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1. Individual Contribution 
 

The 2D model started from one of the exercises from this course. Bokyung worked at the 

life-long immunity model and Nina worked at the re-infection model. Otherwise, most 

works are equally distributed. 

 

2. Introduction and Motivation 
 

It is estimated that the Black Death, caused by a bacterium Yersinia pestis, killed about 

30% of Europe’s population in the 14th century [1]. In 1918 an influenza strain, called the 

Spanish flu, killed about 20-40 million people worldwide [2]. Nowadays, seasonal 

epidemics of influenza kill about 250’000 – 500’000 people every year [3]. Some 

infectious diseases, such as viruses causing a ‘common cold’, spread with a low death 

rate, but have a high ability for infection.  

The infection rate and death rate of a certain disease are not the only factors that will 

determine the spread, and whether an epidemic or pandemic arises. People can recover 

with long lasting immunity depending on the pathogen, or immunity can induced by 

vaccination. Different diseases will spread with a unique pattern which is determined by 

above and other factors. 

Modeling the spread of diseases, taking into account variable factors, will help us to 

understand and predict the evolution of the epidemic spread. 

Predicting how a disease will spread could help us organize the community and prepare 

the health care sector for the amount and nature of the casualties they will get. 

Modeling disease spreading could also help us understand what the best methods for 

intervention are. Different vaccination strategies can be modeled  and compared. 

The models in this paper are based on the SIR model. This model divides the population 

in 3 groups, relevant to an infectious disease: Susceptible, Infected and Recovered 

(immuned) people.  

We tried to extend this model by adding an additional ‘dead’ compartment and including 

possibilities such as re-infection and vaccination. 
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The paper is divided in 2 sections: The 1D section models the amount of people in each 

compartment according to time, while the 2D model includes the spatial dimensions. 

 

3. Description of the model 
 

3. 1. 1D model 
 

The basic idea of SIR model is like this [4,5]. 

 
[Figure 1] Basic SIR model  

 

The ‘S’ represents the number of susceptible people, ‘I’ is used to describe the amount of 

infected people  and ‘R’ represents the recovered population. These numbers change 

depending on the infection rate (beta) and recovery rate (gamma). The following 

equations were used in the SIR model: 

 

dSdt=−βIS 

dIdt=βIS−γI 

dRdt=γI 

dSdt+dIdt+dRdt=0 

S(t)+I(t)+R(t)=N=constant 

 

 

 

 

We have modified this basic SIR model by the following assumptions: 



7 

 

1. People die and people are born. To simplify the model, the population is assumed to be 

constant, which means that the number of new born and deceased people is the same.  

2. New born babies are vaccinated for a certain disease.  

3. Not only babies but also non-newborns are vaccinated.  

 

3.2. 2D model 
 

The SIR model can express only three groups; susceptible, infected and recovered. 

However, the situation is more complex. Some people can die from the disease and some 

people can get re-infected by the same disease. When getting infected by a certain 

pathogen for the first time, people can built up an immunity that prevents them from 

getting the infected a second time. Also, a vaccine can be given before people get 

infected. For some diseases, vaccination is not sufficient to prevent infection. For 

example, people get infected by the influenza virus every year since it has a high 

mutation rate. Even when some people were infected in the past, they can get the 

infection again.  

We want to create a more plausible model compared to basic SIR model. 

 

For the life-long immunity model, such as measles or chickenpox, vaccination has almost 

the same effect as when someone would be recovered from the disease. Once immunity 

for a certain disease is established, she/he will never get the disease again. In the model 

this means that recovered or vaccinated people never go to the infected state.  To simulate 

this model, we need only 4 groups; susceptible (0), infected (1), recovered (2) and dead 

(3). The vaccinated group is included within the recovered group.  
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[Figure 2] Long-lasting immunity 

 

However, this is not always the case. Sometimes, people can get infected again by the 

same pathogen. In this model, people can get infected even when they were vaccinated 

before.  

 
[Figure 3] Re-infection 

 

When α equals 0, this model is the same as the previous one. Depending on a ‘re-

infection rate α‘ , the simulation shows a different pattern. In order to express the 
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population that becomes susceptible again, we added one more group compared to 

previous model. 

 

4. Implementation 
 

4. 1. 1D model 
 

4.1.1. Constant Population 

 

This model considers the dead and new born people, but the death rate and birth rate 

remain the same for simplicity. We put in a new variable µ for expressing the birth and 

death rate.  

 

S(t)+I(t)+R(t)=N=constant 

dSdt=μN−μS−βSN 

dIdt=βISN−(γ+μ)I 

dRdt=γI−μR 

 

In a basic SIR model, the most important variable is the basic reproduction number, 

which is the ratio of infection rate and recovery rate, βγ.  However, this model also 

depends on the death and birth rate, µ. In this case, the basic reproduction rate is βμ+γ .  

