

Lecture with Computer Exercises:
Modelling and Simulating Social Systems with

MATLAB

Project Report

Emergence of Cooperation

Boris Daskalov & Thanuja Ambegoda

Zürich
May 2010

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 2

Eigenständigkeitserklärung

 Hiermit erkläre ich, dass ich diese Gruppenarbeit selbständig verfasst
habe, keine anderen als die angegebenen Quellen-Hilsmittel verwenden
habe, und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichen
Schriften entnommen wurden, als solche kenntlich gemacht habe. Darüber
hinaus erkläre ich, dass diese Gruppenarbeit nicht, auch nicht
auszugsweise, bereits für andere Prüfung ausgefertigt wurde.

Boris Daskalov Thanuja Ambegoda

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 3

Agreement for free-download

We hereby agree to make our source code of this project freely
available for download from the web pages of the SOMS chair.
Furthermore, we assure that all source code is written by ourselves and is
not violating any copyright restrictions.

Boris Daskalov Thanuja Ambegoda

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 4

Table of contents

Agreement for free-download ... 3

Table of contents ... 4

Individual contributions .. 5

Introduction and Motivations .. 6

Description of the Model .. 7

Implementation ... 10

Simulation Results and Discussion ... 16

Summary and Outlook .. 20

References ... 21

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 5

Individual contributions
1. Literature survey – Boris and Thanuja
2. Design of the simulation model - Boris & Thanuja
3. MATLAB programming & simulation

a. Generation of graphs to represent structured populations – Boris
b. Fitness calculation to assist the strategy update step for each iteration of

the game - Thanuja
c. Strategy update rule for the iterated game, for each iteration of the

prisoner’s dilemma game - Thanuja
d. Simulation routine to observe the emergence of cooperation in different

graphs provided with variable b/c - Boris
e. Optimizing the code to enhance performance - Boris
f. Testing & Debugging – Boris & Thanuja
g. Generation of plots to observe the emergence of cooperation in the

structured populations considered, under different conditions - Boris
4. Documentation.

a. Model – Thanuja
b. Code – Boris
c. Discussion - Thanuja

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 6

Introduction and Motivations

Cooperation is an important concept in biology as well as in sociology. We can refer to
cooperation in the context of a human population who interact with each other, and
also, in a biological context where we consider the interaction of cell populations to
groups of animals. Interactions in human populations per se, are based on some
mechanisms that promote cooperation. The same is true for biological populations.

In this Matlab simulation we are presenting focuses on observing the emergence of
cooperation, within a population of individuals whose interactions are depicted by a
regular graph with known degree or a random scale free graph. In this setting, the
individuals play a repeated prisoner’s dilemma game with their neighbours.

The simulation is partially based on a previous claim by Nowak et al. (2006), which
states that cooperation can evolve in a structured population if the benefit to cost ratio
of the prisoner’s dilemma game exceeds the average number of neighbours. i.e b/c > k.

This is a very interesting finding since it poses itself as an exception to the case where
natural selection favours defection over cooperation in unstructured populations, which
to some extent looks counter intuitive.

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 7

Description of the Model
The main components of the simulation model are as follows:

1. Structured Populations

Graphs are used to describe the relationships among the individuals in a finite
structured population. The existence of an edge between two nodes mean that
the 2 players to whom the 2 nodes correspond, play an iterated prisoner’s
dilemma game with each other. In our simulations, we use:

a. Lattices with known degree k
b. Random scale-free graph

a. Lattices with known degree k
In a lattice, each node has the same degree. i.e. each node is connected to
the same number of neighbours. We run simulations to observe the
emergence of cooperation for lattices with different values of k. i.e. for k = 2,
3 & 6.

b. Random Scale-free network:
In a scale-free network, the degree distribution follows a power law. We
observe the emergence of cooperation in a population whose interactions
can be modelled using a random scale-free network. We generate this scale
free random graph using the algorithm put forward by Barabasi & Alberts
(2002), which produces a scale free graph based on preferential attachment
[2].

