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Introduction and Motivations 
 
Cooperation is an important concept in biology as well as in sociology. We can refer to 
cooperation in the context of a human population who interact with each other, and 
also, in a biological context where we consider the interaction of cell populations to 
groups of animals. Interactions in human populations per se, are based on some 
mechanisms that promote cooperation. The same is true for biological populations. 
 
In this Matlab simulation we are presenting focuses on observing the emergence of 
cooperation, within a population of individuals whose interactions are depicted by a 
regular graph with known degree or a random scale free graph. In this setting, the 
individuals play a repeated prisoner’s dilemma game with their neighbours. 
 
The simulation is partially based on a previous claim by Nowak et al. (2006), which 
states that cooperation can evolve in a structured population if the benefit to cost ratio 
of the prisoner’s dilemma game exceeds the average number of neighbours. i.e b/c >  k.  
 
This is a very interesting finding since it poses itself as an exception to the case where 
natural selection favours defection over cooperation in unstructured populations, which 
to some extent looks counter intuitive.  
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Description of the Model 
The main components of the simulation model are as follows: 
 

1. Structured Populations 
 
Graphs are used to describe the relationships among the individuals in a finite 
structured population. The existence of an edge between two nodes mean that 
the 2 players to whom the 2 nodes correspond, play an iterated prisoner’s 
dilemma game with each other. In our simulations, we use: 
 

a. Lattices with known degree k 
b. Random scale-free graph 

 
a. Lattices with known degree k 
In a lattice, each node has the same degree. i.e. each node is connected to 
the same number of neighbours. We run simulations to observe the 
emergence of cooperation for lattices with different values of k. i.e. for k = 2, 
3 & 6.  
 
b. Random Scale-free network: 
In a scale-free network, the degree distribution follows a power law. We 
observe the emergence of cooperation in a population whose interactions 
can be modelled using a random scale-free network. We generate this scale 
free random graph using the algorithm put forward by Barabasi & Alberts 
(2002), which produces a scale free graph based on preferential attachment 
[2]. 
 

As described later, we run the iterated prisoner’s dilemma game several times 
on each of the structured population to observe the emergence of cooperation, 
on average. 

 
2. Prisoner’s Dilemma Payoff Matrix & the Game 

 
As described earlier, the population is structured according to a graph. The edges 
of the graph determine who can play against whom. The expected payoff for 
each game is given by the Prisoner’s Dilemma Payoff Matrix. 

 
We use the following matrix for the prisoner’s dilemma game.  
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As depicted by the above matrix, in the prisoner’s dilemma game, we have 2 
strategies that the individuals could use to play. It’s either cooperation ‘C’ or 
defection ‘D’. The co-operators pay a cost of cooperation ‘c’ to all the connected 
neighbours (the neighbours that they play the game with). Any neighbour of any 
co-operator receives a benefit of cooperation ‘b’, from each cooperating 
neighbour. 

 
More specifically, according to this payoff matrix, when C plays against C, it 
receives a payoff of b-c. When C plays against D, C receives a payoff of –c. When 
D plays against C, D receives a payoff of b. Finally, when D plays against D, it 
receives a payoff of zero. 
 
Accordingly, we calculate the expected payoff for each game an individual plays. 
This expected payoff features in the calculation of the fitness of an individual, as 
shown in the next point. 
 
In each iteration of the game (in each time step), the fitness of an individual can 
change depending the changes of the strategy of one of its neighbours. The 
update rule determines the change of the strategy of an individual (from C to D 
or from D to C), as described later.   

 
3. Method to determine the fitness of an individual 

 
The fitness of the individuals of the population is required when it comes to 
updating the strategy of an individual, as described in the strategy update rule. It 
is calculated using the following formula, under weak selection, for which 
w=0.01.  
 

fi = 1− w +wFi 
 

Here, Fi is the expected payoff of the ith individual calculated from the game. i.e. 
the value of payoff obtained from the payoff matrix. Here, w is the intensity of 
selection. In weak selection, where w is closer to zero, the payoff of the game 
contributes only to a small fraction of the total fitness of the individual. It is 
trivial to observe that the contribution of the game to the fitness of the 
individual is governed by w.  
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4. Update rule to propagate the strategy among the individuals 

Death-Birth (DB) update rule: 
 
During each time step of the simulation, one individual changes his strategy 
according to an update rule. We consider the Death-Birth (DB) update rule in our 
game. At each time step, a random player is chosen to die. Then, the neighbors 
compete for the empty site proportional to their fitness.  
 
