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Abstract: The Diner‘s Dilemma is a situation in a restaurant. N-persons eat together and split the bill after-
wards. The 2-player Diner‘s Dilemma corresponds to the Prisoner dilemma. Without memory the Nash equi-
librium is the expensive meal. In a one time game it‘s the best strategy to eat the expensive meal and not to 
care about the others. Eating always the expensive meal is the strategy ALLD. ( ALLD mean payoff= 3.082 
; T= 10‘000, mutation= 0) The strategies with memory changes the benefit of the ALLD-strategy.  ALLD 
becomes the worst strategy. (ALLD mean payoff= 2.04; T= 10‘000, mutation= 0, no memory) The best strat-
egy is TFT together with four other strategies. (TFT mean payoff = 4.00 ; T= 10‘000, mutation= 0, memory) 
Also in the 3-player algorithm the strategies with memory are better than the constant strategies too. 
Further on we tested the strategies with mutations.  The strategies with memory accumulated the mutation, 
untill they stabilized on a specific value.  
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1) Introduction

The Diner‘s dilemma is an N-player Prisoner dilemma. It‘s a problem in the game theory.  N-individuals go 
out to eat. Before diner, they appoint to split the bill equally between all N-players. Each individual  wants his 
own benefit. There‘s a cheap and an expensive meal. The expensive meal tastes better than the cheap one. But 
the price difference between the meals isn‘t worth the taste benefit. Every player has to consider, if it is worth 
taking a more expensive meal, because of splitting the check. [1]
The added price to the own bill by ordering the more expensive meal is very small. The reasonable choice for 
an individual is to take the more expensive meal. But if everybody takes the more expensive meal, then each 
person has to pay more than the meal is worth.

First we made a 2 player Diner‘s dilemma with no  memory. (1.1) According to some studies of social beha-
viour, a human doesn‘t only consider the own profit. 
An individual is normally touched of others benefit. Many don‘t go for the maximal gain. To elaborate this 
theory, we considered the memory. (1.2) Further on we checked the dilemma with 3 players. (1.3)

The research questions are
 
I.  Which strategy is the best to gain the most?
II.  What changes, if you consider a memory?
III.  How does the mutation rate influence the payoff?
IV.  How does the time of iterations influence the payoff?
V.  What changes with a 3-player “Diner‘s Dilemma“?
VI.  How do our results correlate with the references?
VI. What are the strengths and the weaknesses of our models?

1.1) Description of the model with no memory; N= 2
Situation: There‘s no memory. We consider the following matrix as the payoff matrix.

own choice:   C -> cooperate= cheap  D -> defect= expensive 
opponent choice:  C -> cooperate= cheap  D -> defect= expensive 

 C D
C 2 0
D 5 1

The propability of defection and cooperation is fixed. 

We consider four different strategies:  
ALLC = always cooperation
ALLD = always defection
probability of cooperation is 1/3
probability of cooperation is 2/3

1.2) Description of the model with memory. Consideration of previous move with probabilities that are 
fixed. N = 2

The purpose of memory consideration is to find an algorithm, that is closer to reality. People often react ac-
cording to previous experiences.
We defined probabilities of cooperation based on the previous move  according to the p versus q representa-



tion. p stands for the probability of cooperation, if  the other guy coorporated in the previous round. q is the 
probability of  cooperation, if the other guy defected in the previous round.

1: ALLC.
2: ALLD. 
3: TFT 
4: p= 1, q= 1/3
5: p= 1, q= 2/3
6: player takes the opponent‘s previous decision.
7: player takes the opponent‘s previous decision, if it was more or equally successful, otherwise cooperation.
8: player takes the opponent‘s previous decision, if it was strictly more successful, otherwise cooperation.
9: player takes the opponent‘s previous decision, if it was strictly more successful, otherwise its previous 
decision.
10: player takes the opponent‘s previous decision, if it was  more or equally successful, otherwise its previous 
decision.
11: player takes the opponent‘s previous decision, if it was more or equally successful, otherwise defection.
12: player takes the opponent‘s previous decision, if it was strictly more successful, otherwise defection.

