
Lecture with Computer Exercises:

Modelling and Simulating Social Systems with MATLAB

Project Report

Emergency Evacuation of an Airbus A380

Marco Denuder & Dominik Keusch & Laurent Roux

Zurich

May 2010

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst habe, keine
anderen als die angegebenen Quellen-Hilsmittel verwenden habe, und alle Stellen,
die wörtlich oder sinngemäss aus veröffentlichen Schriften entnommen wurden, als
solche kenntlich gemacht habe. Darüber hinaus erkläre ich, dass diese Gruppenarbeit
nicht, auch nicht auszugsweise, bereits für andere Prüfung ausgefertigt wurde.

Marco Denuder Dominik Keusch Laurent Roux

2

Agreement for free-download

We hereby agree to make our source code for this project freely available for download
from the web pages of the SOMS chair. Furthermore, we assure that all source code
is written by ourselves and is not violating any copyright restrictions.

Marco Denuder Dominik Keusch Laurent Roux

3

Contents

1 Individual Contributions 6

2 Introduction and Motivations 7

3 Description of the Model 8
3.1 General description . 8
3.2 Model 1 . 10
3.3 Model 2 . 11

4 Implementation 13
4.1 Model 1 - Implementation . 13

4.1.1 Function make upper level.m and make lower level.m 13
4.1.2 Function upper level sketch.m and lower level sketch.m 14
4.1.3 Function ploc.m . 14
4.1.4 Function min distance.m . 15
4.1.5 Function passenger move.m 15
4.1.6 Function evacuatioin.m . 17

4.2 Model 2 - General description . 18
4.3 Model 2 - Function descriptions . 19

4.3.1 Function initialize.m . 19
4.3.2 Function paxLoc.m . 19
4.3.3 Function paxGetUp.m . 19
4.3.4 Function paxMove.m . 19
4.3.5 Function field make upper level.m 20
4.3.6 Function field upper level sketch.m 20

4.4 Static field . 20

5 Simulation Results and Discussion 23
5.1 Validation . 23
5.2 Post processing approach . 23
5.3 Simulation without obstacles around doors 23

5.3.1 Simulation with different parameters under normal condition . 23
5.3.2 Simulation with different parameters and optimized location

of emergency exits . 23
5.4 Simulation with obstacles around doors 26

5.4.1 Simulation with different parameters and obstacles 26
5.4.2 Simulation with different parameters, optimized location of

emergency exits and obstacles 29

4

5.5 Discussion . 30

6 Summary and Outlook 34
6.1 Comparison . 34
6.2 Simulation results . 34
6.3 Outlook . 34

7 References 36

8 Programs 37
8.1 Model 1 . 37
8.2 Model 2 . 47

8.2.1 Static field . 54

5

1 Individual Contributions

The distribution of our work was mainly influenced by the fact that Marco had to
join a refresher course at the Swiss Army in April. Therefore, his effort was mostly
done during the first part of our project. He started by searching the internet for
reliable airplane plans to get to know the seat configuration and afterwards set up a
Matlab scenario of the whole plane. After several discussions with the group, on how
to proceed, he implemented the first model and set the base of our project. During
Marco’s absence, Laurent and Dominik took over Marco’s work and continued the
project. As the first model was quite limited in its flexibility, we decided to implement
another model, namely the one with static field. Dominik changed the existing
airplane model according to the new requirements. He was engaged in searching
algorithms to compute a static field of the plane and afterwards implemented one
of them in Matlab. Laurent then, implemented the new model functions in Matlab
and changed the old simulation in order to make it work with the static field. In
the phase of optimization we collaborated a lot and helped each other. In addition
we discussed the results and how to interpret them. Having done the main part of
the project, we started writing our report. The individual responsibility on writing
the different parts is listed below. Laurent then implemented our writing in LaTeX
form.

• Individual Contributions → Dominik

• Introduction and Motivation → Dominik

• Description of the Model

– General description → Dominik

– Model 1 → Marco

– Model 2 → Dominik

• Implementation

– Model 1 → Marco

– Model 2 → Laurent

– Static Field → Dominik

• Simulation Results and Discussion

– Number of passengers → Laurent

– Exits variation → Laurent (with static field of Dominik)

6

– Obstacles → Laurent

– Probability → Laurent

– Discussion → Laurent

• Summary and Outlook → Marco

• References → all

• Implementation in LaTeX → Laurent

2 Introduction and Motivations

The airplane-security is an important issue on aircraft engineering. There are spe-
cific laws about how fast an evacuation of an airplane has to occur. Those laws have
to be observed; otherwise, the airplane does not get the permission to fly. Addi-
tionally, the new airplanes are bigger, carrying more and more people. Therefore,
evacuation scenarios are growing in their complexity and it is difficult to estimate,
how the evacuation takes place. This simulation should help the engineer to get a
better understanding of evacuation situations in airplanes. With certain assumptions
taken, it shows the process of evacuation, plus how different parameters influence the
evacuation time.

The following report is part of the lecture “Modelling and Simulating Social Sys-
tems in MATLAB” at ETH Zurich. The course involves different aspects of modelling
and simulating social systems, as well as implementing them in a computational en-
vironment using Mathworks MATLAB.

7

3 Description of the Model

3.1 General description

The physical appearance of the model is given by the dimensions and seat configu-
rations of the Airbus A380. However, every airline has the opportunity to design its
own seat configuration. Thus, it is difficult to find any exact plans of the interior.
After some research on the web, we decided to take the interior design according to
figure 1 on page 9.

The Airbus A380 has got 2 different decks: the upper deck and the lower deck.
They differ in the interior design and the seat configuration, as well as in the possible
number of passengers. Therefore, the two decks are treated separately. The most
important difference between the two decks is the number of exits. The upper deck
has got 8 emergency exits, whereas the lower deck has got 10 of which. In order
to obtain a convenient model, there were some assumptions to be taken. These
assumptions are listed below. Their purpose is to minimize the complexity of the
model, since a model is always a simplification of the reality.

• People take the nearest possible exit: We assume that in case of emergency,
people always choose the nearest exit location. In reality, the choice of the
exit is much more complex, since it is also influenced by factors such as crowd
behaviour, panic, signalisation, etc.

• Airplane model simplified: Our airplane is extremely simplified, as we are lim-
ited by the methods of implementation. Therefore, all of our passenger seats
commensurate. Also, the space between the corridors is not exact. The width
of the lower and upper decks is different, the seats of the crew are neglected, as
well as the toilets and structural elements.

• People act with a certain probability: As an assumption, we suggest that people
act with a defined probability. Statistically, this probability can be interpreted
as various factors, such as intelligence, age, or the passenger’s disorientation.

• Upper and lower deck evacuate separately: This means, that there is no con-
nection between the two decks. People can’t use the stairs.

• People start evacuating immediately: The passengers do not hesitate or try to
organize themselves when the case of emergency happens. They all start the
evacuation at the same time and without individual delay.

• All people behave the same way: Our models treat every passenger the same
way. They don not differ between age, speed, size, or enthusiasm of the indi-
vidual. Thus, it can be seen as a statistical average of all people.

8

Figure 1: Airbus A380 interior design reference

• People are not climbing over seats: We assume that the passengers are not
affected by panic behavior, so they do not climb over seats, but behave re-
spectably. Also, it is quicker to run through the aisle instead of climbing over
some seats. Consequently, the assumption is quite rational.

As we were not fully satisfied with the first model, we decided to implement
another one. The two models differ slightly, so they are treated separately. Both
models use the so-called von Neumann neighbourhood type. This means, that the

9

four cells orthogonally surrounding a central cell are defined as a neighbour of the
central cell.

Figure 2: von Neumann neighbourhood: the grey cells are the neighbours of the central
cell marked with red

3.2 Model 1

Figure 3: Seat configuration, Model 1

Behavior: At the beginning of every simulation step, a random passenger is chosen.
All the action occurs on that specific passenger until the next simulation step chooses
another passenger. At first, the program detects the passenger’s location. Secondly,
the passenger’s minimal distance to the nearest exit is being calculated. Afterwards,
the passenger moves, based on a specific algorithm (see implementation), and updates

10

his matrix field, as well as the matrix fields of his surroundings. There are four
different functions which lead the passenger to the nearest exit, depending whether
the nearest exit is located above or below, as well as on the right or on the left side of
the passenger. To include the various factors, which are mentioned earlier, the choice
of the passenger’s next location comprises a probability factor. Further details are
provided in the implementation section.

3.3 Model 2

For this model, we had to slightly change the seat configuration. In fact, we inserted
some free space between each seat row, where the passengers can move. This change
was necessary for the new implementation with the static field.

Figure 4: Seat configuration, Model 2

Behaviour: At first, all the passengers stand up, and by doing so, switch to the
free space in front of their seat. Now, they all stand on a field. Each field contains a
number with the minimum distance to the nearest exit. The only thing the algorithm
has to do, is to move the passenger to a field with a smaller number. Mathematically
spoken, the passenger moves in the direction of the static field’s gradient. This step
is done with a certain probability. The probability defines whether to take the best

11

or the worst opportunity to move. The static field is calculated in a previous step
and handed over in a matrix to the main function.

Figure 5: Static field

12

4 Implementation

4.1 Model 1 - Implementation

After creating a model of both decks, the idea was to create a mathematical image
of the model and change it with every iteration step. Due to the fact of having two
decks, each function has been written according to the choice of the deck. Some
functions have even been written for only one deck. There is one main-function
containing several sub-functions to perform the evacuation. All functions will shortly
be explained. For further information, check the source code section starting on page
37.

4.1.1 Function make upper level.m and make lower level.m

The different items such as walls, exits, free space, occupied space, free seats, and
occupied seats, are only distinct by different numbers. The function to create those
numbers is called make upper level respectively make lower level.

Figure 6: Numerical implementation of the initial situation

The numbers in figure 6 on page 13 are called the coordinate’s state.

13

4.1.2 Function upper level sketch.m and lower level sketch.m

Every state has been given a different colour in order to visualize the different states,
and to distinguish between passengers, walls, seats and so on. The functions for this
step have been named upper level sketch and lower level sketch.

