runs as long as every student who could walk has done his reservation.

4.20 step3.m

In step3.m the students on direct way and on alternative way are handled differently. First it checks if the first field of the alternative way fields from wayt are still free.

```
function[studm,studc,studt,studl] = step3(wayt,studm,studc,studt,studl,}t\mathrm{ )
    quant = size(studl);
    for s = 1:quant(1,1)
        if studl (s,mod}(t+1,2)+1) && not(studt (s,1)) % im Raum, nicht wartend
            x = studc (s,2*\operatorname{mod}(t+1,2)+1); % t ungerade 1; gerade 3
            y = studc (3, 2*\operatorname{mod}(t+1,2)+2); % t ungerade 2; gerade 4
            for i = 1:4 % Felder immer noch frei?
            if wayt(s,2+i)
                [dx,dy] = dulr(i);
                        wayt (s,2+i) = not (studm (x+dx,y+dy));
            end
    end
```

For the students on the alternative way it checks if the detour still exists and if it's still profitable. So he walks or wait or he goes back on the direct way and if the last field is free he returns to it.

| 14 -
 15 -
 16 -
 17 -
 18 -
 19 -
 20 -
 21 -
 22 -
 23 -
 24 -
 25 -
 26 -
 27 -
 28 -
 29 -
 30 -
 31 -
 32 -
 33 -
 34 -
 35
 36 -
 37 -
 38
 39 -
 40 -
 41 -
 42 -
 43 -
 44 -
 45 - | ```if studt (s,3) % schon auf Umweg if sum(wayt(s,3:6)) % es gibt Umweg, erstes Feld frei choosen = round(sum(wayt(s,3:6))*rand(1)+0.5); % random auswahl i = 1; while(choosen) if wayt(s,2+i) if choosen == 1 [dx,dy] = dulr(i); studt (s,3) = 1; studc (s,2*mod (t,2) +1) = x+dx; studc (s,2*mod (t,2) +2) = y+dy; studl (s,mod}(t+1,2)+1)=0; studl (s,mod (t,2)+1) = 1; studm(studc}(s,1),studc(s,2)) = s studm(studc(s,3),studc (s,4)) = s; choosen = choosen-1; else choosen = choosen-1; end end i = i+1; end else if wayt (s,2) == -1 \|| (wayt (s,1) +studt (s,2)) <= wayt (s,2) % Umweg gibt es nicht mehr, Umweg lohnt sich nicht mehr studt (s,3) = 0; if not (studm(studc (s,2*\operatorname{mod}(t,2) +1),studc (s,2*\operatorname{mod}(t,2)+2))) % letzte Position noch frei studt (s,2) = 0; studl (s,\operatorname{mod}(t+1,2)+1) = 0; studl (s,\operatorname{mod}(t,2)+1) = 1; studm(studc}(s,1),studc(s,2)) = s studm(studc (s,3), studc (s,4)) = s; end end end``` |
| :---: | :---: |

For the students on direct way it checks wayt for an existing profitable detour. If one exists he reserves it, otherwise he waits.

```
46 -
47-
4 8
49 -
50-
51 -
52-
53-
54 -
55 -
56-
57-
58-
59-
60-
61 -
62 -
63-
64 -
65-
66-
67 -
68
69 -
70-
71 -
```

```
    else % noch nicht auf Umweg
```

 else % noch nicht auf Umweg
 if sum(wayt(s,3:6)) && (wayt(s,1)+studt(s,2)) > wayt(s,2)
 if sum(wayt(s,3:6)) && (wayt(s,1)+studt(s,2)) > wayt(s,2)
 % es gibt Umweg, erstes Feld frei, Umweg lohnt sich
 % es gibt Umweg, erstes Feld frei, Umweg lohnt sich
 choosen = round(sum(wayt (s,3:6))*rand(1)+0.5); % random auswahl
 choosen = round(sum(wayt (s,3:6))*rand(1)+0.5); % random auswahl
 i = 1;
 i = 1;
 while(choosen)
 while(choosen)
 if wayt(3,2+i)
 if wayt(3,2+i)
 if choosen == 1
 if choosen == 1
 [dx,dy] = dulr(i);
 [dx,dy] = dulr(i);
 studt (s,3) = 1;
 studt (s,3) = 1;
 stude (s,2*mod (t,2) +1) = x+dx;
 stude (s,2*mod (t,2) +1) = x+dx;
 studc(s,2*mod(t,2)+2) = y+dy;
 studc(s,2*mod(t,2)+2) = y+dy;
 studl (s,mod}(t+1,2)+1)=0
 studl (s,mod}(t+1,2)+1)=0
 studl (s,mod}(t,2)+1)=1
 studl (s,mod}(t,2)+1)=1
 studm(studc (3,1), studc (3,2)) = s;
 studm(studc (3,1), studc (3,2)) = s;
 studm(studc(3,3),studc(s,4)) = s;
 studm(studc(3,3),studc(s,4)) = s;
 choosen = choosen-1;
 choosen = choosen-1;
 else
 else
 choosen = choosen-1;
 choosen = choosen-1;
 end
 end
 end
 end
 i = i+1;
 i = i+1;
 end
 end
 end
 end
 end
 end
 end

```
end
```