 

4.1.2. Vaccination of Newborns 

 

For this model, we have put in the new variable V that represents the vaccinated 

population. In this case, we consider that vaccination provides life-long immunity. The 

variable P stands for the vaccination rate. 

  

dSdt=μN(1−P)−μS−βISN 

dIdt=βISN−(γ+μ)I 
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dVdt=μNP−μV 

 

4.1.3. Vaccination of Non-newborns 

 

This model is almost similar as the previous one, except that the vaccine is given not only 

to newborns but also to non-newborns. The vaccination rate for non-newborns is given by 

ρ. 

 

dSdt=μN1−P−μS−ρS−βISN 

dIdt=βISN−(γ+μ)I 

dVdt=μNP+ρS−μV 

 

In order to easily compare the disease spreading pattern depending on the variables, we 

made function, called diseasespreading1D. The input variables for this function are 

infection rate (beta), recovery rate (gamma), death and birth rate (mu), new born 

vaccination rate (p) and non-newborn vaccination rate (rho). Also, the user can choose 

the pattern: the basic SIR model (basic), constant population model (constant), new born 

vaccination model (newborn) and non-newborn vaccination model (non-newborn). The 

time step for this simulation is 0.01 and it keeps continuing until 20,000 steps. The 

population size is 1000. At the initial point, we assumed that 80% of the population is 

susceptible and 20% is infected.  

The changes of suspected, infected and recovered (or vaccinated) population are shown 

in the same graph. To distinguish the different populations, colours were used: 

susceptible population is black, infected is red and recovered is blue. The time is 

expressed on the x axis, going from 0 to 200 and the population on Y axis, going from 0 

to 1000.   

  

4. 2. 2D model 
 

4.2.1. One-end infection 
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This model assumes one-end infection. Once people acquire immunity for a certain 

disease, they will never get the same disease again. For example, if people get measles 

when they are young, they will never get infected by the virus again. We simulated this 

idea in Matlab with a function, called disease spreading2D_MN. 

 

In this function, disease spreading requires infection rate (beta), recovery rate (gamma), 

death rate (delta), spreading pattern (neigh) and vaccination pattern (shape).   

The size of the population is estimated 100x100 in this model. At the beginning, 

everyone is susceptible (number=0).  

We assumed 4 vaccination patterns and a non-vaccinated state. The amount of vaccinated 

people is set up to 4 % of the population, being 400 people.  The vaccinated state is set 

only once before the simulation and not repeatedly given.  

Since this model assumes that people can acquire ‘perfect immunity’ after vaccination, a 

vaccinated person never gets infected. As a result, this vaccinated person can act as a 

barrier to prevent spreading of the disease. With 4 spots, spatter, rectangle and closed 

rectangle, we investigated whether the spreading pattern was related to the vaccination 

pattern. 
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[Figure 4] Different vaccination patterns (A: no vaccination, B: 4 spots, C: spatter, D: 

rectangle, E: closed rectangle) 

 

We used different colours to represent the different states of people. As shown in the 

above figures, blue represents the vaccinated people, green healthy people and yellow 

circle stands for the infected people at time point 0. We assumed that infection starts from 

the centre of the grid. 

A B 

C D 

E 
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To express the disease spreading, we used two models: Moore’s neighbourhood and Von 

Neumann’s neighbourhood. Moore’s model considers 8 surrounding cells as his 

neighbourhood. Von Neumann’s model considers 12 surrounding cells as his 

neighbourhood.   

 

 
 

[Figure 5] Moore and Von Neumann neighbourhood 

 

The simulation continues until no more people are infected. The number of susceptible, 

dead and immunized people at the end of the simulation is counted.  

 

To determine whether a certain person gets infected or recovered at a certain time point, a 

random number is compared with the infection and recovery rate in the Matlab code. This 

can cause variability in results for same simulations. To consider this inevitable 

difference, each simulation was run 10 times and an average value was taken as a final 

result.  

To repeat the same simulation, we created a function called ‘counterpopulation’. The 

input variables for this function are infection rate (beta), recovery rate (gamma) and death 

rate (delta). The user has to define vaccination pattern (shape), spreading pattern (pattern) 

and how many times to repeat the same simulation. The shape can be chosen: no 

vaccination (none), 4 spots vaccination (4spots), 16 small spots vaccination (spatter), one 



14 

 

long vaccination pattern in rectangular shape (rectangle) or isolated area vaccination 

(closedrectangle) 

 This function creates an array of each population and calculates the average and standard 

deviation of repeated simulations. A graph, including all information, appears after all 

simulations are ended.  