1.3) Description of the method with 3 players

To get closer to reality we elaborated a case with 3 players. We achieved the following matrix as the payoff 
matrix according to 2.1: 

a(1,1,1)=1;
a(1,2,1)=-1;
a(2,1,1)=3;
a(2,2,1)=1;
a(1,1,2)=-1;
a(1,2,2)=-4;
a(2,1,2)=1;
a(2,2,2)=-1;

1: ALLC
2: ALLD
Imitation1: If both opponent players cooperated in the previous interaction, the current player cooperates too.   
Otherwise he defects. [2]
Imitation2: If both opponent players defected in the previous interaction, the current player defects too.   Other-
wise he cooperates.[2]
Imitation3: If one player defected  and the other player cooperated in the previous round, the current player 
cooperate. Otherwise  the current player  takes the previous move of the opponent player, which got the higher 
payoff. [2]
Reinforcement: The current player takes the previous move of the most successful player in the last round. 
[2]
Best reply: The current player chooses the strategy, with whom he would have received the highest payoff in 
the last round. [2]



2) Materials & Methods

2.1) Parameters

The strategy template defined the size of the payoff-matrix and the first steps. DD is the matrix characteris-
tical for a 2-player “Diner‘s Dilemma“. 

g represents the joy of eating the expensive meal, b the joy of eating the cheap meal, h is the cost of the ex-
pensive, l the cost of the cheap meal, If h > g > b  > l   and g > (h+b)/2 This conditions should be fulfilled for 
a classical “Diner‘s Dilemma“. That‘s why we had to change our matrix. [1]
[2 0; 5 1]  ->  [5 0; 6 1]

According to this, an individual preferes having the expensive meal, when the others defray the payment. The 
expensive meal is strictly dominant and forms a Nash Equlibrium.  [4]

 h (= 9) > g (= 8) > b (= 4) > l (= 3) 

 
cooperate defect

c g-h  b-0.5(l +h)
d g-0.5 (l+h) b-l

2.2) loops 

We worked with “if...(else)“ loops. 

if(rand<=1/3) 
                   CurrPlayerCurrentMove = 1;
                else CurrPlayerCurrentMove = 2;

2.3) strategy interactions

I) for i = 1:NoOfStrategy
      for j = i:NoOfStrategy

II) for i = 1:NoOfStrategy
     for j = 1:NoOfStrategy

More calculation steps are necessary but it‘s easier to display the results. (II)

2.4)  Graphical representation

resp. (3-player) for i = 1:NoOfStrategy
       for j = 1:NoOfStrategy
     for h= 1:NoOfStrategy
    

”mod” is used to save every 100th mean payoff (up to this time) for the time period 0 -> T



Displaying the result
disp(meanpayoff/NoOfStrategy)

disp(meanpayoff/NoOfStrategy/NoOfStrategy)

for n = 1:NoOfStrategy
   figure;
    plot(T2,meanpayoff2(n,T2)‘/NoOfStrategy);

 for n = 1:NoOfStrategy
    figure;
     plot(T2,meanpayoff2(n,T2)‘/NoOfStrategy/ NoOfStrategy);

resp. (3-players)

Plotting results
T2:  each 100th timestep
meanpayoff2: meanpayoff up to each 100th timestep and summed over all opponent strategy and therefore 
divided by number of strategies. 

resp. (3-players)

 for t = 1:T
            k = mod(t,100);
            t2 = floor( t/100 );



Table 1: Mean payoff for constant strategies; DD: 
[ 2 0; 5 1 ]; T= 10‘000, mutation= 0 

meanpayoff
ALLC 2.087
ALLD 3.082
prob. of coop. 1/3 2.748
prob. of coop. 2/3 2.749

