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1 Introduction and Motivations

Disasters have big influence on todays society, as most infrastructures, organizations
and communication systems in modern societies are supported by large and complex
networks, there is big interest in being able to simulate and predict their outcome.
Many disasters show characteristic scenarios, where one strong initial event triggers
a failure avalanche, which spreads in a cascade-like manner within a network and
has finally a large impact on the system or at least parts of it.[5]
The goal of this work is to determine the influence of damage on the recovery pro-
cess, an extension to the model used in [5]. The extension reduces the ability of
regenerating as it gets more damaged.
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2 Description of the Model

2.1 Basic Model[2, 3, 5]

A network consists of system components, represented by nodes. The nodes are
connected with one another by so called vertexes through which damage propagates.
This vertexes represent functional or structural dependencies between the compo-
nents as written in [5]. The damage is modeled continuously. For xi = 0, the
component is working properly. If a damage or a perturbation of the node occurs,
xi rises. A node is modeled to fail almost instantly if the sum of the external and
internal disturbances exceeds a particular threshold as seen in [2, 3, 5]. It is assumed
to have nonlinear dynamics, described in (1).

dxi

dt
= −xi

τ
+Θ

(
∑

j !=i

Mijxj(t − tij)

f(Oi)
e−βtij/τ

)
+ ξi(t) (1)

The parameters of the dynamics are described below:

• −xi
τ is the ability of the component to heal. 1

τ is the recovery rate.

• Mij weights the damage coming from another node. It represents the depen-
dency between the components.

• tij is a time delay. The damage needs time to be propagated from one compo-
nent to another.

• e−βtij/τ is a damping factor. Since the damage needs time for the propagation,
it means that it has to travel a distance. During this distance, some damage is
lost.

• f(Oi) is the out-degree of the node i. It determines the internal robustness of
a node (e.g. a node with many connections has to be more robust than others
since it gets more damage than a node with less connections).

• ξi(t) is an uniformly distributed internal disturbance.

The function Θ(x) is a nonlinear function that represents the damage dynamics of the
component induced by its external disturbances. It has a behavior that resembles
a sigmoid function. Important is that Θ(0) = 0. These dynamics are plotted for
different values of α and a fixed θi in Figure 1.

Θ(x) =
1 − e−αx

1 + e−α(x−θi)
(2)
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Figure 1: Sigmoid behavior of Θ(x).

The out-degree function is described by

f(Oi) =
aOi

1 + bOi
(3)

where a and b are fit parameters.

If the input to a node is a pulse, the node will be first damaged. Then, the damage
is propagated through the neighboring nodes and simultaneously, the node recovers
as soon as the input goes back to zero. As long as there are internal disturbances,
the state of the node will never be zero.
If the disturbance is constant, the state of the node will reach a constant value.
With the propagation, as soon as a steady-state is achieved, every node will be at a
constant value.
In the last two statements, a network with one-directional vertexes and no loops is
assumed.

2.2 Extended Model

Generally, if a component is damaged excessively, it breaks. As soon as it is broken,
the ability to recover disappears.

The idea was to restrict the recovery of a component, as soon as it is damaged. As
a first approach, the regeneration has been modeled to be piecewise continuous (see
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equation (4) and (5)).

dxi

dt
= −xi

τ %
+Θ

(
∑

j !=i

Mijxj(t − tij)

f(Oi)
e−βtij/τ

)
+ ξi(t) (4)

where

τ % =






1
τ if xi < θ%

i1
1
2τ if xi < θ%

i2
...

...
1

nτ if xi < θ%
in

(5)

θik, k = 1, 2, . . . , n are individual thresholds that determine when the recovering rate
changes.
This approach was discarded, because it is simpler to have a continuous function for
these dynamics.

Finally, the recovery dynamics have been modeled with sigmoid function that is sim-
ilar to Θ(x) (see Equation (6)). Using this function, the recovery will stop abruptly
as soon as one particular threshold is reached or smoothly, depending on the choice
of the parameter αreg.

dxi

dt
= −xi

τ
(1 −Θreg(xi))︸ ︷︷ ︸

Θ̄(x)

+Θ

(
∑

j !=i

Mijxj(t − tij)

f(Oi)
e−βtij/τ

)

+ ξi(t) (6)

where

Θreg(x) =
1 − e−αregx

1 + e−αreg(x−θreg
i )

(7)
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Figure 2: Θ̄(x) = 1 −Θreg(x)
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3 Implementation

3.1 Simulink

The model has been implemented with Simulink, a powerful MATLAB toolbox.
Simulink is a graphical environment where dynamical systems can be first imple-
mented in an intuitive way and then simulated. A model is built by connecting
various elements that are represented by blocks. The signals respectively the dy-
namical parts of the systems are represented by arrows. This results in a so called
block diagram. One important block used in this model is the so called integrator
(see Figure 3). As the name says, it integrates a signal using one of the ODE solver
of MATLAB.