As described later, we run the iterated prisoner’s dilemma game several times
on each of the structured population to observe the emergence of cooperation,
on average.

2. Prisoner’s Dilemma Payoff Matrix & the Game

As described earlier, the population is structured according to a graph. The edges
of the graph determine who can play against whom. The expected payoff for
each game is given by the Prisoner’s Dilemma Payoff Matrix.

We use the following matrix for the prisoner’s dilemma game.

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 8

As depicted by the above matrix, in the prisoner’s dilemma game, we have 2
strategies that the individuals could use to play. It’s either cooperation ‘C’ or
defection ‘D’. The co-operators pay a cost of cooperation ‘c’ to all the connected
neighbours (the neighbours that they play the game with). Any neighbour of any
co-operator receives a benefit of cooperation ‘b’, from each cooperating
neighbour.

More specifically, according to this payoff matrix, when C plays against C, it
receives a payoff of b-c. When C plays against D, C receives a payoff of –c. When
D plays against C, D receives a payoff of b. Finally, when D plays against D, it
receives a payoff of zero.

Accordingly, we calculate the expected payoff for each game an individual plays.
This expected payoff features in the calculation of the fitness of an individual, as
shown in the next point.

In each iteration of the game (in each time step), the fitness of an individual can
change depending the changes of the strategy of one of its neighbours. The
update rule determines the change of the strategy of an individual (from C to D
or from D to C), as described later.

3. Method to determine the fitness of an individual

The fitness of the individuals of the population is required when it comes to
updating the strategy of an individual, as described in the strategy update rule. It
is calculated using the following formula, under weak selection, for which
w=0.01.

fi = 1− w +wFi

Here, Fi is the expected payoff of the ith individual calculated from the game. i.e.
the value of payoff obtained from the payoff matrix. Here, w is the intensity of
selection. In weak selection, where w is closer to zero, the payoff of the game
contributes only to a small fraction of the total fitness of the individual. It is
trivial to observe that the contribution of the game to the fitness of the
individual is governed by w.

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 9

4. Update rule to propagate the strategy among the individuals

Death-Birth (DB) update rule:

During each time step of the simulation, one individual changes his strategy
according to an update rule. We consider the Death-Birth (DB) update rule in our
game. At each time step, a random player is chosen to die. Then, the neighbors
compete for the empty site proportional to their fitness.

When the strategy of an individual changes according to this rule, the fitness of
each of its neighbors also changes. This is because, the fitness depends on the
payoff generated by the game and the payoffs the neighbors get depend on the
strategy of this individual (as described earlier).

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 10

Implementation
Our implementation can be described by the following steps.

1. Initialization:

Here we generate the graphs that we will later use as structures for the population.
We generate 5 graphs:

• 2D and 3D periodic lattices.
• A 6D hypercube.
• A random scale-free network generated by the principle of preferential

attachment.
 Also in this part we make a list of the benefit / (cost * avgDegree) ratios and a
corresponding list with the selection intensity values.

graphs = [
 struct('name', '2D regular', 'A', createNDLattice(8, 2));
 struct('name', '3D regular', 'A', createNDLattice(4, 3));
 struct('name', '6D hypercube', 'A', createNDLattice(2,6));
 struct('name', 'scale-free', 'A', randomScaleFreeNetwork(64));
];

bOverck = [0.5 1 2 1];
selectionIntensity = [0.01 0.01 0.01 0];
numTrajectories = 1000;
%number of iterations
nIter = 100000;

2. Parameters and trajectory loops:

We are running the simulation for different values of the parameters for which we
want to compare the results. In the outer two loops we iterate over all the graph
structures and selection parameters. Our simulation is a stochastic process in which
the results don’t depend only on the parameters. For each set of parameter values
we simulate 1000 trajectories. Inside the parameters loops there is a trajectories
loop. Inside the trajectories loop we prepare the payoffs matrix and run the
simulation with the given parameters. After the simulation finishes we store the
result in the “res” array that we use afterwards to compute statistics.