4.21 laststep.m

The function laststep.m handles all students which couldn't walk in this turn. For the students on the alternativway ($\operatorname{studt}(\mathrm{s}, 3)=1$) it exchanges the old and new coordinates with the effect, that they can't walk on the direct way in the next turn because of the no flip in step1.m and step2.m. The other still standing students take the old coordinates as new ones. And all students get set moved.

```
function[studm,studc,studt,studl] = laststep(waym,studm,studc,studt,studl,t)
quant = size(studl);
for s = 1:quant(1,1)% alle nicht bewegten wartend setzen
    if studl (s,\operatorname{mod}(t+1,2)+1) % kein Schritt gemacht
        if studt (s,3)
                    ax = studc (s,2*\operatorname{mod}(t,2)+1); % Koordinaten wechseln
                    ay = studc (s,2*\operatorname{mod}(t,2)+2);
                    studc}(s,2*\operatorname{mod}(t,2)+1)=studc (s,2*\operatorname{mod}(t+1,2)+1)
                    studc}(s,2*\operatorname{mod}(t,2)+2)=studc (s,2*\operatorname{mod}(t+1,2)+2)
                    studc (s,2*mod}(t+1,2)+1)=ax
            studc}(s,2*\operatorname{mod}(t+1,2)+2)= ay
        else
            studc}(s,2*\operatorname{mod}(t,2)+1)=studc (s,2*\operatorname{mod}(t+1,2)+1); % Koordinaten übernehmen
            studc}(s,2*\operatorname{mod}(t,2)+2)=studc (s,2*\operatorname{mod}(t+1,2)+2)
            studt ( }3,2)=\mathrm{ studt ( }3,2)+1;\mathrm{ % Warten =+1
        end
        studl (s,mod}(t+1,2)+1)=0; % gezogen
        studl (s,\operatorname{mod}(t,2)+1)=1; % noch im Raum
    end
end
```

In the second part the function redraws the map and clears the student on the exit from studl.

```
studm = zeros(size(studm)); % studm neu einzeichnen
for s = 1:quant (1,1)
    if studl (s,\operatorname{mod}(t,2)+1) % noch im Raum
        if waym(studc (s,2*\operatorname{mod}(t,2)+1),studc (s,2*\operatorname{mod}(t,2)+2)) == 1 % Exit
            studl(s,:) = [0,0]; studt(s,:) = [-1,t,0]; % Stud verlässt Raum
        else % nicht auf Ausgang
            if studt( }3,1)%\mathrm{ time to wait -1
                studt (s,1) = studt (s,1) -1;
            end
            studm(studc (s,2*\operatorname{mod}(t,2)+1),studc (s,2*\operatorname{mod}(t,2)+2)) =s; % einzeichnen
        end
    end
end
```


4.22 pictureshow.m

This function sets the colormap to our costume colormap and animates the pictures saved in p to a movie.

5 Simulation Results and Discussion

5.1 Results

In the simulations three parameters have been evaluated in the six different auditoriums: Time to leave the room for each person

Medium pressure on each person during exiting
Medium risk for stumbling
Auditorium one:

Auditorium two:

Auditorium three:

Auditorium four:

Auditorium five:

Auditorium six:

Comparison of the differnt auditoriums:

5.2 Discussion

5.2.1 Influence of exit door distribution

The comparison between rooms with doors in the back only and with rooms with doors in the back and in the front shows that the evacuation time can be drastically reduced by a wider distribution of exit doors. We can see that the average exit time drops from room one (two doors) to room three (four doors) from 60 to 36 time units. The same result we can see in the rooms two (two doors) and four (four doors) with exit time 52 time units to 32 respectively.