Figure 7: Visualization of the initial states using the level sketch function

4.1.3 Function ploc.m

Every cell in the model has its own coordinates separated in length- and width-
position. Therefore, it is easy to determine locations and distances between two
points. The general idea is, to pick a random passenger, check his location, find
out its nearest exit location by calculating the distances between the passenger and
all exit-locations, pick the nearest exit, and finally lead him to that exit. How the
passenger is led to the nearest exit will be explained later. At first, a short inside
on how the passenger’s coordinates are calculated. (The coordinates of the exits are
calculated analogously). Now, the exit and passenger coordinates have been calcu-
lated and can be compared.

1 function [p a s s e ng e r l o c a t i o n] = ploc (l ength , width , passenger number , l e v e l)
2 % t h i s f u n c t i o n c a l c u l a t e s the passenger ’ s co or d i na te s
3 pa s s eng e r l o c a t i o n = ones (passenger number , 2) ; % d e f a u l t
4 k=1; l =1;
5 for i = 1 : l eng th % i t e r a t e over the whole l e n g t h
6 for j = 1 : width % i t e r a t e over the whole width
7 i f l e v e l (i , j)==3 % i f t h e r e i s a passenger

14

8 pa s s eng e r l o c a t i o n (k , 1) = i ; % s a f e l eng th−coord inate
9 pa s s eng e r l o c a t i o n (l , 2) = j ; % s a f e width−coord inate

10 k = k+1; % choose next p a s s e n g e r ’ s l eng th−coord inate
11 l=l +1; % choose next p a s s e n g e r ’ s width−coord inate
12 end
13 j=j +1;
14 end
15 i = i +1;
16 end % stop when a l l passenger co or d i na te s have been s t o r e d

4.1.4 Function min distance.m

The function min distance.m measures the distance to the nearest exit of a random
passenger as well as the location of his nearest exit by applying the Pythagorean
Theorem: nearest line between 1 and 2 in a Cartesian coordinate system equals√

(x1 − x2)2 + (y1 − y2)2.

1 de l t a =1000∗ones (1 , 2) ; % d e f a u l t
2 k=1;
3 for j = 1 : l eng th (e x i t l o c a t i o n) % Pythagoras f o r a l l e x i t s
4 de l t a (k , 1) = abs (p a s s eng e r l o c a t i o n (1 ,1)− e x i t l o c a t i o n (j , 1)) ;
5 de l t a (k , 2) = abs (p a s s eng e r l o c a t i o n (1 ,2)− e x i t l o c a t i o n (j , 2)) ;
6 deltanorm (k) = sqrt (d e l t a (k ,1)ˆ2+ de l t a (k , 2) ˆ 2) ;
7 j=j +1;
8 k=k+1;
9 end

10 [min dist , index]= min(deltanorm) ; % choose minimum
11 % c a l c u l a t e neares t e x i t co or d i na te s
12 n e a r e s t e x i t l o c a t i o n (1 , 1) = e x i t l o c a t i o n (index , 1) ;
13 n e a r e s t e x i t l o c a t i o n (1 , 2) = e x i t l o c a t i o n (index , 2) ;

4.1.5 Function passenger move.m

Knowing the target location and the starting location, the passenger is led to the
exit with the following function, which depends on several conditions and differs in
some aspects considering diverse starting situations: function passenger move.m

1. passenger is stuck on the left side

2. passenger is stuck on the right side

3. passenger is on free space and the nearest exit location is below

4. passenger is on free space and the nearest exit location is above

5. passenger is on a seat in the front row

6. passenger is on a seat and the nearest exit location is on his right

15

7. passenger is on a seat and the nearest exit location is on his left

8. passenger is on the same height as the exit, exit is on his right

9. passenger is on the same height as the exit, exit is on his left

The next step to take in each situation is listed in the table 1 on page 16

Situation: Passenger is (on) Priority 1 Priority 2 Priority 3

Stuck on the left side twice right - -
Stuck on the right side twice left - -
Free space / exit is below Down Left / right stay
Free space / exit is above Up Left / right stay
Front seat Up - -
Seat / exit is right 50% right 50% left stay
Seat / exit is left 50% left 50% right stay
Same height as exit , exit is left Left - -
Same height as exit , exit is right Right - -

Table 1: Next step algorithm of the function passenger move (for details check source code)

Of course, the passenger can only move, if the space he wants to go to is free. To
check the availability of the next location, its state is always being checked. Also,
the “old” passenger location’s state has to be updated. However, that is not done
by this function but with the evacuation function that will be explained later on.

To check the states of the passenger’s neighbour cells, and add probabilities, the
following approach has been used:

1 function [new locat i on]= passenger move (pa s s enge r l o c a t i on , . . .
2 n e a r e s t e x i t l o c a t i o n , l e v e l)
3

4 % This f u n c t i o n c a l c u l a t e s the next s t e p f o r a passenger who wants
5 % to reach the neares t e x i t a t a l l c o s t s !
6

7 % a l l p o s s i b l e neighbour c e l l s a passenger can move to in one s t e p
8 % meaning : [up ; r i g h t ; down ; l e f t ; s tay]
9 neighbour=[−1 0 ; 0 1 ; 1 0 ; 0 −1; 0 0] ;

10

11 for i = 1 : length (neighbour)
12 new locat i on (i , :) = pa s s eng e r l o c a t i o n+neighbour (i , :) ;
13 % s a f e a l l p o s s i b l e n e w l o c a t i o n s o f the passenger
14 end
15

16 prob = rand ; % v a r i a b l e to add p r o b a b i l i t i e s

16

4.1.6 Function evacuatioin.m

1 % l e v e l = [1 , 2] v i s u a l =[0 ,1] movie =[0 ,1] meaning : 0 = no 1 = yes

All preceding functions are required to safely lead one random passenger one step
nearer to his nearest exit. The main-function evacuatioin.m ensures that all passen-
gers eventually reach the exit. Details are listed in the source code section. However,
to shortly introduce the function, some main tasks have to be mentioned:

• choosing: the level / visualization (on/off) / record movie (on/off)

• measure the evacuation-time

• remove passenger that has reached the exit

• updating the new states of all fields

• invoke all preceding functions in the right order

Figure 8: Screenshot of an emergency evacuation simulation

17

4.2 Model 2 - General description

Model 2 was implemented in Matlab. The main function is called evac V5.m as
shown on page 47. It takes two input parameters to decide whether the simulation
has to visualized and a movie is to be recorded or not. See table 2 on page 18 for
the exact values for each case. The function calls several sub functions, called in the
SIMULATION part of the program.

Movie Visualize: yes Visualize: no

Yes evac V5(1,1) evac V5(0,1)
No evac V5(1,0) evac V5(0,0)

Table 2: Input parameters for the function evac V5.m

In the POST PROCESSING section, time measurement settings are initialized
and allocated. The variable level was introduced to facilitate a two level simulation
in the future. The only requirement would be the mapping of the first, respectively
second floor and running the program for each level. The SIMULATION section
is the heart of the program. First of all the function initialize.m is called, which
builds the map of the cabin according to the static field. The static field is created
externally and needs to be in the same folder as the main program. In the next step,
the position of each passenger and exit is evaluated. If visualization is required,
the function field upper level sketch.m draws the frame of the actual situation in the
plane. Finally, the emergency situation starts and the passengers get up with the
function paxGetUp.m. The for-loop starting at line 65 of prgram 8 calculates the
evolution of the simulation for each time step. In the POST PROCESSING section
one can choose how many passengers move per time step. A check is required to
know whether there are still enough passengers in the plane or not, which is done
with a simple if condition. Should there be less passengers to move in the plane, the
number of passengers moving per time step is set to the number of agents remaining
in the cabin. The matrix paxLocations contains the x and y coordinates of each
passenger. The arrangement is purely random. With paxMove.m the passenger with
coordinate x and y is moved. More details of the function will follow later in the text.
After moving the chosen number of agents, the number of remaining passengers, their
location and the elapsed time has to be computed. If required, a new frame will be
saved and the loop repeated until the plane is empty or the maximal simulation time
has been reached.

18

4.3 Model 2 - Function descriptions

Subsequently, the different functions are extensively and sequentially explained ac-
cording to the main program.

4.3.1 Function initialize.m

In this function, the cabin is built according to the geometric information in the static
field (see listing 10 on page 50). To build the interior of the airplane the function
field make upper level.m is called. It takes the length and width of the plane an
positions the seats with passengers, walls and exits. Empty seats could be set as
well. In a double for loop the the number of passengers and exits are being count.
The function returns the number of passengers and exits, length and width of the
cabin and the matrix with the cabin information. This matrix contains the location
of seats, passengers, walls and exits.

4.3.2 Function paxLoc.m

Listing 11 on page 51 shows the function paxLoc.m which returns a matrix with the
x and y coordinates of each passenger and exit. In the matrix containing the cabin
information, passengers are described with a 3 and exits with a 4. This function
simply returns the x and y coordinate of each passenger in a random order. The
Matlab function randperm(n) returns a random permutation of the integers 1:n.
These values are required to copy the data content of the position matrix into a new
randomly sorted matrix, which is returned.

4.3.3 Function paxGetUp.m

This function, to be found in listing 13 on page 52, replaces each value in front of a
seat (with seated passenger) with a passenger (3) and replaces its original place in
the cabin information matrix by a seat (5). It returns the updated cabin informa-
tion matrix and a count value, which can be used for double check purposes while
debugging the program.

4.3.4 Function paxMove.m

Listing 9 on page 49 shows the most important of all sub functions. In a first step,
the neighbors are being defined. For an airplane evacuation, von Neumann neighbors
are useful because the agents are not allowed to jump diagonally over the seats. The
tmp vector is required to check later on, whether the agent is doing his best move
or not. The first for loop iterates over all neighbors of the particular passenger and

19

remembers the value of the static field, if the cell is available. If a cell is a seat, wall
or other passenger, the agent is not allowed to move to it. If the cell is good to go,
the value of the static field is saved in the tmp vector. This is required to choose the
best movement for each passenger. If one neighbor is an exit (4), the value of the
passenger’s position in the cabin information matrix is set to one (free space) and
the function is left. In a second step, the probability of the best move is set. In our
case it is 75%. If the probability is higher than 75% the passenger moves towards
the worst direction, according to the tmp vector. If the probability is within the 75%
range, the agent does its best possible move, also according to the tmp vector. The
function returns the updated cabin information matrix.

4.3.5 Function field make upper level.m

Listing 15 on page 53 shows the function paxLoc.m which sets the correct value
according to table 3 on page 20 into the cabin information matrix and returns it.