res = zeros(numel(graphs), numel(bOverck), numTrajectories);

for g=1:numel(graphs)
 for i = 1:numel(bOverck);
 for k = 1:numTrajectories

 % get the graph adjacency matrix
 A = graphs(g).A;

 % calculate the average degree
 avgDegree = mean(sum(A));

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 11

 % initialize the game payoffs matrix
 cost = 2;
 benefit = cost * avgDegree * bOverck(i);
 P = [benefit-cost -cost;
 benefit 0];

 % do the simulation
 res(g,i,k) = simulate(A, nIter, P, selectionIntensity(i));

 % print progress
 if mod(k,10)==1
 disp(['g=', num2str(g), ' i=', num2str(i),...
 ' k=',num2str(k)])
 end
 end
 end
end

3. Visualizing and storing the results.

In this part we generate bar graphs that present the fixation probabilities for the
different parameter values. The probabilities are estimated as the fraction of
simulated trajectories in which the co-operators reached fixation in the whole
population. Results from the simulation and the

for g=1:numel(graphs)
 % calculate the fixation probabilities for the different selection
 % values
 fixationProb = sum(res(g,:,:) == 1, 3) / numTrajectories;

 % create a bar plot of the fixation probabilities
 figure;
 bar(fixationProb);
 set(gca, 'FontSize', 12);
 title(graphs(g).name);
 ylim([0 1]);
 xlabel('benefit / (cost * averageDegree)');
 ylabel('Cooperator fixation probability');
 set(gca, 'XTick', [1 2 3 4]);
 set(gca, 'XTickLabel', {'0.5', '1.0', '2.0', 'no selection'});

 % save the plot
 print(['prob_' graphs(g).name '.eps']);
end

% save the simulation results
save('graphs.mat', 'graphs');
save('res.mat', 'res');

4. Helper functions:

a. crateNDLattice()

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 12

This function creates an ND lattice and returns the adjacency matrix.
function [A] = createNDLattice(n, d)
% Creates an d-dimensional periodin lattice with size n
% in each dimension. The result has a n^d nodes.
% return A - adjacency matrix

% preallocate adjacency matrix
A = zeros(n^d);

% for each node
for i=1:n^d
 % create a connection with the following node
 % in each dimension
 for j=1:d
 b = mod(i-1 + n^(j-1), n^d) + 1;
 A(i, b) = 1;
 A(b, i) = 1;
 end
end

end

b. randomScaleFreeNetwork()

This function creates a random scale free network by simulating a
preferential attachment process as described by [3]. It starts with a 2 nodes
connected by an edge and sequentially adds new nodes. The new node is
connected with the old ones with probabilities proportional to the degrees of
the old nodes.
function [A] = randomScaleFreeNetwork(n)
% Creates a random scale free network with n nodes using
% a preferential attachment process.
% returns A - adjacency matrix

% create the adjacency matrix
A = sparse(n,n);

% add the first two nodes and connect them with an edge
A(1,2) = 1;
A(2,1) = 1;

% initialize the degrees array
d = zeros(1,n);
d(1)=1;
d(2)=1;

% foreach node
for i=3:n

 % calculate the connection probabilities
 p = d / sum(d);

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 13

 % add at least one connection to ensure that
 % the resulting network will be connected
 c = randsample(i-1,1,true,p(1:i-1));
 A(i,c) = 1;
 A(c,i) = 1;
 d(i) = d(i) + 1;
 d(c) = d(c) + 1;

 % generate a random set of neighbours
 r = rand(1,i-1);
 neighbours = (r <= p(1:i-1));

 % connect to the neighbours and update degrees
 A(i, neighbours) = 1;
 A(neighbours, i) = 1;
 d(neighbours) = d(neighbours) + 1;
end

c. simulate()