Table 2: Mean payoff for constant strategies; DD: [ 6 0; 
5 1 ]; T= 10‘000, mutation= 0

meanpayoff
ALLC 0.834
ALLD 2.667
prob. of coop. 1/3 2.057
prob. of coop. 2/3 2.055

The algorithm shows the benefit of one strategy 
according to an other strategy. There are 10000 
interactions. The distribution of cooperation is 
equally in both algorithms. The first payoff matrix 
(DD: [ 2 0; 5 1 ]) shows that the defection strategy 
is by far the best and the cooperation strategy is by 
far the worst. In the second payoff matrix (DD:  [ 6 
0; 5 1 ]) the defection strategy is still the best, but 
the mean payoff differences between the strategies 
aren‘t as large as before. 
It‘s interesting that, without memory, ALLD is a 
very good strategy. Defection builds the Nash equi-
librium in a one round game, defection is always 
the best choice to gain the most.
The mutation rate of 0.001 doesn‘t change the pay-
off matrix significantly, since the relative difference 
is smaller than 1 %.  With a mutation rate of 0.1, 
you receive a change in the mean payoff of maxi-
mal 5%. 
If we change the time steps from 10000 to 100000, 
the mean payoff doesn‘t change much. The relative 
difference is less than 1% and thus negligible.To 
display the mean payoff versus time doesn‘t make 
sense, because there‘s only a small fluctuation due 
to  statistics as we have pointed out in the previous 
sentence. 

3)   Results & Discussion

3.2) Method without memory and 2 players 



3.2) Method with memory and 2 players 

meanpayoff
ALLC 3.75
ALLD 2.04
TFT 4.00
4 3.92
5 3.83
6 4.00
7 4.00
8 3.88
9 4.00
10 4.00
11 2.04
12 2.04

Table 3: Mean payoff for strategies with memory; DD: [ 6 0; 5 1 ], T= 100‘000; 
mutation rate= 0

meanpay-
off

ALLC 3.89
ALLD 3.39
TFT 4.11
4 4.04
5 3.96
6 4.11
8 4.00
9 4.11
12 2.39

Table 4: Mean payoff for strategies with memory without strategy 7, 10,11; DD: [ 6 
0; 5 1 ], T= 100‘000; mutation rate= 0

meanpay-
off

ALLC 3.52
ALLD 2.39
TFT 3.09
4 3.60
5 3.58
6 3.08
8 3.23
9 2.43
12 2.39

Table 5: Mean payoff for strategies with memory without strategies 7, 10,11; DD: [ 6 0; 
5 1 ], T= 100‘000; mutation rate= 0.001

With memory & 12 strategies (Table 3)
The strategy with the best payoff is TFT together with four other strategies (TFT, 
6,7, 9 and 10). [5] The worst strategies are those who prefer defecting (ALLD, 11 
and 12).  ALLD strategy is very bad compared to the method without memory. 
That‘s because other strategies punish this player. The strategy‘s payoff depends 
much on the other players strategies.
We would have expected, that TFT would lead to the highest mean payoff in the 
algorithm with memory. It‘s indeed a very good strategy, but doesn‘t have no rival. 
[5]

With memory & 9 strategies (Table 4)
It doesn‘t make sense to consider all strategies. The strategies 6, 7, 9, 10 and, 11, 
12 lead to more or less the same results. That‘s why we cancelled strategy 7, 10 
and 11.  Without this three strategies the mean payoff changes slightly, the worst 
strategy is now 12. That means it‘s bad to copy the opponents previous decision, 
if it was strictly more successfull and otherwise defects.