 

4.2.2. Re-infection 

 

In this model, people can get infected more than once. An individual can go from a 

recovered state back to a susceptible state with probability alpha. Re-infection can 

happen with viruses that cause a ‘common cold’. Note that in this model a vaccination is 

used, while no vaccination for a common cold exists.  

To assess how many people got infected how many times at the end of the simulation, a 

counting system was developed. Hereby a y matrix was created that added 1 to the value 

each time a person changed compartments. All people started with value 0. When going 

to infection this value was increased with 1, subsequently going to recovery another value 

1 was added in the y matrix. The same procedure was followed for going from x value 5 

(susceptible again) to x value 1 (infected). When dying, the y value in the matrix was 

converted to value -1. At the end of the simulation, the amount of y values 0 (never 

infected), 1 (infected once), 2 (recovered once), 3 (susceptible again), 4 (infected twice), 

5 (recovered twice) and -1 (died) was counted.  

 

5. Simulation Results and Discussion 
 

5. 1. 1D model 
    

5.1.1. Infection rate > recovery rate 

 

These simulations were done with the following values:  
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infection rate 0.1; recovery rate 0.01; death and birth rate 0.01, vaccination rate of 

newborn 0.2; vaccination rate of non newborn 0.2. 

 

 
[Figure 6]  High infection rate 

 

The basic reproduction number R is larger than 1, which means the infection will be able 

to spread in the population. 

When comparing the amount of infections between the normal ‘constant population’ and 

the ‘new born vaccinated population’, we can see that the decrease in the amount of 

infected people is much more pronounced in the vaccinated population.   

Increasing the vaccination to the ‘non newborn population’ as well dramatically reduces 

the amount of infections and the amount of susceptible people. 
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5.1.2. Recovery rate > infection rate 

 

These simulations were done with the following values:  

Infection rate 0.1; recovery rate 0.15; death and birth rate 0.01; vaccination rate of 

newborn 0.2; vaccination rate of non newborn 0.2. 

 

 
[Figure 7] High recovery rate 

 

The basic reproduction number R is smaller than 1, which means that the infection will 

die out. 

Looking at the 3 graphs ‘constant population’, ‘new born vaccinated’ and ‘non new born 

vaccinated’, there can be seen that because of the higher recovery rate, the amount of 

infections decreases to 0 rapidly. In the ‘constant population’, the amount of susceptible 

people increases over time. In the ‘new born vaccinated’ population, the amount of 

susceptible people decreases slowly, while in the ‘non new born vaccinated’ population, 
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the curve of susceptible people decreases very steeply. This is because of the very sharp 

increase of vaccinated people in time point 0-20. Note that this is depending on the non 

newborn vaccination rate (figures not shown). 

 

5.1.3. High death & birth rate  

 

These simulations were done with the following values:  

infection rate 0.1; recovery rate 0.01; death and birth rate: 0.5; vaccination rate of 

newborn 0.2; vaccination rate of non newborn 0.2. 

 

 
[Figure 8] High death and birth rate 

 

The basic reproduction number R is smaller than 1, which means that the infection will 

die out. 
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Because of the high turnover of the population, the amount of susceptible, hence infected 

people goes to a constant level more quickly in the ‘constant population’. When 

comparing the ‘newborn vaccinated’ graph in this section with the graph of the same 

population in the ‘Infection rate > recovery rate’ section, we observe less infections when 

we have a high birth rate. This is because more children are born, consequently more 

people are vaccinated. 

 

5. 2. 2D model 
 

5.2.1. One-end infection 
 

Case1. Slow infection  

These simulations were done with the following values:  

infection rate 0.01; recovery rate 0.02; death rate 0.001. To remove variation due to 

randomness, we repeated each simulation 10 times. 

 No vaccination 
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4 Spots vaccination 

Rectangular vaccination 

Closed area vaccination 

Spatter area vaccination 
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[Figure 9] Spreading pattern depending on the vaccination area at low infection 

 

We set 0.4% vaccination (400 people were vaccinated among 10000 people) in each case. 

Spattered or 4 spots vaccination was less helpful than rectangular or closed area 

vaccination to block the disease spreading. We compared the amount of susceptible, 

recovered (immunized) and dead people for each vaccination pattern. 

 

 
[Figure 10] Results depending on vaccination pattern, low infection rate  

 

As seen in the graph, the change in dead population depends on the vaccination pattern. 

Each vaccination strategy decreased dead population compared to no vaccination. The 

most effective strategy is closed rectangle. However, this an idealized pattern designed so 

that disease cannot spread out of the closed area. Comparing the two spatter patterns, we 

can see that the small 16 square vaccination is more effective than the big 4 square 

vaccination.  