Figure 3: Integrator

The model can either be simulated in the graphical interface of Simulink itself or it
can be controlled by a MATLAB code that is able to run it and which can evaluate
the resulting data automatically.

3.2 Disaster Spreading in Simulink

The model has been implemented as seen in Figure 4, 5, 6 and 8. Simulink has the
ability to mask block diagrams, e.g. the model in Figure 5 can be represented by the
block seen in 4. It follows that components can be simply connected to one another
without making the network model look too chaotic. The functions Θ(x) as well as

f(Oi) and the argument of Θ(x),
∑
j !=i

Mijxj(t−tij )
f(Oi)

e−βtij/τ , have been masked too for a

better overview. The red ovals in the models represent the inputs and outputs of the
respective mask.
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Figure 4: Single component/node.
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Figure 5: The dynamics of the node. The number generator stands for the internal dis-
turbance while the saturation limits the damage on (−∞, 1]. This is so that the damage
doesn’t get to infinity when a component is destroyed.
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Figure 6: Weighting and delay of the inputs. The transport delay represents the time shift
tij of the incoming disturbance (only because of x(t − tij) and not the damping part).
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Figure 7: The function of out-degree f(Oi).
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Figure 8: The sigmoid Θ(x).
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4 Simulation Results and Discussion

For purposes of illustration, the internal disturbances have been removed in the main
simulations. Results of simulations with internal noise will be shown in Section 4.4.

4.1 Generation of internal parameters

A component is characterized by many unknown parameters. Some simulations have
been made to find out a suitable average parameter set. In these simulations, a single
component has been first initialized with random parameters and then fed in with a
pulse input

u(t) =






0 if t < 2
1 if 2 ≤ t < 6
0 if t ≥ 6

(8)

for different parameter variations. In each simulation, only one parameter has been
varied and the component state of each variation has been compared in a plot.

In Figure 9, it can be seen that by increasing θi, both the damage and the duration
of the recovery get smaller. This was expected, because by increasing this internal
threshold, the component is supposed to be able to take more damage until it fails.
Being more robust leads also to the ability to recover faster. From Figure 9, it might
seem that at a threshold θi ≈ 0.6, the component is not able to recover anymore.
This is not the case because it is not located in a loop other than the internal recov-
ery loop itself [5]. It just needs much more time to recover.

The variation of the other parameters yielded similar results, except for tij. By in-
creasing the time that the disturbance needs to reach the component, it can be seen
that also the damage that gets to it is smaller (see Figure 10 ). From Section 2.1,
this was also an expected result.

Similar simulations have been performed to find suitable regeneration parameters.

4.2 Simulations

Four different network structures have been simulated to examine their behavior:

• a line

• a circle
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Figure 9: Variation of θi in the simulation for the parameter generation.
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Figure 10: Variation of tij in the simulation for the parameter generation.

• a grid

• a “random” network

The goal was to find a threshold θreg
i where the network structure would collapse.

The parameters used for the simulation can be found in Appendix A.

4.3 Line

Each component of this network has the same internal parameters, including con-
nection weights and time delay. As it can be seen in Figure 11, the vertices of the
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network are bidirectional, which means that there exist loops. The external distur-
bance is fed into the first node. While decreasing θreg

i , the component receive more

Figure 11: A straight line of network components.

damage and their recovery becomes slower(see Figure 12 ). The system collapses,
if θreg

i falls below 0.62 (see Figure 13). This means that at some point, the compo-
nent loses his recovery abilities and gets destroyed right away. The same occurs if
the external disturbance is too high. The reason why the whole network collapses
are the bidirectional vertices. If there were no loops, it would not matter how high
the external disturbance would be. Given enough time, the whole network would
recover.
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Figure 12: Without θreg
i (l.) and θreg

i = 0.8 (r.).

4.4 Circle

This network structure consists of four identical components connected like a line, but
the first and the last component are connected, too. The vertexes are bidirectional.
This time, there is noise acting as an internal disturbance in each component. The
external disturbance occurs in one component.
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Figure 13: The line network collapses for θreg
i ≈ 0.6.

Figure 16 illustrates how the network recovery abilities decay with the lowering
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~
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Figure 14: The circle network.

of θreg
i . The network fails when θreg

i ≈ 0.2. It does not fail anymore for the same
θreg

i , if the internal disturbance is removed (see Figure 17). The internal disturbance
lowers the robustness of a component. If a network with such a circle structure is
big enough, the simulation results would be like the outcome of the line network
simulation.

4.5 Grid

The Simulink Model of a network with a 5x5 grid structure can be seen in Figure
18. All nodes have the same parameters and are connected bidirectionally to their
direct neighbor. If a neighbor does not exist, the respective disturbance will be zero.
Again, by decreasing θreg

i , the systems recovery gets worse (see Figure 19). The sys-
tem collapses, if θreg

i < 0.73, as it can be seen in Figure 20.
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Figure 15: The Simulink model of the circle network.