Number in matrix Physical meaning Color

1 = free space white
2 = wall grey
3 = passenger blue
4 = exit red
5 = empty seat black

Table 3: Nomenclature in cabin information matrix

4.3.6 Function field upper level sketch.m

Here, the cabin is drawn according to the geometric information in the cabin infor-
mation matrix (see listing 12 on page 51). The matrix fields are colored according
to the value in table 3 on page 20.

4.4 Static field

The implementation of Model 2 requires a matrix where every cell contains the
shortest distance value to its nearest exit. As of now, this matrix is called static field
matrix.

Figure 9 on page 21 shows, how the final result should look like. The red cells
represent the exits and the black cells stand for the walls and seats. Those black cells
are treated like obstacles. So, their distance value approaches infinity. To compute

20

Figure 9: Static field matrix, final result

the static field matrix, we used the Floyd-Warshall algorithm. It is a “graph analysis
algorithm for finding shortest paths in a weighted graph” [1].

Figure 10: General path-finding problem

At first, we created a new matrix B with dimension (l ·w)×(l ·w), whereas l is the
length of the airplane and w the width. This matrix is needed to save the distance
between the cells (i,k) (i [1..l], k [1..w]) and all the other cells. All cell values are
set to 100’000. Then, we took the l x w matrix “upper level”, which contains the
plan of the airplane, and inserted each cell’s neighbor information into the matrix B.
Finally, we applied the Floyd-Warshall algorithm to the matrix B.

21

1

2 for k=1:(l ∗w)
3 for i =1:(l ∗w)
4 for j =1:(l ∗w)
5 B(i , j)=min ([B(i , j) ; (B(i , k)+B(k , j))]) ;
6 end
7 end
8 end

The algorithm iterates over all cells, columns and rows of the matrix B and stores
the minimum distance. As a result, we got the matrix B, containing the minimal dis-
tance between each pair of cells. The matrix B is a (l*w) x (l*w) matrix. Therefore,
we had to reduce it by choosing an exit and listing the distances to the other cells in a
l*w matrix. This process was performed with every exit, resulting a matrix C of size
l · w·(number of exits). To obtain the static field, those (number of exits) matrices
are put together by always taking the minimum value of the cells. The efficiency
of our implementation is rather low. The computation of the static field matrix
increases with O((I · w)3). However, we did not invest more time on enhancing it,
because that is not the main part of our project.

22

5 Simulation Results and Discussion

5.1 Validation

A model validation would be done with measurement data of full scale tests. Since
any full scale data is not available, validation is left open as a future step.

5.2 Post processing approach

The analysis was performed with 100 simulations per set of parameters. The mean
values and standard deviations are plotted in the diagrams and listed in the ta-
bles. The terms normal conditions or normal configurations are used for simulations
without additional obstacles in the cabin using the usual location of the emergency
exits. An optimized version was simulated with a different placement of the exits.
The number of exits remains the same. In a second approach, obstacles were im-
plemented in the region of the middle exits. The time step is equal to the time
each figure remains on the screen, while the simulation is plotted. The probability
is explained in paragraph 4.3.4.

5.3 Simulation without obstacles around doors

Figures 11 and 12 on page 24 show the simulation domain without obstacles in normal
and optimized configuration.

5.3.1 Simulation with different parameters under normal condition

Figure 13 on page 25 shows the different evacuation times by changing the number
of passengers under normal condition. The parameters are the number of passengers
per time step moving and their probability to do the best move. The more passengers
are moving per time step the lower the evacuation time. With high probability of
doing the best possible move, the standard deviation for each measurement decreases.

Plot 14 on page 25 shows the mean evacuation time versus the probability of
each passenger doing the best possible move. As expected, the mean evacuation
time, as well as the corresponding standard deviation is diametrically opposed to the
probability.

5.3.2 Simulation with different parameters and optimized location of emer-
gency exits

Figure 15 on page 26 illustrates the different evacuation times by changing the num-
ber of passengers using an optimized arrangement of exits. Again, the more passen-

23

Figure 11: Cabin without obstacles under normal configuration

Figure 12: Cabin without obstacles and with optimized exit location

gers moving per time step, the lower the evacuation time. With high probability of
choosing the best possible move, the standard deviation for each measurement de-
creases. With optimized exit locations, the evacuation times are reduced by approx-

24

Figure 13: Mean evacuation time vs number of passengers moved per timestep

Figure 14: Mean evacuation time vs probability

imately 30 percent. In this case, the optimized exit locations are purely theoretical,
because no stability aspects were taken into account.

Figure 16 on page 27 displays the mean evacuation time versus the probability of

25

each passenger selecting the best possible move. As expected, the mean evacuation
time, as well as the corresponding standard deviation are decreasing with increasing
probability. Here again the mean evacuation time was reduced by more than 30
percent.

Figure 15: Mean evacuation time vs number of passengers moved per timestep (optimized)

5.4 Simulation with obstacles around doors

Figures 17 and 18 on page 27 indicate both configurations of the simulation domains
with obstacles. The obstacles are placed around the four middle doors and are
colored grey. The obstacles act like walls. The static field has not been changed.
The obstacles were moved to the new locations of the corresponding doors.

5.4.1 Simulation with different parameters and obstacles

Figure 19 on page 28 shows the different evacuation times by altering the number of
passengers under normal condition. The parameters are the number of passengers
per time step moving and their probability to perform the best move. The more pas-
sengers moving per time step, the lower the evacuation time. With high probability
of choosing the best possible move, the standard deviation for each measurement
decreases.

Plot 20 on page 29 shows the mean evacuation time versus the probability of each
passenger to do the best possible move. Yet again, the mean evacuation time, as

26

Figure 16: Mean evacuation time vs probability (optimized)

Figure 17: Cabin with obstacles under normal configuration

well as the corresponding standard deviation are constantly declining, the higher the
probability is set.

Exits with obstacles result in a longer period of evacuation. The difference to

27

Figure 18: Cabin with obstacles and optimized exit location

normal configuration is more than 60 per cent.

Figure 19: Mean evacuation time vs number of passengers moved per timestep (with
obstacles)

28

Figure 20: Mean evacuation time vs probability (with obstacles)

5.4.2 Simulation with different parameters, optimized location of emergency
exits and obstacles

Figure 21 on page 30 shows the different evacuation times with a modified number
of passengers with an optimized arrangement of exits. The exits are not free of
obstacles according to figure 18 on page 28. Again the more passengers are moving
per time step, the lower the evacuation time. With increased probability of choosing
the best possible move the standard deviation for each measurement decreases. With
optimized exit locations, the evacuation times dropped by approximately 30 percent
with respect to the normal exit configuration with obstacles. The evacuation time
lasts about 40 per cent longer than the one without obstacles. In real life, this
difference could be deadly, which indicates the major importance of free exits.

Figure 16 on page 27 shows the mean evacuation time versus the probability
of each passenger to choose the best possible step. As eagerly awaited, the mean
evacuation time, as well as the corresponding standard deviation are again diamet-
rically opposed to the probability. In that particular case, the mean evacuation time
plummeted over 30 per cent too.

29

Figure 21: Mean evacuation time vs number of passengers moved per timestep (optimized
and with obstacles)

Figure 22: Mean evacuation time vs probability (optimized and with obstacles)

5.5 Discussion

The curves’ level-off points in figure 23 and following, on pages 31 to 33, indicate a
limit of passengers moving per time step. If more than 25 passengers move per time

30

step, the evacuation time remains reasonably steady. The reason of that behavior
is due to reaching the maximum capability of the exits per time step. The same
behavior is observed in the case with obstacles on figure 24 on page 32. The proba-
bility of choosing the correct move has a strong impact on the evacuation time. The
higher the probability, the lower the evacuation time in both cases, with and without
obstacles. The level-off trend in the high probability region exhibits the lower time
rate. The results with obstacles look similar. Moreover the evacuation time increases
with unexpected obstacles. ”Unexpected” refers to the fact, that the static field has
not been adapted. Agents follow their optimum path, until they see the unexpected
obstacle. Then, they have to surround it. A considerably larger jamming trend can
be observed around the exits concerned.

Figure 23: Mean evacuation time vs number of passengers moved per timestep

31

Figure 24: Mean evacuation time vs number of pax moved per timestep (with obstacles)

Figure 25: Mean evacuation time vs probability

32

Figure 26: Mean evacuation time vs probability (with obstacles)

33

6 Summary and Outlook

In this chapter, we will summarize the usability of the two models as well as the
simulation results. So as to enhance our models we will propose some improvement
suggestions.

6.1 Comparison

Model 1 persuaded with its simplicity. For instance, its simulation time, with only
one motion per iteration, is quite as fast as the simulation time of Model 2 using
more of which. Conversely, there is no way Model 1 can compete with Model 2 in
terms of adaptability. Whereas in Model 2 one easily can alter the probabilities, as
well as the number of agents moving per time step, in Model 1 one has to change the
probability parameters in the corresponding .m-file. Let alone the fact that in Model
1 only one agent can move at a time. Having said that, the required RAM storage,
in addition to the computing speed, are considered more positive using Model 1.

Conclusively, we decided to compute our simulations with Model 2, so there are
no necessary changes to be done in the .m-files.

6.2 Simulation results

All in all, we concluded, that an alternative choice of exit locations could, at least
theoretically, reduce the evacuation time to a third of its original time. Conversely,
the alternative we suggested would lead the passengers to the wings, which is not
exactly to be recommended due to explosion considerations.

Moreover, obstacles in the exit areas can extend the evacuation time up to 40 per
cent which is extremely poor.

In addition, the number of agents moving per iteration is restricted. Using com-
mon sense, it is not hard to recognize, that a moving crowd consisting of 200 people
causes a much higher chaos and jamming factor as a group of 10 people. According
to our results, the best rate of agents moving per time step is reached at a number
of 25 agents.

Finally, in all cases, a high probability augments the evacuation efficiency.

6.3 Outlook

In order to collect appropriate statements about the models’ prospective, we summed
up the difficulties occurred in the past to conclude possible developments of our
consisting model.