When there is no vaccination, only 20% of the population remains susceptible and 80% 

gets infected. In contrast to this, 80% never gets the disease in the closed vaccination 

pattern. Based on this, we can say that vaccination is helpful when there is a slow 

infection rate. 
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Case2. Fast infection   

Vaccination is very helpful to block the disease spreading even when only a low 

percentage (0.4%) of the population is vaccinated. However, vaccination is not helpful in 

all cases. We increased infection rate 10 times to compare with low infection rates. 

These simulations were done with the following values: infection rate 0.1; recovery rate 

and death rate are the same as in the previous case.  

 

 

 

 

No vaccination 4 Spots vaccination 

Spatter area vaccination Rectangular vaccination 

Closed area vaccination 
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[Figure 11] Spreading pattern depending on the vaccination area at high infection 

 

The result is dramatically different compared to low infection. In high infection, 

vaccination is not helpful to prevent disease spreading. Everyone gets infected except in 

the closed rectangular vaccination. However, as said before, closed rectangle vaccination 

strategy is a too much idealized case, which can not reflect real vaccination possibilities 

in a community. Except for this case, the change in vaccination pattern does not strongly 

influence on disease spreading.  

 
[Figure 12] Results depending on vaccination pattern, high infection rate   

 

 
[Figure 13] Compare dead population due to infection rate 

 

As a result, the dead population increased about 1.5 times in the high infection rate 

simulations, even when the recovery rate and death rate remain the same.  
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Case3. Different spreading pattern 

We compared the Moore and Von Neumann neighbourhood in both the no vaccination 

case and the rectangle vaccination case. These simulations were done with the following 

values: infection rate 0.01; recovery rate 0.02; death rate 0.001 (same as in the first case). 

To remove variation due to randomness, the simulations were repeated 10 times. 

 
[Figure 14] Moore and Von Neumann neighbourhood (no vaccination) 

 

In Moore’s neighbourhood simulation, the amount of never infected people is 2 times 

higher than in the Von Neumann’s neighbourhood simulation. As seen in the figure 14, 

the spreading pattern is denser in the Von Neumann simulation compared to the Moore 

simulation. As a result, more people died in the Von Neumann neighbourhood simulation. 

Since the Von Neumann neighbourhood has 12 surrounding cells, the infection spreads 

out faster. We already saw a similar phenomenon in figure 13. 

 

Moore Von Neumann 
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[Figure 15] Moore and Von Neumann neighbourhood (0.4% vaccination) 

 

However, the spreading pattern changed with vaccination. In the Moore’s neighbourhood 

case, more than half of the people were infected and immunized. Compared to this, 65% 

people never got infected in Von Neumann neighbourhood case. Therefore, the death rate 

is lower in the Von Neumann case. 

 
[Figure 16] Dead population depending on spreading pattern 
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Remarkable, the 2 patterns led to different results with or without vaccination. The 

spreading pattern in the Von Neumann neighbourhood was denser, but was blocked 

easier when there was a barrier.  

 

5.2.2. Re-infection 
 

People can get infected by certain diseases even after being immunized. We simulated 

this kind of disease spreading, with high re-infection rate (alpha=0.0005) and low re-

infection rate (alpha=0.00005), when there is a rectangle vaccination present. The other 

conditions are the same as in the first simulations of low infection. 

  

 
 

[Figure 17] Re-infection model 

 

High re-infection (α=0.0005) low re-infection (α=0.00005) 
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Even if the re-infection rate is 10 times higher, the dead population and the never infected 

population does not change much compared to low re-infection. There is, however, a 3 

fold increase of people that go into a second infection cycle. 

 

 
[Figure 18] Change of population in re-infection model 

 

When we set the death rate quite low (0.01%), the dead population and the re-infection 

are not strongly related. This means, even when people get infected again, there is still a 

low change to die. However, there is a dramatic change in the number of re-infected 

people as seen in Figure 18B. 30% of the population becomes re-susceptible, re-infected 

and recovered again. Needless to say, if this is a disease with a high death rate, 30% of 

the population would be in danger again.  

 

5.2.3. Discussion points 
 

1) In the 2D model, no migration is considered. Every person is represented as a dot 

that does not change position. In today’s world,  people are very dynamic. It can 

be questioned if the vaccination models would still hold true if a dynamic model 

is used. 

2) Instead of giving a vaccine to a selected number of people once (in the beginning 

of the simulation) vaccines can be given in a repeated (pulsed) manner. This 

0 
50 

100 
150 
200 
250 
300 

0 0.0005 5E-05 

reinfection rate 

Dead population with reinfection 

0 

1000 

2000 

3000 

4000 

5000 

never infected  second cycle 

Population with reinfection 

0.00005 

0.0005 

A B 



27 

 

would mean that a vaccine is given to a number of (different) people at several 

time points during the simulation [6]. 