0 100 200 300 400 500
0.2

0.1

0

0.1

0.2

0.3

0.4

0.5
All nodes, i

reg = 100

 

 
Cell #1
Cell #2
Cell #3
Cell #4

0 50 100 150 200 250 300 350 400 450 500
0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
All nodes, i

reg = 0.21

 

 
Cell #1
Cell #2
Cell #3
Cell #4

Figure 16: Simulation of the circle network. θreg
i = 100 (l). and θreg

i = 0.21 (r.).

The θreg
i , where the System collapses is larger than the one from the line structure,

because there’s a higher connectivity between the nodes, which leads to higher dam-
age propagation.
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Figure 17: The circle network fails at θreg
i ≈ 0.2 (l.). For the same θreg

i , it does not fail, if
there is no internal disturbance (r.).

Figure 18: Grid network.

4.6 “Random” Network

The Simulink model of the “random” network shown in Figure 22 can be seen in
Figure 23. All the connections are bidirectional.In the first simulation, the internal
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Figure 19: Without θreg
i (l.) and θreg

i = 0.73 (r.).
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Figure 20: θreg
i = 0.72

parameter are the same for every component. A second simulation has been per-
formed where each component has a different disturbance weight Mij and out-degree
Oi.
By lowering θreg

i , the network loses recovery abilities (see Figure 24). As it can be
seen in Figure 25, the network collapses as soon the threshold θreg

i ≈ 0.205. This
means that even if there are loops it still remains quite robust compared to the grid
network. This is somehow expected. Even if there are loops, the connectivity be-
tween the components is much lower than the connectivity of the grid network.

If the network components are different from one another, the robustness of the net-
work depends on how robust the single components are to external and to internal
disturbances and how strong the damage is propagated. With the parameters used
in Appendix A the network is extremely robust, as it can be seen in Figure 26.
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Figure 21: Other visualization of the grid network simulation.
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Figure 22: Symbolic representation of the “random” network.
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Figure 23: Simulink model of the “random” network.
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Figure 24: θreg
i = 100 (the same, as the extension of the recovery would miss, l.) and

θreg
i = 0.21 (r.). Notice that for higher θreg

i , the damage is lower and the recovery faster.
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Figure 25: The “random” network fails.
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Figure 26: Simulation of the “random” network with components that differ from one
another. Notice how robust the network is with θreg

i = 0.
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5 Summary and Outlook

As seen in the simulations, this model suits well to cases where a components recovery
abilities decay with increasing damage.
However, the Simulink model is not suited for the construction of big networks,
because the components have to be connected by hand. It can become very chaotic,
if the connectivity in the model is big.
There is a potential in the simulation of grid networks where the components are
only connected to their neighbors. As seen in Figure 21 of Section 4.5, The 5x5 grid
network has been visualized with a finer resolution. It looks like the network would
consist of much more components. If there is the possibility of obtaining the internal
component parameters through the grid resolution (i.e. the number of nodes) or
vice versa, the network can be built connecting a small number of components in
Simulink and then it can be extended by adjusting the grid resolution to the desired
network parameters. It would reduce complexity and would be computationally more
efficient.
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A Parameters

A.1 Line

a = 1.95 b = 1
tij = 1 Mij = 0.7
Oi = 0.95 α = 5
αreg = 10 β = 0.01
θi = 0.85 τ = 2

A.2 Circle

A.2.1 Simulation with Noise

a = 1.95 b = 1
tij = 1 Mij = 0.7
Oi = 0.95 α = 5
αreg = 10 β = 0.01
θi = 0.9 τ = 2
noiseStdDev = 0.2

A.2.2 Simulation without Noise

a = 1.95 b = 1
tij = 1 Mij = 0.7
Oi = 0.95 α = 5
αreg = 10 β = 0.01
θi = 0.9 τ = 2

A.3 Grid

a = 1.95 b = 1
tij = 1 Mij = 0.7
Oi = 0.95 α = 5
αreg = 10 β = 0.01
θi = 0.85 τ = 2

24



A.4 “Random” Network

A.4.1 Identical Components

a = 1.95 b = 1
tij = 1 Mij = 0.7
Oi = 0.95 α = 5
αreg = 10 β = 0.01
θi = 0.9 τ = 2

A.4.2 Different Components

a = 1.95 b = 1
tij = 1 M11 = 0.6
M12 = 0.7 M13 = 0.9
M14 = 0.4 M21 = 1.3
M25 = 0.8 M26 = 0.7
M31 = 1.4 M37 = 0.5
M41 = 1.2 M48 = 0.3
M49 = 0.8 M410 = 0.2
M52 = 0.9 M62 = 0.8
M73 = 1.8 M84 = 0.7
M94 = 0.9 M911 = 0.2
M104 = 0.8 M119 = 0.5
O1 = 1.5 O2 = 0.8
O3 = 0.6 O4 = 1.5
O5 = 0.5 O6 = 0.5
O7 = 0.5 O8 = 0.5
O9 = 0.6 O10 = 0.5
O11 = 0.5 α = 5
αreg = 10 β = 0.01
θi = 0.9 τ = 2
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