Difficulties within the first model:

34

• Many assumptions had to be made to enable the simulation

• Only one movement per iteration → slow simulation

• Complex description of the passenger’s next step → not general valid

• Probability must be changed in the .m file

• Exit locations must be changed in the .m file

Difficulties within the second model:

• Many assumptions had to be made to enable the simulation

• Long calculation time → low numerical efficiency

• Many functions and files

Regarding the difficulties we experienced with our models, we can make following
propositions to enhance them:

• Include a function to easily switch the exit locations

• Involve people with disabilities, children, and natural factors

• Enable interaction between the two decks

• Use calculated information for further analysis. For instance, if many people
are in front of the nearest exit, choose the second nearest exit.

• Optimize visualization

There are several further proposals to upgrade our model. However, every en-
hancement is creating a more complex model and reduces its computational skills.
All the assumptions we made (see page 8) could be eliminated or improved by other
assumptions. Nevertheless, the model will get much more complicated and its effi-
ciency questionable.

35

7 References

References

[1] www.en.wikipedia.org/wiki/main page. internet.

[2] www.flightglobal.com/assets/getasset.aspx?itemid=19339. internet.

[3] www.informatik.hu-berlin.de/forschung/gebiete/algorithmenii/lehre/ss09/theo3/skript/thi3-
bsp-fw1.pdf. internet.

[4] www.iti.fh-flensburg.de/lang/algorithmen/graph/warshall.htm. internet.

[5] www.singaporeair.com/saa/en uk/images/company info/eot/fleet info/380/a380.jpg.
internet.

[6] www.users.ices.utexas.edu/∼carsten/papers/bursteddeklauckschadschneideretal01.pdf.
internet.

[7] Reine Byun and Anne Femmer. Modelling pedestrian dynamics using a descrete
floor field and agend based simulation. Technical report, Modelling and Simulat-
ing Social Systems with MATLAB, 2008.

[8] A. Schadschneider C. Burstedde, K. Klauck and J.Zitzartz. Simulation of pedes-
trian dynamics using a two-dimensional cellular automaton. Physica A, pages
507–525, 2001.

36

8 Programs

8.1 Model 1

Listing 1: Main Program: evacuation.m
1 function [evacuat ion t ime , i t e r a t i o n s]= evacuat ion (l e v e l , v i sua l ,movie)
2 % l e v e l = [1 , 2] v i s u a l =[0 ,1] movie =[0 ,1] 0 = no 1 = yes
3 % This f u n c t i o n shows an evacuat ion procedure o f the Airbus A380 with
4 % passengers f u l l o f panic
5

6 % l e v e l 1 = upper l e v e l
7 % l e v e l 2 = lower l e v e l
8

9 i f l e v e l >2
10 error (’ Sorry , un fo r tunate ly the Airbus 380 c o n s i s t only o f two decks ! ’) ;
11 end
12

13 i f l e v e l <1
14 error (’ Sorry , the re i s no such deck ! choose between deck 1 and 2 . . . ’) ;
15 end
16

17 simtime =200000; % maximal s imu la t ion time
18 evacuat ion t ime = simtime ; % d e f a u l t time f o r break
19 frame = 1 ; % i t e r a t i o n v a r i a b l e f o r v i s u a l / movie
20 t ic ; % s t a r t count ing time
21 e a r l i e r=now ; % s e t time to measure
22 stopwatch=da t e s t r (now−now , ’MM: SS ’) ; % s e t stopwatch to zero
23 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−UPPER LEVEL−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
24

25 i f l e v e l==1
26 % c a l c u l a t e the number o f Passengers
27 passenger number = 200 ;
28 % c a l c u l a t e l e n g t h / width o f l e v e l / number o f e x i t s
29 length = 41 ;
30 width = 12 ;
31 e x i t s = 8 ;
32 % c r e a t e the r e q u i r e d l e v e l and c a l c u l a t e passenger and e x i t l o c a t i o n s
33 [u pp e r l e v e l]= make upper l eve l (length , width) ;
34 % f i n d co or d i na te s o f any passenger
35 [p a s s e ng e r l o c a t i o n]= ploc (length , width , passenger number , upp e r l e v e l) ;
36 % f i n d co or d i na te s o f any e x i t
37 [e x i t l o c a t i o n]= e l o c (length , width , ex i t s , upp e r l e v e l) ;
38 % v i s u a l i z a t i o n o f the l e v e l
39 i f v i s u a l==true
40 uppe r l e v e l s k e t c h (uppe r l eve l , passenger number , stopwatch) ;
41 M(frame) = getframe ; % s e t f i r s t v i s u a l / movie frame
42 frame = frame + 1 ; % g e t ready f o r next frame
43 end
44

45 % Running the s imu la t ion
46

47 for t=1: simtime
48

49 % s e l e c t a ramdom Passenger in the r e q u i r e d deck
50 randpass = round(rand∗(passenger number −1))+1;
51 % c a l c u l a t i n g the neares t e x i t l o c a t i o n o f the random Passenger

37

52 [n e a r e s t e x i t l o c a t i o n] = . . .
53 min di s tance (p a s s e ng e r l o c a t i o n (randpass , :) , e x i t l o c a t i o n) ;
54

55 % c a l c u l a t i n g the next l o c a t i o n o f the Passenger
56 new locat i on = passenger move (pa s s eng e r l o c a t i o n (randpass , :) , . . .
57 n e a r e s t e x i t l o c a t i o n , upp e r l e v e l) ;
58

59 %−−−−−−PASSENGER DYNAMICS: a l l p o s s i b i l i t i e s o f a l t e r i n g p o s i t i o n −−−−−−−−%
60

61 % simu la t ion o f a passenger t h a t has reached the e x i t
62 i f uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 4
63 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
64 pa s s eng e r l o c a t i o n (randpass , 2)) = 1 ; % g i v e f r e e space
65

66 i f v i s u a l == true
67 uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) = 6 ; % the po in t o f e x i t
68 uppe r l e v e l s k e t c h (uppe r l eve l , passenger number , stopwatch) ; % update s t a t e
69 M(frame) = getframe ; % s e t f i r s t movie frame
70 frame = frame + 1 ; % g e t ready f o r next frame
71 pause (0 . 1) ; % slow s imu la t ion f o r e x i t i n g
72 uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) = 4 ; % g i v e e x i t f r e e
73 end
74

75 pa s s eng e r l o c a t i o n (randpass , :) = [] ; % remove the passenger from the deck
76 passenger number= passenger number −1; % a d j u s t passenger number
77 end
78

79 % i f passenger was on a s e a t and went to f r e e space
80 i f (uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 1 && . . .
81 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
82 pa s s eng e r l o c a t i o n (randpass ,2))==3)
83

84 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
85 pa s s eng e r l o c a t i o n (randpass , 2))=5 ; % old p o s i t i o n i s now a f r e e s e a t
86

87 i f v i s u a l == true
88 % new l o c a t i o n (former f r e e space) i s occupied with passenger
89 uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=6 ;
90 uppe r l e v e l s k e t c h (uppe r l eve l , passenger number , stopwatch) ; % update s t a t e
91 M(frame) = getframe ; % s e t f i r s t movie frame
92 frame = frame + 1 ; % g e t ready f o r next frame
93 end
94

95 % move passenger to next l o c a t i o n (l e n g t h)
96 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
97 % move passenger to next l o c a t i o n (width)
98 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
99

100 % i f passenger was on a s e a t and went to a f r e e s e a t
101 e l s e i f (uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 5 && . . .
102 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
103 pa s s eng e r l o c a t i o n (randpass ,2))==3)
104

105 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
106 pa s s eng e r l o c a t i o n (randpass , 2))=5 ; % old p o s i t i o n i s now a f r e e s e a t
107

108 i f v i s u a l == true
109 % new l o c a t i o n (former f r e e s e a t) i s occupied with passenger

38

110 uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=3 ;
111 uppe r l e v e l s k e t c h (uppe r l eve l , passenger number , stopwatch) ; % update s t a t e
112 M(frame) = getframe ; % s e t f i r s t movie frame
113 frame = frame + 1 ; % g e t ready f o r next frame
114 end
115

116 % move passenger to next l o c a t i o n (l e n g t h)
117 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
118 % move passenger to next l o c a t i o n (width)
119 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
120

121 % i f passenger was on f r e e space and went to a f r e e space
122 e l s e i f (uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 1 && . . .
123 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
124 pa s s eng e r l o c a t i o n (randpass ,2))==6)
125

126 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
127 pa s s eng e r l o c a t i o n (randpass , 2))=1 ; % old p o s i t i o n in now f r e e space
128

129 i f v i s u a l == true
130 % new l o c a t i o n (former f r e e space) i s occupied with passenger
131 uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=6 ;
132 uppe r l e v e l s k e t c h (uppe r l eve l , passenger number , stopwatch) ; % update s t a t e
133 M(frame) = getframe ; % s e t f i r s t movie frame
134 frame = frame + 1 ; % g e t ready f o r next frame
135 end
136

137 % move passenger to next l o c a t i o n (l e n g t h)
138 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
139 % move passenger to next l o c a t i o n (width)
140 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
141

142 % i f passenger was on f r e e space and went to a f r e e s e a t
143 e l s e i f (uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 5 && . . .
144 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
145 pa s s eng e r l o c a t i o n (randpass ,2))==6)
146

147 uppe r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
148 pa s s eng e r l o c a t i o n (randpass , 2))=1 ; % old p o s i t i o n = f r e e space
149

150 i f v i s u a l == true
151 % new l o c a t i o n (former f r e e s e a t) i s occupied with passenger
152 uppe r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=3 ;
153 uppe r l e v e l s k e t c h (uppe r l eve l , passenger number) ; % update s t a t e
154 M(frame) = getframe ; % s e t f i r s t movie frame
155 frame = frame + 1 ; % g e t ready f o r next frame
156 end
157

158 % move passenger to next l o c a t i o n (l e n g t h)
159 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
160 % move passenger to next l o c a t i o n (width)
161 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
162 end
163

164 % End of the s imu la t ion
165 i f passenger number == 0
166 evacuat ion t ime = toc ; % stop time
167 i t e r a t i o n s = t ; % stop i n t e r a t i o n s counter

39

168 break ;
169 end
170 stopwatch=da t e s t r (now−e a r l i e r , ’MM: SS ’) ; % update stopwatch
171 end % end of the (f o r t = 1: simtime) loop
172

173 i f movie ==true
174 movie2avi (M, ’ evacuat i on A380 upper l eve l . av i ’) ; % save the movie
175 end
176 end % end of the (i f l e v e l ==1) s ta tements
177