Conclusion: This outcome was more or less expected, but it shows, that it is essential that all doors are accessible and operational for a fast evacuation. Since the model is assuming that everyone knows the nearest exit. It is imperative that also in reality everyone is familiar with all possible exit routes. During the discussion of this result we recognized that both of us are not yet familiar with the exit routes in our lecture rooms.

5.2.2 Influence of Aisle width

Our simulations show that by increasing the aisle width by taking out 10 percent of all seats the exiting time over proportionally was reduced by 13.5 percent. Our model is not taking in to account that the increase of the aisle width by one chair will free more space than for one exiting person. Therefore in reality the gain would be even higher.

Conclusion: The contrary of increasing the aisle width would be an overload of the auditorium with more people than available seats. In this case we would expect a drastic increase of the exiting time. It might be worthwhile to consider weather in some auditoriums a couple of seats could be abandoned without loosing much capacity.

5.2.3 Influence of different room layouts

In our simulation of the auditorium number five and six we can see that a larger number narrower exiting roots reduces the exiting time distinctly. But we also see that this reduces also the capacity significantly.

Conclusion: For the design of new auditoriums omitting seat rows would be of interest but the reduced capacity might turn out problematically.

5.2.4 Model weaknesses

We are fully aware of the fact that our model is not depicting the reality. For example we assigned in model the same space for a seat as for an exiting person. In reality the density of people in the aisles is much higher than the density of seated people. Furthermore in reality people act more egoistically than in our model. We assumed that people with higher pressure would get priority independent of there personalities. An other weakness in our model is stumbling of exiting people. The model implies that a stumbling person gets up again, where in reality a stumbling person might gets furthers to stumble or could even couse panic. Despite the weaknesses of the model we believe that the drawn conclusions held some value.

6 Summary and Outlook

We explored with a model implemented in Matlab the emergency evacuation of an auditorium. It showed us the influences of different room layouts, exit door distributions, and aisle width for the evacuation. It is important that an auditorium has enough and distributed exit doors for an evacuation to be fast and safe. With a slight reduction in seat numbers leading to wider aisles the evacuation time can be reduced overproportionally. Increasing the number of exit ways while reducing their width is also reducing the evacuation time but reduces the capacity significantly.

To improve our model one could think of implementing also different person densities and different behaviors (personalities) of exiting people.

7 References

http://www.ti.inf.ethz.ch/ew/courses/Info1_09/script/notes.pdf page 155164

8 Code

8.1 Simulation.m

1	
2	\% Simulate an emergency evacuation $\%$
3	\% choose a map 0-6 \%
4 -	mapn $=1 ; \quad$ \%
5	
6	
7	\% clears possible existing files
$8-$	clear waym wayt studm studc studt studl studp p bool t stats
9	
10	\% preperation
11 -	[waym, studm, studc,studt,studl] = preperation(maps(mapn));
12	\% waym = map with the shortestway to the doors
13	\% studm = who is where
14	\% studc $=$ coordiates of each student
15	\% studp = pressure of each student from up, down, right, left
16	\% studt $=$ time the student have to wait
17	\% studl $=$ which students are left in the room
18	\% stats $=$ pressure, time to wait for every student over time
19	
20	\% Loop until nobody restes in the room
21 -	bool = true;
22 -	$\mathrm{t}=1$;
23 -	\square while (bool)
24	\% pressure
$25-$	studp $=$ pressure (waym, studm, studc, studl, t);
26	\% picture
27 -	$\mathrm{p}(:, \mathrm{t}, \mathrm{t})=$ picture (waym, studm, studp) ;
28	\% stolpern
$29-$	studt $=$ stumble(studp, studt, studl, t);
30	\% waytime
31 -	wayt $=$ waytime (waym, studm, studc, studt, studl, t$)$;
32	\% statistic
$33-$	stats (:, :, t$)=$ statistic (studp,studt, studl, t$)$;