 

6. Summary and Outlook 
 

The SIR model is commonly used to model the spread of diseases. In this report we 

extended the SIR model in both a time dependent and a spatial approach. In the 1D (time) 

model, we included possibilities such as vaccination of both newborns and non-newborns 

while considering a dynamic population (population with birth and death rate). 

Simulations are made with high infection rates, high recovery rates and high birth and 

death rates. In the 2D (spatial) model, a comparison is made between different 

vaccination strategies. The value of the vaccination plans is assessed by comparing the 

amount of never infected (susceptible) people and the total  amount of dead people. Also 

re-infection is considered in the spatial model. 

Although the simulations can be a model for a certain diseases, they do not reflect the 

spreading in reality. It could be interesting to get some more realistic simulations by 

inserting ’real’ values for beta, gamma, delta,.. in the mathematical models, instead of 

hypothetical values. Since different diseases spread with different patterns, these numbers 

should not be the same for every spreading pathogen. Inserting these numbers depending 

on the disease will lead to a more accurate prediction of the spreading, which could lead 

to better planning for intervention.  
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 8. Appendix 
 

1. 1D spreading 
 

function diseasespreading1D(beta,gamma,mu,p,rho,pattern) 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% function diseasespreading1D returns a graph about disease 

% spreading pattern depending on time 

% 

% input variables: 

% 1. beta:infection rate 

% 2. gamma: recovery rate 

% 3. mu: birth rate= death rate 

% 4. p:vaccinated rate of new born 

% 5. rho:vaccinated rate of non-new born 

% 6. pattern: can be chosen between 'basic','constant','newborn' and 

% 'nonnewborn'. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

%clear all; 

dt=0.01; %time step 

S(1)=800; % susceptible people 

I(1)=200; % infected people 

R(1)=0;  % recovered people 

V(1)=0; % vaccinated people 

t(1)=0; %starting point  

N(1)=S(1)+I(1)+R(1); % the population is constant 

hold on; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if strcmp('basic',pattern)  

    for i=1:20000 

    dS=-beta*I(i)*S(i); 
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    dI=beta*I(i)*S(i)-gamma*I(i); 

    dR=gamma*I(i); 

  

    S(i+1)=S(i)+dt*dS; 

    I(i+1)=I(i)+dt*dI; 

    R(i+1)=R(i)+dt*dR; 

    t(i+1)=t(i)+dt; 

    end 

  

    plot(t,S,'k') 

    plot(t,I, 'r') 

    plot(t,R,'b') 

    xlabel('time','FontSize',16) 

    ylabel('number of people','FontSize',16) 

    legend('Susceptible','Infected','Recovered') 

    title('SIR basic model','FontSize',16) 

    axis([0 200 0 1000]) 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if strcmp('constant',pattern)  

% constant population 

    for i=1:20000 

        dS=mu*N(i)-mu*S(i)-beta*I(i)*S(i)/N(i); 

        dI=beta*I(i)*S(i)/N(i)-(gamma+mu)*I(i); 

        dR=gamma*I(i)-mu*R(i); 

        S(i+1)=S(i)+dt*dS; 

        I(i+1)=I(i)+dt*dI; 

        R(i+1)=R(i)+dt*dR; 

        N(i+1)=S(i+1)+I(i+1)+R(i+1);  % constant population 

        t(i+1)=t(i)+dt; 

    end 

  

    plot(t,S,'k') 

    plot(t,I,'r') 
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    plot(t,R,'b') 

    xlabel('time','FontSize',16) 

    ylabel('number of people','FontSize',16) 

    legend('Susceptible','Infected','Recovered') 

    title('constant population','FontSize',16) 

    axis([0 200 0 1000]) 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if strcmp('newborn',pattern)  

% new born vaccination 

    for i=1:20000 

        dS=mu*N(i)*(1-p)-mu*S(i)-beta*I(i)*S(i)/N(i); 

        dI=beta*I(i)*S(i)/N(i)-(gamma+mu)*I(i); 

        dV=mu*p*N(i)-mu*V(i); 

        S(i+1)=S(i)+dt*dS; 

        I(i+1)=I(i)+dt*dI; 

        V(i+1)=V(i)+dt*dV; 

        N(i+1)=S(i+1)+I(i+1)+V(i+1);  % constant population 

        t(i+1)=t(i)+dt; 

    end 

  

    plot(t,S,'k') 

    plot(t,I,'r') 

    plot(t,V,'b') 

    xlabel('time','FontSize',16) 

    ylabel('number of people','FontSize',16) 

    legend('Susceptible','Infected','Vaccinated') 

    title('new born vaccinated','FontSize',16) 

    axis([0 200 0 1000]) 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

if strcmp('nonnewborn',pattern)  