178 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−LOWER LEVEL−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
179

180 i f l e v e l==2
181 % c a l c u l a t e the number o f Passengers
182 passenger number = 358 ;
183 % c a l c u l a t e l e n g t h / width o f l e v e l
184 length = 55 ;
185 width = 14 ;
186 e x i t s = 10 ;
187 % c r e a t e the r e q u i r e d l e v e l and c a l c u l a t e passenger and e x i t l o c a t i o n s
188 [l ow e r l e v e l]= make l ower l eve l (length , width) ;
189 % f i n d co or d i na te s o f any passenger
190 [p a s s e ng e r l o c a t i o n]= ploc (length , width , passenger number , l ow e r l e v e l) ;
191 % f i n d co or d i na te s o f any e x i t
192 [e x i t l o c a t i o n]= e l o c (length , width , ex i t s , l ow e r l e v e l) ;
193 % v i s u a l i z a t i o n o f the l e v e l
194 i f v i s u a l==true
195 l ow e r l e v e l s k e t c h (l owe r l e v e l , passenger number , stopwatch) ;
196 M(frame) = getframe ; % s e t f i r s t v i s u a l / movie frame
197 frame = frame + 1 ; % g e t ready f o r next frame
198 end
199

200 % Running the s imu la t ion
201

202 for t=1: simtime
203 % s e l e c t a ramdom Passenger in the r e q u i r e d deck
204 randpass = round(rand∗(passenger number −1))+1;
205 % c a l c u l a t i n g the neares t e x i t l o c a t i o n o f the random Passenger
206 [n e a r e s t e x i t l o c a t i o n] = . . .
207 min di s tance (p a s s e ng e r l o c a t i o n (randpass , :) , e x i t l o c a t i o n) ;
208 % c a l c u l a t i n g the next l o c a t i o n o f the Passenger
209 new locat i on = passenger move (pa s s eng e r l o c a t i o n (randpass , :) , . . .
210 n e a r e s t e x i t l o c a t i o n , l ow e r l e v e l) ;
211

212 %−−−−−− PASSENGER DYNAMICS: a l l p o s s i b i l i t i e s o f a l t e r i n g p o s i t i o n −−−−−−−%
213

214 % simu la t ion o f a passenger t h a t has reached the e x i t
215 i f l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 4
216 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
217 pa s s eng e r l o c a t i o n (randpass , 2)) = 1 ; % g i v e f r e e space
218

219 i f v i s u a l == true
220 % Passenger at the po in t o f e x i t
221 l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) = 6 ;
222 l ow e r l e v e l s k e t c h (l owe r l e v e l , passenger number , stopwatch) ; % update s t a t e
223 M(frame) = getframe ; % s e t f i r s t movie frame
224 frame = frame + 1 ; % g e t ready f o r next frame
225 pause (0 . 1) ; % slow s imu la t ion f o r e x i t i n g

40

226 l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) = 4 ; % g i v e e x i t f r e e
227 end
228

229

230 pa s s eng e r l o c a t i o n (randpass , :) = [] ; % remove the passenger from the deck
231 passenger number= passenger number −1; % a d j u s t passenger number
232 end
233

234 % i f passenger was on a s e a t and went to f r e e space
235 i f (l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 1 && . . .
236 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
237 pa s s eng e r l o c a t i o n (randpass ,2))==3)
238

239 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
240 pa s s eng e r l o c a t i o n (randpass , 2))=5 ; % old p o s i t i o n i s now a f r e e s e a t
241

242 i f v i s u a l == true
243 % new l o c a t i o n (former f r e e space) i s occupied with passenger
244 l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=6 ;
245 l ow e r l e v e l s k e t c h (l owe r l e v e l , passenger number , stopwatch) ; % update s t a t e
246 M(frame) = getframe ; % s e t f i r s t movie frame
247 frame = frame + 1 ; % g e t ready f o r next frame
248 end
249

250 % move passenger to next l o c a t i o n (l e n g t h)
251 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
252 % move passenger to next l o c a t i o n (width)
253 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
254

255 % i f passenger was on a s e a t and went to a f r e e s e a t
256 e l s e i f (l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 5 &&.. .
257 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
258 pa s s eng e r l o c a t i o n (randpass ,2))==3)
259

260 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
261 pa s s eng e r l o c a t i o n (randpass , 2))=5 ; % old p o s i t i o n i s now a f r e e s e a t
262

263 i f v i s u a l == true
264 % new l o c a t i o n (former f r e e s e a t) i s occupied with passenger
265 l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=3 ;
266 l ow e r l e v e l s k e t c h (l owe r l e v e l , passenger number , stopwatch) ; % update s t a t e
267 M(frame) = getframe ; % s e t f i r s t movie frame
268 frame = frame + 1 ; % g e t ready f o r next frame
269 end
270

271 % move passenger to next l o c a t i o n (l e n g t h)
272 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
273 % move passenger to next l o c a t i o n (width)
274 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
275

276 % i f passenger was on f r e e space and went to a f r e e space
277 e l s e i f (l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 1 &&.. .
278 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
279 pa s s eng e r l o c a t i o n (randpass ,2))==6)
280

281 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
282 pa s s eng e r l o c a t i o n (randpass , 2))=1 ; % old p o s i t i o n in now f r e e space
283

41

284 i f v i s u a l == true
285 % new l o c a t i o n (former f r e e space) i s occupied with passenger
286 l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=6 ;
287 l ow e r l e v e l s k e t c h (l owe r l e v e l , passenger number , stopwatch) ; % update s t a t e
288 M(frame) = getframe ; % s e t f i r s t movie frame
289 frame = frame + 1 ; % g e t ready f o r next frame
290 end
291

292 % move passenger to next l o c a t i o n (l e n g t h)
293 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
294 % move passenger to next l o c a t i o n (width)
295 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
296

297 % i f passenger was on f r e e space and went to a f r e e s e a t
298 e l s e i f (l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 , 2)) == 5 &&.. .
299 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
300 pa s s eng e r l o c a t i o n (randpass ,2))==6)
301

302 l ow e r l e v e l (p a s s e ng e r l o c a t i o n (randpass , 1) , . . .
303 pa s s eng e r l o c a t i o n (randpass , 2))=1 ; % old p o s i t i o n = f r e e space
304

305 i f v i s u a l == true
306 % new l o c a t i o n (former f r e e s e a t) i s occupied with passenger
307 l ow e r l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))=3 ;
308 l ow e r l e v e l s k e t c h (l owe r l e v e l , passenger number , stopwatch) ; % update s t a t e
309 M(frame) = getframe ; % s e t f i r s t movie frame
310 frame = frame + 1 ; % g e t ready f o r next frame
311 end
312

313 % move passenger to next l o c a t i o n (l e n g t h)
314 pa s s eng e r l o c a t i o n (randpass ,1)= new locat i on (1 , 1) ;
315 % move passenger to next l o c a t i o n (width)
316 pa s s eng e r l o c a t i o n (randpass ,2)= new locat i on (1 , 2) ;
317 end
318

319 % End of the s imu la t ion
320 i f passenger number == 0
321 evacuat ion t ime = toc ; % stop time
322 i t e r a t i o n s = t ; % stop i t e r a t i o n s counter
323 break ;
324 end
325 stopwatch=da t e s t r (now−e a r l i e r , ’MM: SS ’) ; % update stopwatch
326 end % end of the (f o r t = 1: simtime) loop
327 i f movie ==true
328 movie2avi (M, ’ evacua t i on A380 l owe r l ev e l . av i ’) ; % save movie
329 end
330

331 end % end of the (i f l e v e l ==2) s ta tements

Listing 2: Function: supper level sketch.m
1 function []= upp e r l e v e l s k e t c h (uppe r l eve l , passenger number , stopwatch)
2 % s k e t c h Matrix with d i f f e r e n t c o l o r s f o r s imu la t ion
3 % d e f i n e d i f f e r e n t c o l o r s f o r a l l s t a t e s :
4

5 % white f o r f r e e space
6 s k e t c h c o l o r s (1 , :) = [1 1 1] ;
7 % grey f o r w a l l

42

8 s k e t c h c o l o r s (2 , :) = [. 5 . 5 . 5] ;
9 % b l u e f o r passengers on s e a t s

10 s k e t c h c o l o r s (3 , :) = [0 0 1] ;
11 % red f o r e x i t s
12 s k e t c h c o l o r s (4 , :) = [1 0 0] ;
13 % b l a c k f o r empty s e a t s
14 s k e t c h c o l o r s (5 , :) = [0 0 0] ;
15 % b l u e f o r passengers on f r e e space
16 s k e t c h c o l o r s (6 , :) = [0 0 1] ;
17 c l f % c l e a r current f i g u r e
18

19 x = passenger number ;
20 time=stopwatch ;
21 % drawing the u p p e r l e v e l s k e t c h
22 image(uppe r l e v e l) ;
23 t i t l e (’ Airbus A 380 upper l e v e l sketch ’ , ’ c o l o r ’ , ’ r ’ , ’ f o n t s i z e ’ , 2 0) ;
24 colormap (s k e t c h c o l o r s) ;
25 text (17 ,3 , ’ Ex i t s 8 ’ , ’ c o l o r ’ , ’ r ’ , ’ f o n t s i z e ’ , 1 6) ;
26 text (17 ,7 , ’ Wall ’ , ’ c o l o r ’ , [. 5 . 5 . 5] , ’ f o n t s i z e ’ , 1 6) ;
27 text (1 7 , 1 1 , [’ Passengers ’ , int2str (x)] , ’ c o l o r ’ , [0 0 1] , ’ f o n t s i z e ’ , 1 6) ;
28 text (17 ,15 , ’ Seats 200 ’ , ’ c o l o r ’ , [0 0 0] , ’ f o n t s i z e ’ , 1 6) ;
29 text (1 7 , 1 9 , [’Time : ’ , time] , ’ c o l o r ’ , [0 0 0] , ’ f o n t s i z e ’ , 1 6) ;
30 axis o f f ;
31 axis image ;

Listing 3: Function: make upper level.m
1 function [u pp e r l e v e l]= make upper l eve l (length , width)
2

3 % c r e a t i n g the upper− l e v e l and p l a c i n g the passengers on t h e i r s e a t s
4 % meaning o f the numbers :
5 % 1 = f r e e space
6 % 2 = w a l l
7 % 3 = passenger
8 % 4 = e x i t
9