When the strategy of an individual changes according to this rule, the fitness of 
each of its neighbors also changes. This is because, the fitness depends on the 
payoff generated by the game and the payoffs the neighbors get depend on the 
strategy of this individual (as described earlier). 
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Implementation 
Our implementation can be described by the following steps. 
 
1. Initialization: 

Here we generate the graphs that we will later use as structures for the population. 
We generate 5 graphs: 

• 2D and 3D periodic lattices. 
• A 6D hypercube. 
• A random scale-free network generated by the principle of preferential 

attachment. 
      Also in this part we make a list of the benefit / (cost  * avgDegree) ratios and a 
corresponding list with the selection intensity values. 
 
graphs = [ 
    struct('name', '2D regular', 'A', createNDLattice(8, 2)); 
    struct('name', '3D regular', 'A', createNDLattice(4, 3)); 
    struct('name', '6D hypercube', 'A', createNDLattice(2,6)); 
    struct('name', 'scale-free', 'A', randomScaleFreeNetwork(64)); 
    ]; 
  
bOverck             = [0.5  1    2    1];  
selectionIntensity  = [0.01 0.01 0.01 0]; 
numTrajectories = 1000; 
%number of iterations 
nIter = 100000; 
 
2. Parameters and trajectory loops: 

We are running the simulation for different values of the parameters for which we 
want to compare the results. In the outer two loops we iterate over all the graph 
structures and selection parameters.  Our simulation is a stochastic process in which 
the results don’t depend only on the parameters. For each set of parameter values 
we simulate 1000 trajectories. Inside the parameters loops there is a trajectories 
loop. Inside the trajectories loop we prepare the payoffs matrix and run the 
simulation with the given parameters. After the simulation finishes we store the 
result in the “res” array that we use afterwards to compute statistics. 
 

res = zeros(numel(graphs), numel(bOverck), numTrajectories); 
  
for g=1:numel(graphs) 
    for i = 1:numel(bOverck); 
        for k = 1:numTrajectories 
             
            % get the graph adjacency matrix 
            A = graphs(g).A; 
  
            % calculate the average degree 
            avgDegree = mean( sum(A) ); 
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            % initialize the game payoffs matrix 
            cost = 2; 
            benefit = cost * avgDegree * bOverck(i); 
            P = [ benefit-cost -cost; 
                  benefit       0   ]; 
  
            % do the simulation 
            res(g,i,k) = simulate(A,  nIter, P, selectionIntensity(i)); 
  
            % print progress 
            if mod(k,10)==1 
                disp(['g=', num2str(g), ' i=', num2str(i),... 
                      ' k=',num2str(k)]) 
            end 
        end 
    end 
end 
 
3. Visualizing and storing  the results. 

In this part we generate bar graphs that present the fixation probabilities for the 
different parameter values. The probabilities are estimated as the fraction of 
simulated trajectories in which the co-operators reached fixation in the whole 
population. Results from the simulation and the  

 
for g=1:numel(graphs) 
    % calculate the fixation probabilities for the different selection 
    % values 
    fixationProb = sum(res(g,:,:) == 1, 3) / numTrajectories; 
     
    % create a bar plot of the fixation probabilities 
    figure; 
    bar(fixationProb); 
    set(gca, 'FontSize', 12); 
    title(graphs(g).name); 
    ylim([0 1]); 
    xlabel('benefit / (cost * averageDegree)'); 
    ylabel('Cooperator fixation probability'); 
    set(gca, 'XTick', [1 2 3 4]); 
    set(gca, 'XTickLabel', {'0.5', '1.0', '2.0', 'no selection'}); 
     
    % save the plot 
    print([ 'prob_' graphs(g).name '.eps' ]); 
end 
  
% save the simulation results 
save('graphs.mat', 'graphs'); 
save('res.mat', 'res'); 
  
 
 
4. Helper functions: 

a. crateNDLattice() 
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This function creates an ND lattice and returns the adjacency matrix. 
function [ A ] = createNDLattice( n, d ) 
% Creates an d-dimensional periodin lattice with size n 
% in each dimension. The result has a n^d nodes. 
% return A - adjacency matrix 
  
% preallocate adjacency matrix 
A = zeros(n^d); 
  
% for each node 
for i=1:n^d 
    % create a connection with the following node 
    % in each dimension 
    for j=1:d 
        b = mod(i-1 + n^(j-1), n^d) + 1; 
        A(i, b) = 1; 
        A(b, i) = 1; 
    end 
end 
  
end 

 
b. randomScaleFreeNetwork() 