34	
35	
36	\% step 1
$37-$	[studm, studc, studt, studl] = step1 (waym, studm, studc,studp,studt,studl, t);
38	\% step2
39 -	[studm, studc, studt, studl] = step2 (waym, studm, studc, studt, studl, t) ;
40	\% step umweg?
41 -	[studm, stude, studt, studl] = step3 (wayt, studm, stude, studt, studl, t) ;
42	\% make final step: restlicher twaited +1, ttowait -1, ausgang löschen
43 -	[studm, studc, studt, studl] = laststep (waym, studm, studc, studt, studl, t) ;
44	
$45-$	$\mathrm{t}=\mathrm{t}+1$;
46	\% noch wer da?
47 -	bool $=\operatorname{sum}(\operatorname{studl}(:, \bmod (t+1,2)+1))$;
48 -	- end
49	\% stats auswerten
$50-$	stats(:,:,t) = statistic(studp,studt,studl, t) ;
51	
52 -	clear i t bool mapn

8.2 preperation.m

```
|unction[waym,studm,studc,studt,studl] = preperation(rawmap)
% seperate the waymap and the studmap infomations
waym = mod(rawmap,2).*rawmap;
studm = (rawmap-waym)./2;
% finds the shortesway to a exit
i = 1;
bool = true;
dim = size(waym);
while bool
    for 1 = 1:dim(1,1)
        for r = 1:dim(1,2)
            if waym(1,r) == i
                if border(1-1,r,dim) && waym(1-1,r) == 0 % auf der Karte und gleich 0
                    waym(1-1,r) = i+1;
                        bool = false;
                end
                if border(l+1,r,dim) && waym(1+1,r) == 0
                    waym(1+1,r) = i+1;
                bool = false;
                end
                if border(1,r-1,dim) && waym(1,r-1) == 0
                            waym(1,r-1) = i+1;
                        bool = false;
                end
                if border(1,r+1,dim) && waym(1,r+1) == 0
                    waym(1,r+1) = i+1;
                        bool = false;
                end
            end
        end
    end
```

```
    i = i+1;
    bool = not(bool);
end
% numbering the students
i = 1;
quant = sum(sum(studm));
studc = zeros(quant,4);
for 1 = 1:dim(1,1)
    for r = 1:dim(1,2)
            if studm(1,r) ~= 0
            studm(l,r) = i;
            studc(i,1:2) = [1 r];
                    i = i+1;
            end
    end
end
studt = zeros(quant,3);
studl (:,1) = ones(quant,1);
studl(:,2) = zeros(quant,1);
```


8.3 step1.m

```
\square \mp@code { f u n c t i o n [ s t u d m , s t u d c , s t u d t , s t u d l ] ~ = ~ s t e p 1 ( w a y m , ~ s t u d m , s t u d c , s t u d p , s t u d t , s t u d l , } t \text { )}
    quant = size(studl); % Anzahl Studenten
    for steps = 1:4
    for s= 1:quant (1,1)
        if studl (s,mod}(t+1,2)+1) && not(studt (s,1)) % Stud im Raum, nicht wartend
            x = studc(s,2*mod(t+1,2)+1); % t ungerade 1; gerade 3
            y = studc(s,2*mod(t+1,2)+2); % t ungerade 2; gerade 4
            field = zeros(1,4); % mögliche Felder down up left right
            field2 = zeros(4,4); % mögliche Mitbesteiter down up left right
            for i = 1:4
            [dx,dy] = dulr(i); % down up left right
            if not(studm(x+dx,y+dy))&& waym(x+dx,y+dy) ...
                    < waym(x,y) && waym(x+dx,y+dy) ~= -1 && not(x+dx...
                    == studc(s,2*mod(t,2)+1) && y+dy == ...
                        studc (s,2*mod (t, 2) +2)
                    % gibt es Felder frei, auf Weg, kein Flip
                    field(1,i) = 1;
            for j = 1:4
                    [ddx,ddy] = udrl(j); % down up left right
                    if i ~= j && border(x+dx+ddx,y+dy+ddy,size(waym))
                            % nicht ausgehendes Feld, noch im Raum
                            if studm(x+dx+ddx,y+dy+ddy) && | studl (studm(x+dx+ddx, y+dy+ddy),\ldots.
                                    mod(t+1,2)+1) && not(studt(studm(x+dx+ddx,y+dy+ddy),1)) &&...
                                    waym ( }\textrm{x}+\textrm{dx},\textrm{y}+\textrm{dy})<\mathrm{ <waym ( }\textrm{x}+\textrm{dx}+\textrm{ddx},\textrm{y}+\textrm{dy}+\textrm{ddy}
                                    % Mitstudent?, nochnicht gelaufen, nicht wartend, auf Weg
                                    field2(i,j) = 1;
                            end
                    end
            end
            end
        end
```

```
end
if sum(field) % gibt es freie Felder
    for i = 1:4 % Gibt es Felder ohne Konkurenz
        if field(1,i) % Feld frei?
                if sum(field2(i,:)) % there are other students
                        field(1,i) = 0;
                end
        end
    end
    if sum(field) % es gibt solche Felder ohne Konkurenz
        choosen = round(sum(field)*rand(1)+0.5); % random auswahl
        i = 1;
        while(choosen)
            if field(1,i)
                if choosen == 1
                        [dx,dy] = dulr(i);
                        studt (s,2) = 0;
                        studt (s,3) = 0;
                                studc}(s,2*\operatorname{mod}(t,2)+1)=x+dx
                                studc (s,2*\operatorname{mod}(t,2)+2)= y+dy;
                        studl (s,mod}(t+1,2)+1)=0
                        studl (s,mod}(t,2)+1)=1
                        studm(studc (s,1), studc (s,2)) = s;
                        studm(studc (s,3),studc (s,4)) = s;
                        choosen = choosen-1;
                else
                        choosen = choosen-1;
                end
            end
            i = i+1;
        end
    else % gibt es Felder wo grösster Druck?
```

```
*)
```