10 % c r e a t e matrix f o r upper− l e v e l
11 uppe r l e v e l = ones (length , width) ;
12

13 % c r e a t e w a l l s
14 for i = 1 : length
15 uppe r l e v e l (i , 1) = 2 ;
16 uppe r l e v e l (i , width) = 2 ;
17 end
18 for j = 1 : width
19 uppe r l e v e l (1 , j) = 2 ;
20 uppe r l e v e l (length , j) = 2 ;
21 end
22 % c r e a t e the 8 e x i t s
23 uppe r l e v e l (2 , 1) = 4 ;
24 uppe r l e v e l (2 , width) = 4 ;
25 uppe r l e v e l (11 ,1) = 4 ;
26 uppe r l e v e l (11 , width) = 4 ;
27 uppe r l e v e l (30 ,1) = 4 ;
28 uppe r l e v e l (30 , width) = 4 ;
29 uppe r l e v e l (40 ,1) = 4 ;
30 uppe r l e v e l (40 , width) = 4 ;
31 % s e t the passengers on t h e i r s e a t s

43

32 uppe r l e v e l (7 : 1 0 , 3 : 4) = 3 ; % b u s i n e s s c l a s s
33 uppe r l e v e l (7 : 1 0 , 6 : 7) = 3 ;
34 uppe r l e v e l (7 : 1 0 , 9 : 1 0) = 3 ;
35 uppe r l e v e l (1 3 : 2 4 , 2 : 3) = 3 ;
36 uppe r l e v e l (1 3 : 2 4 , 6 : 7) = 3 ;
37 uppe r l e v e l (1 3 : 2 4 , 1 0 : 1 1) = 3 ;
38

39 uppe r l e v e l (2 6 : 2 8 , 2 : 3) = 3 ; % economy
40 uppe r l e v e l (26 :28 ,10 :11)= 3 ;
41 uppe r l e v e l (3 2 : 3 9 , 2 : 3) = 3 ;
42 uppe r l e v e l (32 :39 ,10 :11)= 3 ;
43 uppe r l e v e l (2 6 : 4 0 , 5 : 8) = 3 ;

Listing 4: Functioin: eloc.m
1 function [e x i t l o c a t i o n] = e l o c (length , width , exit number , l e v e l)
2

3 % t h i s f u n c t i o n c a l c u l a t e s the e x i t co or d i na te s
4

5 e x i t l o c a t i o n = ones (exit number , 2) ; % d e f a u l t
6 k=1; l =1;
7 for i = 1 : length
8 for j = 1 : width
9

10 i f l e v e l (i , j)==4
11 e x i t l o c a t i o n (k , 1) = i ;
12 e x i t l o c a t i o n (l , 2) = j ;
13 k = k+1;
14 l=l +1;
15 end
16 j=j +1;
17 end
18 i = i +1;
19 end

Listing 5: Function: min distance.m
1 function [n e a r e s t e x i t l o c a t i o n] = . . .
2 min di s tance (pa s s enge r l o c a t i on , e x i t l o c a t i o n)
3

4 % t h i s f u n c t i o n measures the d i s t a n c e to the neares t e x i t o f a random
5 % passenger , as w e l l as the l o c a t i o n o f h i s neares t e x i t
6

7 de l t a =1000∗ones (1 , 2) ;
8 k=1;
9

10 for j = 1 : length (e x i t l o c a t i o n)
11 de l t a (k , 1) = abs (p a s s eng e r l o c a t i o n (1 ,1)− e x i t l o c a t i o n (j , 1)) ;
12 de l t a (k , 2) = abs (p a s s eng e r l o c a t i o n (1 ,2)− e x i t l o c a t i o n (j , 2)) ;
13 deltanorm (k) = sqrt (d e l t a (k ,1)ˆ2+ de l t a (k , 2) ˆ 2) ;
14 j=j +1;
15 k=k+1;
16 end
17

18 [min dist , index]= min(deltanorm) ;
19 % c a l c u l a t e neares t e x i t co or d i na te s
20 n e a r e s t e x i t l o c a t i o n (1 , 1) = e x i t l o c a t i o n (index , 1) ;

44

21 n e a r e s t e x i t l o c a t i o n (1 , 2) = e x i t l o c a t i o n (index , 2) ;

Listing 6: Function: ploc.m
1 function [p a s s e ng e r l o c a t i o n] = ploc (length , width , passenger number , l e v e l)
2

3 % t h i s f u n c t i o n c a l c u l a t e s the passenger ’ s co or d i na te s
4

5 pa s s eng e r l o c a t i o n = ones (passenger number , 2) ; % d e f a u l t
6 k=1; l =1;
7 for i = 1 : length
8 for j = 1 : width
9

10 i f l e v e l (i , j)==3
11 pa s s eng e r l o c a t i o n (k , 1) = i ;
12 pa s s eng e r l o c a t i o n (l , 2) = j ;
13 k = k+1;
14 l=l +1;
15 end
16 j=j +1;
17 end
18 i = i +1;
19 end

Listing 7: Function: passenger move.m
1 function [new locat i on]= . . .
2 passenger move (pa s s enge r l o c a t i on , n e a r e s t e x i t l o c a t i o n , l e v e l)
3

4 % This f u n c t i o n c a l c u l a t e s the next s t e p f o r a passenger who wants to reach
5 % the neares t e x i t a t a l l c o s t s !
6

7 % a l l p o s s i b l e neighbour c e l l s a passenger can move to in one s t e p
8 % meaning : [up ; r i g h t ; down ; l e f t ; s tay]
9 neighbour=[−1 0 ; 0 1 ; 1 0 ; 0 −1; 0 0] ;

10

11 for i = 1 : length (neighbour)
12 % s a f e a l l p o s s i b l e n e w l o c a t i o n s o f the passenger
13 new locat i on (i , :) = pa s s eng e r l o c a t i o n+neighbour (i , :) ;
14 end
15

16 prob = rand ; % v a r i a b l e to add p r o b a b i l i t i e s
17

18 % i f Passenger i s s t u c k l e f t
19

20 i f (l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2))==6 &&.. .
21 l e v e l (new locat i on (4 , 1) , new locat i on (4 ,2))==2 &&.. .
22 l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))==5 &&.. .
23 l e v e l (new locat i on (3 , 1) , new locat i on (3 ,2))==5 &&.. .
24 l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2)+2)==1)
25

26 new locat i on = pa s s eng e r l o c a t i o n (1 , :)+ [0 , 2] ; % go twice r i g h t
27

28 % i f Passenger i s s t u c k r i g h t
29

30 e l s e i f (l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2))==6 &&.. .
31 l e v e l (new locat i on (2 , 1) , new locat i on (2 ,2))==2 &&.. .

45

32 l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))==5 &&.. .
33 l e v e l (new locat i on (3 , 1) , new locat i on (3 ,2))==5 &&.. .
34 l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2)−2)==1)
35

36 new locat i on = pa s s eng e r l o c a t i o n (1 , :) − [0 , 2] ; % go twice l e f t
37

38 % i f Passenger i s on f r e e space
39

40 % i f the e x i t i s lower and passenger on f r e e space
41 e l s e i f (l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2))==6 &&.. .
42 (n e a r e s t e x i t l o c a t i o n (1 ,1) > pa s s eng e r l o c a t i o n (1 , 1)))
43 i f (l e v e l (new locat i on (3 , 1) , new locat i on (3 ,2))==1) % i f down f r e e
44 new locat i on = new locat i on (3 , :) ; % move down
45 % i f down i s occupied but l e f t i s f r e e
46 e l s e i f (l e v e l (new locat i on (4 , 1) , new locat i on (4 ,2))==1 && prob >0.5)
47 new locat i on = new locat i on (4 , :) ; % move l e f t
48 % i f l e f t i s a l s o occupied and r i g h t i s f r e e
49 e l s e i f (l e v e l (new locat i on (2 , 1) , new locat i on (2 ,2))==1 && prob <0.5)
50 new locat i on = new locat i on (2 , :) ; % move r i g h t
51 else new locat i on = new locat i on (5 , :) ; % stay
52

53 end
54 % i f the e x i t i s h i gher and passenger on f r e e space
55 e l s e i f (l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2))==6 &&.. .
56 (n e a r e s t e x i t l o c a t i o n (1 ,1) < pa s s eng e r l o c a t i o n (1 , 1)))
57 i f (l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))==1) % i f up i s f r e e
58 new locat i on = new locat i on (1 , :) ; % move up
59 % i f up i s occupied but l e f t i s f r e e
60 e l s e i f (l e v e l (new locat i on (4 , 1) , new locat i on (4 ,2))==1)
61 new locat i on = new locat i on (4 , :) ; % move l e f t
62 % i f l e f t i s a l s o occupied and r i g h t i s f r e e
63 e l s e i f (l e v e l (new locat i on (2 , 1) , new locat i on (2 ,2))==1)
64 new locat i on = new locat i on (2 , :) ; % move r i g h t
65 else new locat i on = new locat i on (5 , :) ; % stay
66

67 end
68 % i f Passenger i s on a s e a t
69

70 % i f the passenger i s on the f r o n t row of a s e a t
71 e l s e i f (l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2))==3 &&.. .
72 l e v e l (new locat i on (1 , 1) , new locat i on (1 ,2))==1)
73 new locat i on = new locat i on (1 , :) ; % move up
74 % i f the passenger i s on a s e a t and the e x i t i s on h i s r i g h t s i d e
75 e l s e i f (l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2))==3 &&.. .
76 n e a r e s t e x i t l o c a t i o n (1 ,2) > pa s s eng e r l o c a t i o n (1 , 2))
77 % i f next r i g h t i s f r e e
78 i f (l e v e l (new locat i on (2 , 1) , new locat i on (2 ,2))==5 | . . .
79 (l e v e l (new locat i on (2 , 1) , new locat i on (2 ,2)))==1 && prob >0.6)
80

81 new locat i on = new locat i on (2 , :) ; % 40% chance to turn r i g h t
82 % i f next l e f t i s f r e e
83 e l s e i f (l e v e l (new locat i on (4 , 1) , new locat i on (4 ,2))==5 | . . .
84 (l e v e l (new locat i on (4 , 1) , new locat i on (4 ,2)))==1 && prob <0.4)
85

86 new locat i on = new locat i on (4 , :) ; % 40% chance to turn l e f t
87 else
88 new locat i on = new locat i on (5 , :) ; % 20% chance to s tay
89 end

46

90 % i f the passenger i s on a s e a t and the e x i t i s on h i s l e f t s i d e
91 e l s e i f (l e v e l (p a s s e ng e r l o c a t i o n (1 , 1) , p a s s eng e r l o c a t i o n (1 ,2))==3 &&.. .
92 n e a r e s t e x i t l o c a t i o n (1 ,2) < pa s s eng e r l o c a t i o n (1 , 2))
93 % i f next l e f t i s f r e e
94 i f (l e v e l (new locat i on (4 , 1) , new locat i on (4 ,2))==5 | . . .
95 (l e v e l (new locat i on (4 , 1) , new locat i on (4 ,2)))==1 && prob >0.6)
96

97 new locat i on = new locat i on (4 , :) ; % 40% chance to turn l e f t
98 % i f next r i g h t i s f r e e
99 e l s e i f (l e v e l (new locat i on (2 , 1) , new locat i on (2 ,2))==5 | . . .