% non new born vaccination 

    for i=1:20000 
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        dS=mu*N(i)*(1-p)-mu*S(i)-beta*I(i)*S(i)/N(i)-rho*S(i); 

        dI=beta*I(i)*S(i)/N(i)-(gamma+mu)*I(i); 

        dV=mu*p*N(i)-mu*V(i)+rho*S(i); 

        S(i+1)=S(i)+dt*dS; 

        I(i+1)=I(i)+dt*dI; 

        V(i+1)=V(i)+dt*dV; 

        N(i+1)=S(i+1)+I(i+1)+V(i+1);  % constant population 

        t(i+1)=t(i)+dt; 

    end 

  

    plot(t,S,'k') 

    plot(t,I,'r') 

    plot(t,V,'b') 

    xlabel('time','FontSize',16) 

    ylabel('number of people','FontSize',16) 

    legend('Susceptible','Infected','Vaccinated') 

    title('non new born vaccinated','FontSize',16) 

    axis([0 200 0 1000]) 

end 
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2. 2D spreading (life-long immunity) 
 
function diseaseSpreading2D_MN(beta,gamma,delta,shape,neigh) 

  

%function [susceptible,infected,immuned,dead]=diseaseSpreading2D(beta,gamma,delta,shape); 

% function 'diseaseSpreading2D' returns the number of susceptible,infected, immuned and dead 

population. 

% This function assumes that immunity ability is quite strong. 

% 1. Once vaccinated, the person never get infected. 

% 2. Immuned person never get infected again. 

% 3. Process keep until there is no infected person. 

%-------------------------------------------------------------------------- 

% input: 5 variances 

% 1. 'beta' is a infection rate. The default is 0.01. 

% 2. 'gamma' is a immunity rate. The default is 0.02. 

% 3. 'delta' is the death rate. The default is 0.001. 

% 4. 'shape' is the pattern of vaccination. Pattern can be chosen between 

%    '4spots','rectangle','closedrectangle','spatter'and 'none' 

% 5. 'neigh' is the neighborhood either 'Moore' or 'New' 

%-------------------------------------------------------------------------- 

  

% Simulate disease spreading on a 2D grid 

%-------------------------------------------------------------------------- 

% --------------------Putting initial values------------------------------- 

N=100;              % Grid size (NxN) 

x = zeros(N, N);    % The grid x, is coded as:  0=susceptible,1=infected,2=immuned(including 

vaccinated),3=dead 

  

susceptible=0;  % counter for number of susceptible person 

infected=0;   % counter for number of infected person 

immuned=0;    % counter for number of immuned person 

dead=0;       % counter for dead person 
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%-------------------------------------------------------------------------- 

%-------------------Setting up the vaccinated pattern---------------------- 

  

if strcmp('4spots',shape) % Case 1: give vaccine to 4 spots 

x(28:38,28:38)=2; 

x(28:38,61:71)=2; 

x(61:71,28:38)=2; 

x(61:71,61:71)=2; 

end 

  

if strcmp('rectangle',shape) % Case 2: give vaccine to certain region 

x(10:90,35:40)=2; 

end 

  

if strcmp('closedrectangle',shape)% Case 3: give vaccine closed rectangular 

x(26:74,26:28)=2; 

x(26:74,72:74)=2; 

x(26:28,26:74)=2; 

x(72:74,26:74)=2; 

end 

  

if strcmp('spatter',shape) % Case 4: give vaccine to spatter area 

x(17:22,17:22)=2; 

x(17:22,37:42)=2; 

x(17:22,57:62)=2; 

x(17:22,77:82)=2; 

  

x(37:42,17:22)=2; 

x(37:42,37:42)=2; 

x(37:42,57:62)=2; 

x(37:42,77:82)=2; 

  

x(57:62,17:22)=2; 

x(57:62,37:42)=2; 
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x(57:62,57:62)=2; 

x(57:62,77:82)=2; 

  

x(77:82,17:22)=2; 

x(77:82,37:42)=2; 

x(77:82,57:62)=2; 

x(77:82,77:82)=2; 

end 

  

if strcmp('none',shape) % Case 5: no vaccination 

x=zeros(N,N); 

end 

  

%-------------------------------------------------------------------------- 

%----------setting the infected individuals-------------------------------- 

%  

% infection started in the center of the grid, and with a radius of 10 cells. 

for i=1:N 

    for j=1:N 

        dx = i-N/2; 

        dy = j-N/2; 

        R = sqrt(dx*dx+dy*dy); 

        if ( R<10 && x(i,j)~=2 ) % immuned person does not get infected 

            x(i,j)=1; 

        end 

    end 

end 

  

  

if strcmp('Moore',neigh) 

    neigh = [-1 -1; 0 -1; 1 -1; 1 0; 1 1; 0 1; -1 1; -1 0]; 