8.4 step2.m

```
\square f u n c t i o n [ s t u d m , s t u d c , s t u d t , s t u d l ] ~ = ~ s t e p 2 ( w a y m , s t u d m , s t u d c , s t u d t , s t u d l , t )
quant = size(studl);
bool = true;
\square \mp@code { w h i l e ( b o o l ) }
    for s = 1:quant(1,1)
            if studl (s,mod}(t+1,2)+1)&& not(studt(s,1)) % im Raum, nicht warten
                x = studc(s,2*mod(t+1,2)+1); % t ungerade 1; gerade 3
                    y = studc (s,2* mod}(t+1,2)+2); % t ungerade 2; gerade 4,
            field = zeros(1,4); % mögliche Felder down up left right
            field2 = zeros(4,4); % mögliche Mitbesteiter down up left right
            for i = 1:4
            [dx,dy] = dulr(i); %
            if not(studm(x+dx,y+dy)) && waym(x+dx,y+dy) < waym(x,y) &&...
                    waym(x+dx,y+dy) ~= -1&& not (x+dx == studc ( }s,2*\operatorname{mod}(t,2)+1)
                    && y+dy == studc (s,2*mod(t,2)+2))
            % gibt es Felder frei, auf Weg, kein Flip
            field(1,i) = 1;
            bool = false; % es gibt noch einer mit möglichem freien Feld
            for j = 1:4
                    [ddx,ddy] = udrl(j); % down up left right
                    if i ~= j && border(x+dx+ddx,y+dy+ddy,size(waym))
                    % nicht ausgehendes Feld, noch im Raum
                    if studm(x+dx+ddx,y+dy+ddy) && ...
                                    studl (studm(x+dx+ddx,y+dy+ddy), ...
                                    mod(t+1,2)+1) && not(studt (studm(x+dx+ddx,y+dy+ddy),1)) ...
                                    && waym( }\textrm{x}+\textrm{dx},\textrm{y}+\textrm{dy})<waym(x+dx+ddx,y+dy+ddy
                                    % Mitstudent?, nochnicht gelaufen, nicht wartend, auf Weg
                                    field2(i,j) = 1; % anderer
                    end
                    end
            end
            end
        end
        if sum(field) %
            for i = 1:4 % Gibt es Felder ohne Konkurenz
                if field(1,i) के Feld frei?
                    if sum(field2(i,:)); % there are other students
                        field(1,i) = 0;
                    end
                end
            end
            if sum(field) % es gibt solche Felder ohne Konkurenz
                choosen = round(sum(field)*rand(1)+0.5); % random auswahl
                i = 1;
                while(choosen)
                    if field(1,i)
                    if choosen == 1
                    [dx,dy] = dulr(i);
                    studt (s,2) = 0;
                    studt(s,3) = 0;
                    studc}(s,2*\operatorname{mod}(t,2)+1)=x+dx
                    studc}(s,2*\operatorname{mod}(t,2)+2)= y+dy;
                    studl (s,mod}(t+1,2)+1)=0
                    studl (s,mod}(t,2)+1) = 1
                    studm(studc (s,1),studc (s,2)) = s;
                    studm(studc}(3,3),studc(s,4)) = s
```

```
58 -
59 -
60 -
61 -
62 -
63 -
64 -
65 -
66 -
67 -
68 -
69 -
70 -
71 -
72 -
73 -
74 -
75 -
76 -
77 -
78 -
79 -
80 -
81 -
82 -
\(83-\)
\(84-\)
85 -
\(86-\)
\(87-\)
\(88-\)
```