This function simulates the evolution of a population given the parameters
of the model. Its return value indicates whether the co-operators or the
defectors reached fixation.
function [r] = simulate(A, maxIterations, Payoffs,
selectionIntensity)
%Perform the simulation given the model parameters
% A - Adjacency matrix.
% maxIterations - The maximum number of iterations that we
will perform.
% Payoffs - payoffs matrix
% selectionIntensity - weak selection parameter
% returns r
% == 1 if cooperators reach fixation
% == 2 if defectors reach fixation
% == 0 if maxIterations is reached

n = size(A, 1);

% convert adjacency matrix to adjacency list representation
Alist = cell(1,n);
for i=1:n
 Alist{i} = find(A(i,:));
end

COOPERATOR = 1;
DEFECTOR = 2;

% initialize node strategies to 50% cooperators and
% 50% defectors in a random way
strategy = COOPERATOR * ones(1,n);
strategy(randsample(n, n/2)) = DEFECTOR;

% calculate initial fitness values
f = fitness(Alist, strategy, Payoffs, selectionIntensity);

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 14

% initialize return value
r = 0;

for i=1:maxIterations

 % perform a death-birth update step
 [strategy f] = deathBirthUpdate(Alist, strategy, Payoffs,
f, selectionIntensity);

 % count the number of cooperators
 ct(i) = sum(strategy == COOPERATOR);

 if ct(i) == n
 % cooperators reached fixation => end simulation
 r = 1;
 break;
 end
 if ct(i) == 0
 % defectors reached fixation => end simulation
 r = 2;
 break
 end
end

end

d. fitness()
Calculate the fitness values given a model state.
function [f] = fitness(A, s, P, w)
%Calculates the fitness vector.
% A - adjacency lists (cell array of lists)
% s - node strategies
% P - payoff matrix
% w - intensity of selection
% returns f - fitness vector

n = numel(s);

f = zeros(1,n);

for i=1:n
 % get the neighbours
 neighbours = A{i};

 % calculate a payoffs vector
 payoffs = P(s(i), s(neighbours));

 %calculate the fitness
 f(i) = 1 - w + w * sum(payoffs);
end
end

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 15

e. deathBirthUpdate()
This function performs a death-birth update step given a model state.
function [ns nf] = deathBirthUpdate(A, s, P, f, w)
%Perform a state update using the death-birth update.
% A - adjacency lists (cell array of lists)
% s - strategies vector
% P - payoff matrix
% f - fitness vector
% w - intensity of selection
% returns ns - new strategy vector
% returns nf - new fitness vector

n = numel(s);

% select a random individual to die
d = randi(n);

% find the neighbours and get their fitness
neighbours = A{d};
neighFitness = f(neighbours);

% crop negative fitness values
neighFitness(neighFitness < 1e-6) = 1e-6;

% select an idividual to replace it with probability
% proportional to the fitness
ni = randsample(numel(neighbours), 1, true, neighFitness);
b = neighbours(ni);

% construct new strategy vector
ns = s;
ns(d) = s(b);

%Construct new fitness vector
nf = f;

% update for the dead and new-born individual
payoffs = P(ns(d), ns(neighbours));
nf(d) = 1 - w + w * sum(payoffs); % weak selection

% update its neighbours fitness
nf(neighbours) = f(neighbours) + w * ...
 (P(ns(neighbours), ns(d)) - P(s(neighbours),
s(d)))';

end

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 16

Simulation Results and Discussion
We carried out the simulation as elaborated in the previous section and obtained the
following results.

Results:
For each graph & for each update rule we want to observe the percentage of fixations of
co-operators vs the ratio b/c, to see what happens when k > b/c & k < b/c.

Here to observe this variation, we have plotted b/(ck) against the fixation probability of
co-operators, for each of the graphs we have considered.

More specifically what we expect to see is the following:
If b/c > k -> b/(ck) > 1, then we should see natural selection is favouring the fixation of
co-operators. In addition to that, we should observe that when b/c < k -> b/(ck) < 1,
then the fixation of co-operators is not favoured by natural selection.