This function creates a random scale free network by simulating a 
preferential attachment process as described by [3]. It starts with a 2 nodes 
connected by an edge and sequentially adds new nodes. The new node is 
connected with the old ones with probabilities proportional to the degrees of 
the old nodes. 
function [ A ] = randomScaleFreeNetwork( n ) 
% Creates a random scale free network with n nodes using  
% a preferential attachment process. 
% returns A - adjacency matrix 
  
% create the adjacency matrix 
A = sparse(n,n); 
  
% add the first two nodes and connect them with an edge 
A(1,2) = 1; 
A(2,1) = 1; 
  
% initialize the degrees array 
d = zeros(1,n); 
d(1)=1; 
d(2)=1; 
  
  
% foreach node 
for i=3:n 
     
    % calculate the connection probabilities 
    p = d / sum(d); 
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    % add at least one connection to ensure that 
    % the resulting network will be connected 
    c = randsample(i-1,1,true,p(1:i-1)); 
    A(i,c) = 1; 
    A(c,i) = 1; 
    d(i) = d(i) + 1; 
    d(c) = d(c) + 1; 
     
    % generate a random set of neighbours 
    r = rand(1,i-1);    
    neighbours = (r <= p(1:i-1)); 
  
    % connect to the neighbours and update degrees 
    A(i, neighbours) = 1; 
    A(neighbours, i) = 1; 
    d(neighbours) = d(neighbours) + 1; 
end 

 
c. simulate() 

This function  simulates the evolution of a population given the parameters 
of the model. Its return value indicates whether the co-operators or the 
defectors reached fixation.  
function [ r ] = simulate( A, maxIterations, Payoffs, 
selectionIntensity ) 
%Perform the simulation given the model parameters 
% A             - Adjacency matrix. 
% maxIterations - The maximum number of iterations that we 
will perform. 
% Payoffs       - payoffs matrix 
% selectionIntensity - weak selection parameter 
% returns r  
%           == 1 if cooperators reach fixation 
%           == 2 if defectors reach fixation 
%           == 0 if maxIterations is reached 
  
n = size(A, 1); 
  
% convert adjacency matrix to adjacency list representation 
Alist = cell(1,n); 
for i=1:n 
    Alist{i} = find(A(i,:)); 
end 
  
COOPERATOR = 1; 
DEFECTOR = 2; 
  
% initialize node strategies to 50% cooperators and  
% 50% defectors in a random way 
strategy = COOPERATOR * ones(1,n); 
strategy( randsample(n, n/2) ) = DEFECTOR; 
  
% calculate initial fitness values 
f = fitness(Alist, strategy, Payoffs, selectionIntensity); 
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% initialize return value 
r = 0; 
  
for i=1:maxIterations 
     
    % perform a death-birth update step 
    [strategy f] = deathBirthUpdate(Alist, strategy, Payoffs, 
f, selectionIntensity); 
     
    % count the number of cooperators 
    ct(i) = sum(strategy == COOPERATOR); 
     
    if ct(i) == n 
        % cooperators reached fixation => end simulation 
        r = 1; 
        break; 
    end 
    if ct(i) == 0 
        % defectors reached fixation => end simulation 
        r = 2; 
        break 
    end 
end 
  
end 

 
 

d. fitness() 
Calculate the fitness values given a model state. 
function [ f ] = fitness( A, s, P, w) 
%Calculates the fitness vector. 
%   A - adjacency lists (cell array of lists) 
%   s - node strategies 
%   P - payoff matrix 
%   w - intensity of selection 
%   returns f - fitness vector 
  
n = numel(s); 
  
f = zeros(1,n); 
  
for i=1:n 
    % get the neighbours 
    neighbours = A{i}; 
     
    % calculate a payoffs vector 
    payoffs = P(s(i), s(neighbours)); 
     
    %calculate the fitness 
    f(i) = 1 - w + w * sum(payoffs); 
end  
end 
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e. deathBirthUpdate() 
This function performs a death-birth update step given a model state. 
function [ ns nf ] = deathBirthUpdate( A, s, P, f, w) 
%Perform a state update using the death-birth update. 
%   A - adjacency lists (cell array of lists) 
%   s - strategies vector 
%   P - payoff matrix 
%   f - fitness vector 
%   w - intensity of selection 
%   returns ns - new strategy vector 
%   returns nf - new fitness vector 
  
n  = numel(s); 
  
% select a random individual to die 
d = randi(n); 
  
% find the neighbours and get their fitness 
neighbours = A{d}; 
neighFitness = f(neighbours); 
  
% crop negative fitness values 
neighFitness(neighFitness < 1e-6) = 1e-6; 
  