    % Define the Moore neighborhood, i.e. the 8 nearest neighbors 

end 
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if strcmp('New',neigh) 

    neigh = [-2 0; -1 1; -1 0; -1 -1; 0 2; 0 1; 0 -1; 0 -2; 1 1; 1 0;1 -1;2 0];   

    % Define the Von Neumann neighborhoon 

end 

  

% Create a new figure 

figure 

hold on 

% main loop, iterating the time variable, t 

for t=1:100000 

    % iterate over all cells in grid x, for index i=1..N and j=1..N 

    for i=1:N 

        for j=1:N            

            % Iterate over the neighbors and spread the disease 

            for k=1:8 

                i2 = i+neigh(k, 1); 

                j2 = j+neigh(k, 2); 

                % Check that the cell is within the grid boundaries 

                if ( i2>=1 && j2>=1 && i2<=N && j2<=N ) 

                    % if cell is in state Susceptible and neighboring cell 

                    % Infected => Spread infection with probability beta 

                    if ( x(i,j)==0 && x(i2, j2)==1 ) 

                        if ( rand<beta ) 

                            x(i,j) = 1; 

                        end 

                    end 

                end 

            end 

             

            % If infected => Recover from disease with probability gamma 

            if ( x(i,j)==1 && rand<delta) 

                x(i,j) = 3; % death 

            end   
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            if ( x(i,j)==1 && rand<gamma ) 

                x(i,j) = 2; % recovery 

            end             

                                    

        end 

    end 

  

    % Animate 

    clf                                 % Clear figure 

    imagesc(x, [0 3])                   % Display grid 

    pause(0.01)                         % Pause for 0.01 s 

    colormap([0 1 0; 1 1 0; 0 0 1; 1 0 0]);    % Define colors: Red, Green, Blue 

  

    % If no more infected => Stop the simulation 

    if ( sum(x==1)==0 ) 

        break; 

    end  

end 

  

%-----------------counting each population--------------------------------- 

  

for i=1:N 

    for j=1:N 

            if (x(i,j)==0) susceptible=susceptible+1; 

            end 

            if (x(i,j)==1) infected=infected+1; 

            end 

            if (x(i,j)==2) immuned=immuned+1; 

            end 

            if (x(i,j)==3) dead=dead+1; 

            end 

     end 

end 
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%---------------Showing the number of each population---------------------- 

  

fprintf('Number of recovered/immuned are: %u\n',immuned); % directly show the number in 

matlab 

fprintf('Number of dead are: %u\n',dead); 

fprintf('Number of susceptible are: %u\n',susceptible); 
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3. 2D spreading (repeated infection) 
 

 

% Simulate disease spreading on a 2D grid 

clear all; 

% Set parameter values 

N=100;              % Grid size (NxN) 

beta=0.01;          % Infection rate 

gamma=0.02;         % Immunity rate 

delta=0.001;        % death rate 

alfa=0.00005;       % susceptibility to disease 

  

% define grid 

x = zeros(N,N);    % 0=susceptible; 1=infected; 2=recoverd; 3=dead; 4= vaccinated; 

5=susceptible again 

y = zeros(N,N);    % The counting grid  

  

m=1;               % counter for repetition   

  

% Set initial values for repetition 

infected_once(m)=0;  

never_infected(m)=0;  

number_of_death(m)=0; 

recovered_once(m)=0; 

infected_twice(m)=0; 

susceptible_again(m)=0; 

recovered_twice(m)=0; 

  

for m=1:10 

    x = zeros(N,N);     

    y = zeros(N,N);  

    infected_once(m)=0;  

    never_infected(m)=0;  

    number_of_death(m)=0; 
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    recovered_once(m)=0; 

    infected_twice(m)=0; 

    susceptible_again(m)=0; 

    recovered_twice(m)=0; 

  

    % Set the initial grid, x with a circle of infected individuals in the 

    % center of the grid, and with a radius of 10 cells. 

  

    for i=1:N 

        for j=1:N 

            dx = i-N/2; 

            dy = j-N/2; 

            R = sqrt(dx*dx+dy*dy); 

            if ( R<10 ) 

                x(i,j)=1; 

            end 

        end 

  

    x(10:90,35:40)=4; %vaccinated area 

    

    end 

  

    % Define the Moore neighborhood, i.e. the 8 nearest neighbors 

    neigh = [-1 -1; 0 -1; 1 -1; 1 0; 1 1; 0 1; -1 1; -1 0]; 

  

    % Create a new figure 

   figure 

    hold on 

  

    % main loop, iterating the time variable, t 

    for t=1:100000 

  

        % iterate over all cells in grid x, for index i=1..N and j=1..N 

        for i=1:N 
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            for j=1:N 

  

                % Iterate over the neighbors and spread the disease 

                for k=1:8 

                    i2 = i+neigh(k, 1); 

                    j2 = j+neigh(k, 2); 