100 (l e v e l (new locat i on (2 , 1) , new locat i on (2 ,2)))==1 && prob <0.4)
101

102 new locat i on = new locat i on (2 , :) ; % 40% chance to turn r i g h t
103 else
104 new locat i on = new locat i on (5 , :) ; % 20% chance to s tay
105 end
106

107 % i f Passenger i s on the same h e i g h t as an e x i t
108

109 % i f e x i t l e f t same h i g h t
110 e l s e i f (n e a r e s t e x i t l o c a t i o n (1 ,1)== pa s s eng e r l o c a t i o n (1 ,1)&&. . .
111 n e a r e s t e x i t l o c a t i o n (1 ,2) < pa s s eng e r l o c a t i o n (1 , 2))
112 new locat i on = new locat i on (4 , :) ; % go l e f t
113

114 % i f e x i t r i g h t same h i g h t
115 e l s e i f (n e a r e s t e x i t l o c a t i o n (1 ,1)== pa s s eng e r l o c a t i o n (1 ,1)&&. . .
116 n e a r e s t e x i t l o c a t i o n (1 ,2) > pa s s eng e r l o c a t i o n (1 , 2))
117 new locat i on = new locat i on (2 , :) ; % go r i g h t
118 end

8.2 Model 2

Listing 8: Main Program: evac V5.m
1 %Evacuation o f A380 with a s t a t i c f l ow f i e l d
2

3 function [countTime]=evac V5 (v i sua l ,movie)
4

5

6 %This f u n c t i o n r e q u i r e s the s t a t i c f l ow f i e l d and the f u l l a i r plane , wi th
7 %passengers sea ted on t h e i r s e a t s . The imported data are the l e v e l to
8 %simula te and the v i s u a l i s a t i o n parameters .
9

10

11 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−PRE PROCESSING−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
12 load upperdeck−mit−gang−min ;
13 s t a t i c = Min ;
14

15

16

17 %Time measurement (chrono)
18 maxSimT = 100000; % maximum simu la t ion time
19 evacTime = maxSimT ; % d e f a u l t time f o r break
20 frame = 1 ; % i t e r a t i o n v a r i a b l e f o r v i s u a l / movie
21 t ic ; % s t a r t count ing time

47

22 startT = now ; % s e t time to measure
23 stopwatch = da t e s t r (now−now , ’MM: SS ’) ; % s e t stopwatch to zero
24 dt = frame /200 ; % times tep f o r s imu la t ion
25 paxMovePerTs= 32 ; %Numer o f pax movements per time s t e p
26 l e v e l = 1 ;
27

28 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−SIMULATION−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
29

30 i f l e v e l==1
31

32 % Counts passengers , e x i t s and c a l u l a t e s width an l eng o f p lane and
33 % c r e a t e s the upper l e v e l
34 [pax , ex i t s , leng , width , uppe r l e v e l]= i n i t i a l i z e (s t a t i c) ;
35

36 % f i n d co or d i na te s o f any passenger
37 [paxLocation , ex i tLoca t i on]=paxLoc (leng , width , pax , uppe r l e v e l) ;
38

39

40 % v i s u a l i z a t i o n o f the l e v e l
41 i f v i s u a l==true
42 f i e l d u p p e r l e v e l s k e t c h (uppe r l eve l , pax , stopwatch) ;
43 M(frame) = getframe ; % s e t f i r s t v i s u a l / movie frame
44 frame = frame + 1 ;
45 pause (1) ;% g e t ready f o r next frame
46 end
47

48

49

50 % a l l Pax g e t t i n g up
51 [uppe r l eve l , count]=paxGetUp(leng , width , upp e r l e v e l) ;
52 [paxLocation , ex i tLoca t i on]=paxLoc (leng , width , pax , uppe r l e v e l) ;
53

54 i f v i s u a l==true
55 f i e l d u p p e r l e v e l s k e t c h (uppe r l eve l , pax , stopwatch) ;
56 M(frame) = getframe ; % s e t f i r s t v i s u a l / movie frame
57 frame = frame + 1 ;
58 pause (0 . 1) ;% g e t ready f o r next frame
59 end
60

61

62

63 % Running the s imu la t ion
64 for t=1:maxSimT
65

66 %Check l e n g t h o f paxLocation
67 s i zePaxLocat ion=s ize (paxLocation) ;
68 s i zePaxLocat ion=s izePaxLocat ion (1 , 1) ;
69

70 %Check i f enough pax on board to move
71 i f s i zePaxLocat ion < paxMovePerTs
72 paxMovePerTs = s izePaxLocat ion ;
73 end %i f
74

75 for p=1:paxMovePerTs %Numer o f pax movements per time s t e p
76

77 x=paxLocation (p , 2) ;
78 y=paxLocation (p , 1) ;
79 uppe r l e v e l = paxMove (x , y , uppe r l eve l , s t a t i c) ;

48

80

81 end %f o r
82

83

84 %Count the passengers and check t h e i r new l o c a t i o n s
85 [pax]=paxCount (uppe r l e v e l) ;
86 [paxLocation , ex i tLoca t i on]=paxLoc (leng , width , pax , uppe r l e v e l) ;
87

88 %A c t u a l i z e the chrono
89 stopwatch=da t e s t r (now−startT , ’MM: SS ’) ;
90

91 i f v i s u a l==true
92 f i e l d u p p e r l e v e l s k e t c h (uppe r l eve l , pax , stopwatch) ;
93 M(frame) = getframe ; % s e t f i r s t v i s u a l / movie frame
94 frame = frame + 1 ;
95 pause (0 . 0 7 5) ;% g e t ready f o r next frame
96 end %i f
97

98

99

100

101

102 i f pax <= 0
103 break ;
104 end %i f
105

106

107

108 end %f o r t
109

110 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−POST PROCESSING−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
111 i f movie == true
112 movie2avi (M, ’ evacuat i on A380 upper l eve l 070 . av i ’ , ’COMPRESSION’ , ’None ’) ;

% save the v i s u a l i z a t i o n as movie
113 end
114

115

116

117

118

119

120

121 end %i f

Listing 9: Function: paxMove.m
1 %f u n c t i o n to move passenger (x und y s ind Koordinaten des Punktes)
2

3 function [l e v e l] = paxMove(x , y , l e v e l , s t a t i c)
4

5 %1 s t Order von Neumann Neighbourhood
6 neigh =[1 0 ;0 −1;−1 0 ;0 1] ;
7

8 %S h u f f l e o f ne ighbours matrix
9 s i z eNe igh=s ize (ne igh) ;

10 s i z eNe igh=s i z eNe igh (1 , 1) ;
11

12 randNo=randperm(s i z eNe igh) ;

49

13 for k=1: s i z eNe igh
14 ne igh rand (randNo (k) , :)= neigh (k , :) ;
15 end %f o r
16 neigh = neigh rand ;
17

18

19

20 tmp=[−100 −100 −100 −100];
21 quit=0;
22

23

24

25

26 %I t e r a t i o n over ne ighboures
27 for k=1:4
28 x2 = x + neigh (k , 1) ;
29 y2 = y + neigh (k , 2) ;
30

31 %Check what c e l l i s next and remember s t a i c va lue
32 i f l e v e l (y2 , x2) == 1
33 tmp(k) = s t a t i c (y2 , x2) ;
34 e l s e i f l e v e l (y2 , x2) == 4
35 l e v e l (y , x) = 1 ;
36 quit=1;
37 end %i f
38

39

40 end %f o r k
41

42

43 %Move or s tay
44 prob =0.75; %p r o b a b i l t i y to make c o r r e c t move
45 i f min(abs (tmp)) ˜= 100 && quit˜=1
46 i f rand (1 , 1) >= prob
47 [tmp I] = max(tmp) ; %I i s index o f maximal va lue
48 x2 = x + neigh (I , 1) ;
49 y2 = y + neigh (I , 2) ;
50 l e v e l (y2 , x2)=3;
51 l e v e l (y , x)=1;
52 else
53 [tmp I] = min(abs (tmp)) ; %I i s index o f maximal va lue
54 x2 = x + neigh (I , 1) ;
55 y2 = y + neigh (I , 2) ;
56 l e v e l (y2 , x2)=3;
57 l e v e l (y , x)=1;
58 end %i f
59 end %i f

Listing 10: Function: initialize.m
1 %Function to count passengers and e x i t s
2

3 function [countP , countE , l ,w,A]= i n i t i a l i z e (s t a t i c)
4

5

6 [l ,w] = s ize (s t a t i c) ;
7

8 A = f i e l d mak e upp e r l e v e l (l ,w) ;

50

9

10 countP=0;
11 countE=0;
12 for k = 1 : l
13 for m = 1 :w
14

15 i f A(k ,m) == 3
16 countP=countP+1;
17 e l s e i f A(k ,m) == 4
18 countE=countE+1;
19 end %i f
20

21

22 end %f o r m
23 end %f o r k

Listing 11: Function: paxLoc.m
1 function [paxLoc rand , exLoc] = paxLoc (length , width , paxNo , l e v e l)
2

3 % t h i s f u n c t i o n c a l c u l a t e s the passenger ’ s co or d i na te s
4

5 paxLoc = ones (paxNo , 2) ;
6 paxLoc rand=ones (paxNo , 2) ;
7 exLoc = ones (paxNo , 2) ;
8