 choosen = choosen-1;
    ```
                                    choosen = choosen-1;
                                    else
                                    else
                                    choosen \(=\) choosen-1;
                                    choosen \(=\) choosen-1;
                    end
                    end
                    end
                    end
                    i \(=i+1\);
                    i \(=i+1\);
                end
                end
            else s wer darf ziehen?
            else s wer darf ziehen?
                field(1,:) \(=(\) sum((field2')) \(>0)\); f freies Feld
                field(1,:) \(=(\) sum((field2')) \(>0)\); f freies Feld
                for \(i=1: 4\)
                for \(i=1: 4\)
            if field(1,i)
            if field(1,i)
                field \((1, i)=(\operatorname{round}((\operatorname{sum}(\) field2 \((i,:))+1) * \operatorname{rand}(1)+0.5)==1)\);
                field \((1, i)=(\operatorname{round}((\operatorname{sum}(\) field2 \((i,:))+1) * \operatorname{rand}(1)+0.5)==1)\);
                    end
                    end
                end
                end
                if sum(field) \(\frac{\text { s }}{8}\) es gibt ein solches Feld
                if sum(field) \(\frac{\text { s }}{8}\) es gibt ein solches Feld
                    choosen \(=\) round(sum(field)*rand(1)+0.5); \% random auswahl
                    choosen \(=\) round(sum(field)*rand(1)+0.5); \% random auswahl
                    i = 1;
                    i = 1;
                    while (choosen)
                    while (choosen)
                    if field(1,i)
                    if field(1,i)
                                    if choosen \(==1\)
                                    if choosen \(==1\)
                                    \([\mathrm{dx}, \mathrm{dy}]=\operatorname{dulr}(\mathrm{i})\);
                                    \([\mathrm{dx}, \mathrm{dy}]=\operatorname{dulr}(\mathrm{i})\);
                                    studt \((s, 2)=0\);
                                    studt \((s, 2)=0\);
                                    studt \((3,3)=0\);
                                    studt \((3,3)=0\);
                                    studc \((s, 2 * \bmod (t, 2)+1)=x+d x\);
                                    studc \((s, 2 * \bmod (t, 2)+1)=x+d x\);
                                    stude \((s, 2 * \bmod (t, 2)+2)=\mathrm{y}+\mathrm{dy}\);
                                    stude \((s, 2 * \bmod (t, 2)+2)=\mathrm{y}+\mathrm{dy}\);
                                    studl \((s, \bmod (t+1,2)+1)=0\);
                                    studl \((s, \bmod (t+1,2)+1)=0\);
                                    studl \((s, \bmod (t, 2)+1)=1\);
                                    studl \((s, \bmod (t, 2)+1)=1\);
                                    studm (studc \((3,1)\), studc \((3,2))=s\);
                                    studm (studc \((3,1)\), studc \((3,2))=s\);
                                    studm (studc \((3,3)\), studc \((3,4))=s\);
                                    studm (studc \((3,3)\), studc \((3,4))=s\);
                                    choosen \(=\) choosen-1;
                                    choosen \(=\) choosen-1;
                                    else
                                    else
                                    choosen \(=\) choosen-1;
                                    choosen \(=\) choosen-1;
                                    end
                                    end
                                    end
                                    end
                                    \(i=i+1 ;\)
                                    \(i=i+1 ;\)
                    end
                    end
                end
                end
                end
                end
                end
                end
        end
        end
    end
    end
    bool \(=\) not (bool);
    bool \(=\) not (bool);
- end
- end
end
```

end