% select an idividual to replace it with probability  
% proportional to the fitness 
ni = randsample(numel(neighbours), 1, true, neighFitness); 
b = neighbours(ni); 
  
% construct new strategy vector 
ns = s; 
ns(d) = s(b); 
  
%Construct new fitness vector 
nf = f; 
  
% update for the dead and new-born individual 
payoffs = P(ns(d), ns(neighbours)); 
nf(d) = 1 - w + w * sum(payoffs); % weak selection 
  
% update its neighbours fitness 
nf(neighbours) = f(neighbours) + w * ... 
               (P(ns(neighbours), ns(d)) - P(s(neighbours), 
s(d)))'; 
  
end 
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Simulation Results and Discussion 
We carried out the simulation as elaborated in the previous section and obtained the 
following results. 
 
Results: 
For each graph & for each update rule we want to observe the percentage of fixations of 
co-operators vs the ratio b/c, to see what happens when k > b/c & k < b/c. 
 
Here to observe this variation, we have plotted b/(ck) against the fixation probability of 
co-operators, for each of the graphs we have considered.  
 
More specifically what we expect to see is the following:  
If b/c > k -> b/(ck) > 1, then we should see natural selection is favouring the fixation of 
co-operators. In addition to that, we should observe that when b/c < k -> b/(ck) < 1, 
then the fixation of co-operators is not favoured by natural selection. 
 
To see if natural selection favours the fixation or not, we compare the fixation 
probabilities to the case where there is no selection effect. In every graph, we can see 
that the fixation probability of the co-operators is 50% when there are no selection 
effects. So, if natural selection favours the fixation of cooperation, the fixation 
probability should be greater than 50%. 
 

1. Regular lattice: K = 2 
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2. Regular Lattice: k = 3 

 
 

3. Regular Lattice: k = 6 
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4. Random scale free graph 

 
 
Discussion: 
 
Regular degree 2 lattice:  
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is 
less than 25%. When b/(ck) is 1, then the fixation probability is almost 50%. Also, when 
b/(ck) = 2, the fixation probability is above 80%. Clearly, this shows that for this graph, 
when b/ck > 1, natural selection favours the fixation of co-operators. 
 
Regular degree 3 lattice:  
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is 
around 15%. When b/(ck) is 1, then the fixation probability is almost 50%. Also, when 
b/(ck) = 2, the fixation probability is above 80%. This shows that for this graph too, when 
b/ck > 1, natural selection favours the fixation of co-operators. 
 
Regular degree 6 lattice:  
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is 
less than 25%. When b/(ck) is 1, then the fixation probability is almost 30%. Also, when 
b/(ck) = 2, the fixation probability is above 60%. This shows that for this graph, when 
b/ck > 1, natural selection favours the fixation of co-operators. However, we can 
observe that while favoured by natural selection, the fixation probability of co-operators 
is not as high as the previous 2 graphs when b/ck = 2. 
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Random scale free network:  
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is 
less than 30%. When b/(ck) is 1, then the fixation probability is almost 50%. Also, when 
b/(ck) = 2, the fixation probability is above 60%. This shows that for the scale free graph, 
when b/ck > 1, natural selection favours the fixation of co-operators. 
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Summary and Outlook 
From the simulation results it is quite clear that natural selection favours the fixation of 
co-operators over defectors when the benefit to cost ratio exceeds the average number 
of neighbours. i.e. when b/c exceeds the average degree of the graph.  
 
We have simulated this using lattices with different degrees and with scale free graphs. 
Here, we could observe that when we start with an initial randomly placed population of 
50% co-operators and 50% defectors in a structured network, the iterative prisoner’s 
dilemma game with a strategy update rule has a probability over 50% to let the co-
operators fixate in the population, if the ratio b/c is greater than the average number of 
neighbours (k) per node of the graph. The fixation probability of 50% where there is no 
selection involved is the control case to which we compare our results obtained when 
there is selection, to observe the impact of natural selection, on the fixation probability 
of the co-operators. 
 
Moreover, we observe that co-operators are not favoured by natural selection when b/c 
is less than k. 
 
Therefore, we can conclude that there is room for cooperation to evolve which is 
determined by the social relatedness (number of neighbours), in the absence of 
strategic complexity or reputation effects, which is inline with the conclusions of 
reference [1].  
 
However, as a concluding remark, we would like to highlight the fact that the fixation 
probability of co-operators decrease with the increase of the average degree of the 
graph, although it is still higher than 50% when b/c > k. The reason why the increase of 
the degree has a negative effect on the fixation of the co-operators will be a good 
question for further research and we have not looked into it since this is out of the 
scope of our goals for this project. 
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