9 k=1; l =1; %Pax
10 o=1;p=1; %E x i t s
11

12

13 for i = 1 : length
14 for j = 1 : width
15 i f l e v e l (i , j)==3
16 paxLoc (k , 1) = i ;
17 paxLoc (l , 2) = j ;
18 k = k+1;
19 l = l +1;
20 e l s e i f l e v e l (i , j)==4
21 exLoc (o , 1) = i ;
22 exLoc (p , 2) = j ;
23 o = o+1;
24 p = p+1;
25 end % i f
26 end %f o r j
27 end %f o r i
28

29 %S h u f f l e o f pax l o c a t i o n matrix
30 s izePaxLoc=s ize (paxLoc) ;
31 s izePaxLoc=sizePaxLoc (1 , 1) ;
32

33 randNo=randperm(s izePaxLoc) ;
34

35 for k=1: s izePaxLoc
36 paxLoc rand (randNo (k) , :)= paxLoc (k , :) ;
37 end %f o r

51

Listing 12: Function: field upper level sketch.m
1 function []= f i e l d u p p e r l e v e l s k e t c h (uppe r l eve l , passenger number , stopwatch)
2 % s k e t c h Matrix with d i f f e r e n t c o l o r s f o r s imu la t ion
3 % d e f i n e d i f f e r e n t c o l o r s f o r a l l s t a t e s :
4

5 % white f o r f r e e space
6 s k e t c h c o l o r s (1 , :) = [1 1 1] ;
7 % grey f o r w a l l
8 s k e t c h c o l o r s (2 , :) = [. 5 . 5 . 5] ;
9 % b l u e f o r passengers on s e a t s

10 s k e t c h c o l o r s (3 , :) = [0 0 1] ;
11 % red f o r e x i t s
12 s k e t c h c o l o r s (4 , :) = [1 0 0] ;
13 % b l a c k f o r empty s e a t s
14 s k e t c h c o l o r s (5 , :) = [0 0 0] ;
15 % b l u e f o r passengers on f r e e space
16 s k e t c h c o l o r s (6 , :) = [0 0 1] ;
17 c l f % c l e a r current f i g u r e
18

19 x = passenger number ;
20 time=stopwatch ;
21 % drawing the u p p e r l e v e l s k e t c h
22 image(uppe r l e v e l) ;
23 t i t l e (’ Airbus A 380 upper l e v e l sketch ’ , ’ c o l o r ’ , ’ r ’ , ’ f o n t s i z e ’ , 2 0) ;
24 colormap (s k e t c h c o l o r s) ;
25 text (17 ,3 , ’ Ex i t s 8 ’ , ’ c o l o r ’ , ’ r ’ , ’ f o n t s i z e ’ , 1 6) ;
26 text (17 ,7 , ’ Wall ’ , ’ c o l o r ’ , [. 5 . 5 . 5] , ’ f o n t s i z e ’ , 1 6) ;
27 text (1 7 , 1 1 , [’ Passengers ’ , int2str (x)] , ’ c o l o r ’ , [0 0 1] , ’ f o n t s i z e ’ , 1 6) ;
28 text (17 ,15 , ’ Seats 206 ’ , ’ c o l o r ’ , [0 0 0] , ’ f o n t s i z e ’ , 1 6) ;
29 text (1 7 , 1 9 , [’Time : ’ , time] , ’ c o l o r ’ , [0 0 0] , ’ f o n t s i z e ’ , 1 6) ;
30 axis o f f ;
31 axis image ;

Listing 13: Function: paxGetUp.m
1 %f u n c t i o n to move passenger
2

3 function [A, count] = paxGetUp(length , width , l e v e l)
4

5 A=l e v e l ;
6 count=0;
7 for k = 1 : length
8 for m = 1 : width
9 i f A(k ,m) == 3

10 A(k ,m) = 5 ;
11 A(k−1,m) = 3 ;
12 count = count + 1 ;
13 end %i f
14 end %f o r m
15 end %f o r k

Listing 14: Function: paxCount.m
1 %Function to count passengers and e x i t s
2

3 function [countP]=paxCount (l e v e l)

52

4

5

6 [l ,w] = s ize (l e v e l) ;
7

8 A = l e v e l ;
9

10

11 countP=0;
12

13 for k = 1 : l
14 for m = 1 :w
15

16 i f A(k ,m) == 3
17 countP=countP+1;
18 end %i f
19

20

21 end %f o r m
22 end %f o r k

Listing 15: Function: field make upper level.m
1 function [u pp e r l e v e l]= f i e l d mak e upp e r l e v e l (length , width)
2

3 % c r e a t i n g the upper− l e v e l and p l a c i n g the passengers on t h e i r s e a t s
4 % meaning o f the numbers :
5 % 1 = f r e e space
6 % 2 = w a l l
7 % 3 = passenger
8 % 4 = e x i t
9 % 5 = s e a t

10

11 % c r e a t e matrix f o r upper− l e v e l
12 uppe r l e v e l = ones (length , width) ;
13

14 % c r e a t e w a l l s
15 for i = 1 : length
16 uppe r l e v e l (i , 1) = 2 ;
17 uppe r l e v e l (i , width) = 2 ;
18 end
19 for j = 1 : width
20 uppe r l e v e l (1 , j) = 2 ;
21 uppe r l e v e l (length , j) = 2 ;
22 end
23 % c r e a t e the 8 e x i t s
24 uppe r l e v e l (14 ,1) = 4 ;
25 uppe r l e v e l (14 , width) = 4 ;
26 uppe r l e v e l (31 ,1) = 4 ;
27 uppe r l e v e l (31 , width) = 4 ;
28 uppe r l e v e l (48 ,1) = 4 ;
29 uppe r l e v e l (48 , width) = 4 ;
30 uppe r l e v e l (61 ,1) = 4 ;
31 uppe r l e v e l (61 , width) = 4 ;
32 % s e t the passengers on t h e i r s e a t s
33 uppe r l e v e l (7 , 3 : 4) = 3 ;
34 uppe r l e v e l (9 , 3 : 4) = 3 ;
35 uppe r l e v e l (1 1 , 3 : 4) = 3 ;
36 uppe r l e v e l (1 3 , 3 : 4) = 3 ; % b u s i n e s s c l a s s

53

37 uppe r l e v e l (7 , 6 : 7) = 3 ;
38 uppe r l e v e l (9 , 6 : 7) = 3 ;
39 uppe r l e v e l (1 1 , 6 : 7) = 3 ;
40 uppe r l e v e l (1 3 , 6 : 7) = 3 ;
41 uppe r l e v e l (7 , 9 : 1 0) = 3 ;
42 uppe r l e v e l (9 , 9 : 1 0) = 3 ;
43 uppe r l e v e l (1 1 , 9 : 1 0) = 3 ;
44 uppe r l e v e l (1 3 , 9 : 1 0) = 3 ;
45 for i =16:2:40
46 uppe r l e v e l (i , 2 : 3) = 3 ;
47 uppe r l e v e l (i , 6 : 7) = 3 ;
48 uppe r l e v e l (i , 1 0 : 1 1) = 3 ;
49 end
50

51

52 uppe r l e v e l (4 2 : 2 : 4 6 , 2 : 3) = 3 ; % economy
53 uppe r l e v e l (42 : 2 : 46 , 10 : 11)= 3 ;
54 uppe r l e v e l (5 0 : 2 : 6 4 , 2 : 3) = 3 ;
55 uppe r l e v e l (50 : 2 : 64 , 10 : 11)= 3 ;
56 uppe r l e v e l (4 2 : 2 : 7 0 , 5 : 8) = 3 ;
57

58 % u p p e r l e v e l (46 ,4) = 2;

8.2.1 Static field

Listing 16: Static field: static field.m
1 a=100000; %value f o r wa l l s , s e a t s
2 passenger number = 200 ;
3

4 length = 71 ;
5 width = 12 ;
6 [u pp e r l e v e l]= f i e l d mak e upp e r l e v e l (length , width) ; %make the upper l e v e l matrix
7 f i e l d u p p e r l e v e l s k e t c h (uppe r l eve l , passenger number , 0) ;
8

9 A=uppe r l e v e l ;
10

11 [l ,w]= s ize (A) ;
12

13 B=a∗ ones (l ∗w, l ∗w) ;
14

15 anzah l ne ighbours =4;
16 neighbour=[0,−1 %d e f i n e the neighbours
17 −1,0
18 1 ,0
19 0 , 1] ;
20

21

22

23 %make matrix B
24 for nsp=1:(l ∗w)
25 z=f loor ((nsp+w−1)/w) ;
26 sp=rem(nsp ,w) ;
27 i f (sp==0)
28 sp=w;

54

29 end
30

31 for neigh =1: anzah l ne ighbours
32 i f ((z+neighbour (neigh ,1))˜=0 && (z+neighbour (neigh , 1)) . . .
33 ˜=(l +1) && (sp+neighbour (neigh ,2))˜=0 &&.. .
34 (sp+neighbour (neigh , 2)) . . .
35 ˜=(w+1)) %%überpr ü fen ob index in g¸l t i g e m Bereich
36 i f (A(z+neighbour (neigh , 1) , sp+neighbour (neigh ,2))==1)
37 B(nsp , (z+neighbour (neigh ,1)−1)∗w+(sp+neighbour (neigh , 2)))=1 ;
38 end
39 end
40

41 end
42 end
43

44

45

46

47 %FLOYD−WARSHALL ALGORITHM
48 for k=1:(l ∗w)
49 for i =1:(l ∗w)
50 for j =1:(l ∗w)
51 B(i , j)=min ([B(i , j) ; (B(i , k)+B(k , j))]) ;
52 end
53 end
54 end
55

56

57

58 ex=[2 1 %d e f i n e e x i t s
59 2 w
60 14 1
61 14 w
62 48 1
63 48 w
64 70 1
65 70 w] ;
66

67

68 %i t e r a t e through a l l the e x i t s and take the corresponding v a l u e s
69 for e x i t =1:8
70 nsp2=0;
71 x=ex (ex i t , 1) ;
72 y=ex (ex i t , 2) ;
73 pos=(x−1)∗w+y ;
74 for z2=1: l
75 for sp2=1:w
76 nsp2=nsp2+1;
77 C(z2 , sp2 , e x i t)=B(pos , nsp2) ;
78 end
79 end
80

81 end
82

83 C

55