```

\section*{8.5 step3.m}



\section*{8.6 alternivway.m}
```

function[tmin,nw] = alternivway(x,y,j,waym, studm,studt)
% ungefährezeit auf einem kürzesten alternativen weg
tmin = -1;
nw = 0; % 0 kein Weg
field = (-1)*ones (1, 4);
for i = 1:4
[dx,dy] = udrl(i);
if border(x+dx,y+dy,size(waym)) \&\& waym(x+dx,y+dy) ~= -1 \&\& i ~= j
% im Raum keine Wand und kein Flip
if waym(x,y) <= waym(x+dx,y+dy) %
[t,nnw] = alternivway (x+dx,y+dy,round(i/2)*2-mod(i+1,2),waym,studm,studt);
% Permutation 1<->2,3<->4
if nnw \&\& (not(studm(x+dx,y+dy)) || studt(studm(x+dx, y+dy),3))
%keine Sackgasse, kein Student der nicht auf Umweg
nw = 1;
if studm(x+dx,y+dy) \&\& studt(studm(x+dx,y+dy),3) % Student auf umweg
field(1,i) = 1+studt(studm(x+dx,y+dy),1) +waym(x+dx,y+dy) -waym(x,y) +t;
tmin = field(1,i);
else
field(1,i) = waym(x+dx, y+dy) -waym(x,y)+t;
tmin = field(1,i);
end
end
else
tmin = 0; % Umweg beendet, es ist keine Sackgasse
nw = 1;
return
end
end
end
if tmin ~= -1
for i = 1:4 % kleinstes t
if field(1,i) ~= -1
if field(1,i) < tmin
tmin = field(1,i);
end
end
end
end
end

```

\section*{8.7 border.m}
```

function[bool] = border(x, y, dim)
|% x,y in the matrix }->\mathrm{ true

* else -> false
bool = true;
if }x<1||x>\operatorname{dim}(1,1)||y<1||y>dim(1,2
bool = false;
end

```

\section*{8.8 dulr.m}
```

|unction[dx,dy] = dulr(i)
% down up left right
dx = -2/3*i^3+11/2*i^2-83/6*i+10;
dy = 2/3*i^3-9/2*i^2+53/6*i-5;
end

```

\section*{8.9 udrl.m}
```

1 \square function[dx,dy] = udrl(i)
% up down right left
dx = 2/3*i^3-11/2*i^2+83/6*i-10;
dy = -2/3*i^3+9/2*i^2-53/6*i+5;
end

```

\subsection*{8.10 stumble.m}
```

function[studt] = stumble(studp,studt,studl,}t
quant = size(studl);
for s = 1:quant (1,1) % all students
if studl (s,mod}(t+1,2)+1) % noch im Raum
if not(studt (s,1)) % nicht wartend
if sum(studp(s,:))>39
smax = 20
else
smax = sum(studp(s,:))/2+1;
end
studt (s,1) = round(smax*rand(1)+.5)*(rand(1) <= \operatorname{exp}((\operatorname{sum}(studp (s,:))-studt (s,2))/20)/exp (1));
% random(studp,studt(i,2))
end
end

- end

```

\subsection*{8.11 picture.m}
```

$1 \square$ function $[p]=$ picture (waym, studm, studp)
2- dim = size (waym);
3- p = zeros (dim);
4 - \square for $1=1: \operatorname{dim}(1,1)$
5 - $\square \quad$ for $r=1: \operatorname{dim}(1,2)$
6 -
7 -
8 -
9 -
10 -
11
12 - end
13 - $p=p+2$; \% 1 Wand, 2 Boden, 3 Türe, 4-? Studentenpressure
14 - end

```

\subsection*{8.12 statistic.m}
```

1 \squarefunction[stats] = statistic(studp,studt,studl, t)
2 - quant = size(studl); % Anzahl Studenten
3- stats = zeros(quant);
4
5- Gor s = 1:quant(1,1)
6 - if not(studl (s,mod}(t+1,2)+1)) % nicht mehr im Raum,
stats(s,:) = [-1 -1];
else
stats(s,1) = sum(studp(s,:));
stats(s,2) = studt(s,1);
end
end
end

```

\subsection*{8.13 directway.m}


\subsection*{8.14 laststep.m}

\subsection*{8.15 pressure.m}
```

function[studp] = pressure(waym, studm, studc, studl, t)
quant = size(studl); % quantity of students
studp = zeros(quant (1,1),4); % set p to 0
for s = 1:quant(1,1) % for all students
if studl(s, mod}(t+1,2)+1) % t ungerade 1; gerad 2 % for all students lef
for i = 1:4 % for all directions
x = studc(s,2*mod(t+1,2)+1); % t ungerade 1; gerade 3
y = studc (s,2*mod}(t+1,2)+2); % t ungerade 2; gerade
[dx,dy] = udrl(i); % up down right left
bool = true;
while(bool) % until there's nobody in this direction
if waym(x+dx,y+dy) == -1 % wall: break
bool = false;
break
elseif not(studm(x+dx,y+dy)) % no person: break
bool = false;
break
elseif (waym(x,y) - waym(x+dx,y+dy)) >= 0% student doesn't want to go to this field
bool = false;
break
else
n}=0
for j = 1:4 % number of field student could go
[ddx,ddy] = udrl (j);
if waym(x+dx+ddx,y+dy+ddy) ~= -1 soskine Wand
n = n+(waym(x+dx,y+dy)-(waym(x+dx+ddx,y+dy+ddy)) > 0);
end
end
studp(s,i) = studp(s,i)+1/n;
end
x = x+dx;
y = y+dy;
end
end
end
-end

- end