To see if natural selection favours the fixation or not, we compare the fixation
probabilities to the case where there is no selection effect. In every graph, we can see
that the fixation probability of the co-operators is 50% when there are no selection
effects. So, if natural selection favours the fixation of cooperation, the fixation
probability should be greater than 50%.

1. Regular lattice: K = 2

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 17

2. Regular Lattice: k = 3

3. Regular Lattice: k = 6

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 18

4. Random scale free graph

Discussion:

Regular degree 2 lattice:
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is
less than 25%. When b/(ck) is 1, then the fixation probability is almost 50%. Also, when
b/(ck) = 2, the fixation probability is above 80%. Clearly, this shows that for this graph,
when b/ck > 1, natural selection favours the fixation of co-operators.

Regular degree 3 lattice:
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is
around 15%. When b/(ck) is 1, then the fixation probability is almost 50%. Also, when
b/(ck) = 2, the fixation probability is above 80%. This shows that for this graph too, when
b/ck > 1, natural selection favours the fixation of co-operators.

Regular degree 6 lattice:
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is
less than 25%. When b/(ck) is 1, then the fixation probability is almost 30%. Also, when
b/(ck) = 2, the fixation probability is above 60%. This shows that for this graph, when
b/ck > 1, natural selection favours the fixation of co-operators. However, we can
observe that while favoured by natural selection, the fixation probability of co-operators
is not as high as the previous 2 graphs when b/ck = 2.

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 19

Random scale free network:
Here we observe that when b/(ck) is 0.5, the fixation probability of the co-operators is
less than 30%. When b/(ck) is 1, then the fixation probability is almost 50%. Also, when
b/(ck) = 2, the fixation probability is above 60%. This shows that for the scale free graph,
when b/ck > 1, natural selection favours the fixation of co-operators.

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 20

Summary and Outlook
From the simulation results it is quite clear that natural selection favours the fixation of
co-operators over defectors when the benefit to cost ratio exceeds the average number
of neighbours. i.e. when b/c exceeds the average degree of the graph.

We have simulated this using lattices with different degrees and with scale free graphs.
Here, we could observe that when we start with an initial randomly placed population of
50% co-operators and 50% defectors in a structured network, the iterative prisoner’s
dilemma game with a strategy update rule has a probability over 50% to let the co-
operators fixate in the population, if the ratio b/c is greater than the average number of
neighbours (k) per node of the graph. The fixation probability of 50% where there is no
selection involved is the control case to which we compare our results obtained when
there is selection, to observe the impact of natural selection, on the fixation probability
of the co-operators.

Moreover, we observe that co-operators are not favoured by natural selection when b/c
is less than k.

Therefore, we can conclude that there is room for cooperation to evolve which is
determined by the social relatedness (number of neighbours), in the absence of
strategic complexity or reputation effects, which is inline with the conclusions of
reference [1].

However, as a concluding remark, we would like to highlight the fact that the fixation
probability of co-operators decrease with the increase of the average degree of the
graph, although it is still higher than 50% when b/c > k. The reason why the increase of
the degree has a negative effect on the fixation of the co-operators will be a good
question for further research and we have not looked into it since this is out of the
scope of our goals for this project.

Daskalov & Ambegoda (2010) – MATLAB Simulation of Emergence of Cooperation 21

References
1. Ohtsuki, Hauert, Lieberman & Nowak (2006). “A simple rule for the evolution of

cooperation on graphs and social networks”. Nature Vol 441|25 May
2006|doi:10.1038

2. Lieberman, E., Hauert, C., and Nowak, M.A. (2005) Evolutionary dynamics on graphs.
Nature. 433, 312–316

3. R. Albert, A. L. Barabási (2002). "Statistical mechanics of complex networks". Reviews of
Modern Physics 74: 47–97. doi:10.1103/RevModPhys.74.47.

	Agreement for free-download
	Table of contents
	Individual contributions
	Introduction and Motivations
	Description of the Model
	Implementation
	Simulation Results and Discussion
	Summary and Outlook
	References