                    % Check that the cell is within the grid boundaries 

                    if ( i2>=1 && j2>=1 && i2<=N && j2<=N ) 

                        % if cell is in state Susceptible and neighboring cell infected => Spread infection 

with probability beta 

                        if (((x(i,j)==0)||(x(i,j)==5))&& x(i2, j2)==1 ) 

                            if ( rand<beta ) 

                                x(i,j) = 1; 

                                y(i,j) = y(i,j)+1; %counting 

                            end 

                        end 

                    end 

                end 

  

                % If infected => death from disease with probability delta 

                if ( x(i,j)==1 && rand<delta) 

                    x(i,j) = 3; % death 

                    y(i,j) = -1; %counting 

                end   

                 % If infected => Recover from disease with probability gamma 

                if ( x(i,j)==1 && rand<gamma ) 

                    x(i,j) = 2; % recovery 

                    y(i,j) = y(i,j)+1; %counting 

                end  

                % If recovered => susceptible again with probability alfa 

                if (((x(i,j)==2)&& rand<alfa )) 

                    x(i,j) = 5; % susceptible again 

                    y(i,j)=y(i,j)+1; %counting 

                end 
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                % If vaccinated => susceptible again with probability alfa 

                if (((x(i,j)==4))&& rand<alfa ) 

                    x(i,j)= 5; % susceptible again 

                    y(i,j)=y(i,j)+3; %counting 

                end 

            end 

        end 

  

        % Animate 

        clf                                 % Clear figure 

        imagesc(x, [0 5])                   % Display grid 

        pause(0.01)                         % Pause for 0.01 s 

        colormap([0 1 0; 1 1 0; 0 0 1; 1 0 0;1 1 1;0 1 1]);    % Define colors 

  

        % If no more infected => Stop the simulation 

        if ( sum(x==1)==0 ) 

            break; 

        end 

    end 

    %Counting every possibility 

        for i=1:N 

            for j=1:N 

                if ((y(i,j)==0) || (x(i,j)==4)) 

                    never_infected(m)=never_infected(m)+1; 

                end 

                if y(i,j)==1 

                    infected_once(m)=infected_once(m)+1; 

                end 

                if y(i,j)==2 

                    recovered_once(m)=recovered_once(m)+1; 

                end 

                if y(i,j)==3 

                    susceptible_again(m)=susceptible_again(m)+1; 

                end 
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                if y(i,j)==4 

                    infected_twice(m)=infected_twice(m)+1; 

                end 

                if y(i,j)==5 

                    recovered_twice(m)=recovered_twice(m)+1; 

                end 

                if(y(i,j)==-1) 

                    number_of_death(m)=number_of_death(m)+1; 

                end 

  

            end 

        end 

  

end 

  

%Making figure 

figure(); 

Y(1)=mean(number_of_death); 

Y(2)=mean(never_infected); 

Y(3)=mean(infected_once); 

Y(4)=mean(recovered_once); 

Y(5)=mean(susceptible_again); 

Y(6)=mean(infected_twice); 

Y(7)=mean(recovered_twice); 

  

  

bar(Y,0.5) 

ylabel('number of population'); 

  

text(1,Y(1),'\downarrow dead','Position',[0.7 9500]); 

text(2,Y(2),'\downarrow healthy','Position',[1.7 9000]); 

text(3,Y(3),'\downarrow infected','Position',[2.7 9500]); 

text(4,Y(4),'\downarrow recovered','Position',[3.7 9000]); 

text(5,Y(5),'\downarrow re-susceptible','Position',[4.7 9500]); 
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text(6,Y(6),'\downarrow re-infected','Position',[5.7 9000]); 

text(7,Y(7),'\downarrow re-recovered','Position',[6.7 9500]); 

hold on; 

errorbar(1,Y(1),std(number_of_death));  

errorbar(2,Y(2),std(never_infected)); 

errorbar(3,Y(3),std(infected_once));  

errorbar(4,Y(4),std(recovered_once));  

errorbar(5,Y(5),std(susceptible_again));  

errorbar(6,Y(6),std(infected_twice));  

errorbar(7,Y(7),std(recovered_twice));  

axis([0 8 0 10000]) 

  

%Display results 

fprintf('Number of death are: %u\n',mean(number_of_death)); 

fprintf('Number of never infected are: %u\n',mean(never_infected)); 

fprintf('Number of infected once are: %u\n',mean(infected_once)); 

fprintf('Number of recoverd once: %u\n',mean(recovered_once)); 

fprintf('Number of infected twice: %u\n',mean(infected_twice)); 

fprintf('Number of recovered twice: %u\n',mean(recovered_twice)); 

fprintf('Number of susceptible again: %u\n',mean(susceptible_again)); 

 

 