```

\subsection*{8.16 pictureshow.m}
\begin{tabular}{|c|c|c|c|}
\hline 1 & \multicolumn{3}{|l|}{\(\square\) function [] = pictureshow(p)} \\
\hline 2 - & \multicolumn{3}{|l|}{steps = size (p);} \\
\hline 3 & \multicolumn{3}{|l|}{\%steps \(=\) steps (1,3);} \\
\hline 4 & \multicolumn{3}{|l|}{steps=1;} \\
\hline \(5-\) & \multicolumn{3}{|l|}{i \(=1\);} \\
\hline 6 - & \multicolumn{3}{|l|}{axis off;} \\
\hline 7 - & \multicolumn{3}{|l|}{grid off;} \\
\hline 8 - & \multicolumn{3}{|l|}{cmap \(=\) zeros (64,3);} \\
\hline \(9-\) & \(\operatorname{cmap}(1: 29,:)=[0.4000\) & 0.4000 & 0.4000 ; \\
\hline 10 & 0.8000 & 0.8000 & 0.8000 ; \\
\hline 11 & 1.0000 & 1.0000 & 1.0000 ; \\
\hline 12 & 0 & 1.0000 & 0 ; \\
\hline 13 & 0.2500 & 1.0000 & 0 ; \\
\hline 14 & 0.5000 & 1.0000 & 0 ; \\
\hline 15 & 0.7500 & 1.0000 & 0 ; \\
\hline 16 & 1.0000 & 1.0000 & 0 ; \\
\hline 17 & 1.0000 & 0.8500 & 0 ; \\
\hline 18 & 1.0000 & 0.7000 & 0 ; \\
\hline 19 & 1.0000 & 0.5500 & 0 ; \\
\hline 20 & 1.0000 & 0.4000 & 0 ; \\
\hline 21 & 1.0000 & 0.3000 & 0 ; \\
\hline 22 & 1.0000 & 0.2000 & 0 ; \\
\hline 23 & 1.0000 & 0.1000 & 0 ; \\
\hline 24 & 1.0000 & 0 & 0 ; \\
\hline 25 & 0.9000 & 0 & 0 ; \\
\hline 26 & 0.8000 & 0 & 0 ; \\
\hline 27 & 0.7000 & 0 & 0 ; \\
\hline 28 & 0.6000 & 0 & 0 ; \\
\hline 29 & 0.5400 & 0 & 0 ; \\
\hline 30 & 0.4800 & 0 & 0 ; \\
\hline 31 & 0.4200 & 0 & 0 ; \\
\hline 32 & 0.3600 & 0 & 0 ; \\
\hline 33 & 0.3000 & 0 & 0 ; \\
\hline 34 & 0.2400 & 0 & 0 ; \\
\hline 35 & 0.1800 & 0 & 0 ; \\
\hline 36 & 0.1200 & 0 & 0 ; \\
\hline 37 & 0.0600 & 0 & 0; ]; \\
\hline \(38-\) & colormap (cmap) ; & & \\
\hline 39 - & \(\square\) while (true) & & \\
\hline \(40-\) & image (p ( : , : mod (i, & () +1) ) & \\
\hline 41 - & i \(=1+1\); & & \\
\hline 42 - & pause(.2) ; & & \\
\hline 43 - & - end & & \\
\hline 44 - & end & & \\
\hline
\end{tabular}

\subsection*{8.17 maps.m}
```

1 Gfunction[map] = maps(n)
if n}==
map = % map as a matrix
elseif n == 2
map = % map as a matrix
elseif n == 3
map = % map as a matrix
elseif n == 4
map = % map as a matrix
elseif n == 5
map = % map as a matrix
elseif n == 6
map = % map as a matrix
end
end

```

We disclaim here to plot the map matrices. In the chapter 4.3 you can see how we implemented the different maps.```