With memory & 9 strategies & mutation (Table 5)

TFT isn‘t anymore a very good strategy. Mutations accumulated. (fig. 1)
Strategy 9, takes the opponents previous decision, if it was strictly more success-
ful, otherwise its previous decision. Strategy 9 is the worst strategy, because of 
the mutation accumulation. The forth strategy is the best one. Relatively to the 
other strategies the percentage of cooperation is high. Cooperation probably tends 
to yield a high payoff. 



fig. 2: The mutations accumulate much, untill the mean payoff stabilizes; Strategy 9, mutation= 0.001, T= 
100‘000

fig. 1: The payoff of TFT diminishes roughly after the simulation initiation. With time the mean payoff re-
mains constant at a low level; TFT, mutation= 0.001, T= 100‘000



fig. 3: First the curve drops, but enhances continuously on a high level; strategy 4, mutation= 0.001, T= 
100‘000

fig. 4: First the curve shows a strong oscillation, followed by a damping; strategy 4, mutation= 0.001, T= 
100‘000



3.2) Method with 3 players

mean payoff
ALLC 0.39
ALLD 0.47
Imitation1 0.63
Imitation2 0.51
Imitation3 0.51
Reinforcement 0.63
best reply 0.63

Table 6: method with 3 players; mutation= 0, 
T= 100‘000

As we can see the strategy who use memory receive higher pay-
offs than  the one without memories. (ALLC, ALLD)
The figures are not interesting, because without mutations they 
are more or less stable. 
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6)  Appendix

I Algorithm without memory, DD: [5 0; 6 1], strategies ALLC, ALLD, c. p. 1/3, c. p. 2/3,  2-player
II Algorithm with memory, DD: [5 0; 6 1], strategies 1-12, 2-player
III Algorithm with memory, DD: [5 0; 6 1], strategies  ALLC,  ALLD, Imitation1-3, reinforcement, best reply, 3-player 

All in all we would need more approaches to reality. In reality the personal relation between the 2 players is 
very important. 
Because of the different payoffs and of the different strategies we can‘t compare the 2-player with the 
3-player dilemma.

The best strategy was often the expected one,the results correlated with some references. [4,5]
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% This algorithm describes a static behaviour of the diner‘s dilemma in the 
% sense that there is no memory and that the probability for cooperation
% or defection is fixed. The mutation is not included.

% parametric variables
% matrix with the diners dillema payoff scores (matrix choosen such that it
% corresponds to  prisoner‘s dilemma)
DD = [5 0;6 1];

% This is the total number of times each player meets the other player, 
% that is the total number of times the players should interact with each 
% other.
T = 100000;

% non parametric variables
% The player matrix has 5 rows. Here is what each row means:
% 1-4 : The probabilities of cooperation is based on the previous moves
% Column 4 : The initial move of the strategy 1 if cooperated, 2 if defected 
% Stratgies considered 1 : ALLC. 2 : ALLD. 3:.prob. of coorp. = 1/3.
% 4: prob. of coorp. = 2/3
StrategyTemplate = [
    1 1 1 1
    0 0 0 2 
    1 0 0 1 
    1 1 0 1 
    ];

% variable for storing the total number os strategies in question
NoOfStrategy = size(StrategyTemplate,1);

% the final payoff matrix (square matrix)
PayOff = zeros(NoOfStrategy,NoOfStrategy);

% variables for storing different moves
CurrPlayerCurrentMove = 0;
OpponentPlayerCurrentMove = 0;
CurrentPlayerPayoff = 0;
OpponentPlayerPayoff = 0;

% every strategy interacts with every other strategy
for i = 1:NoOfStrategy
    for j = i:NoOfStrategy
        % initialisation
        CurrPlayerPreviousMove = StrategyTemplate(i,4);
        OpponentPlayerPreviousMove = StrategyTemplate(j,4);

I Algorithm without memory, DD: [5 0; 6 1], strategies ALLC, ALLD, c. p. 1/3, c. p. 2/3,  2-player



        CurrentPlayerPayoff = 0;
        OpponentPlayerPayoff = 0;
        
        % for a given duration of time
        for t = 1:T

            % calculating the current player‘s move
            if(i==1)
                CurrPlayerCurrentMove = 1;
            end
             if(i==2)
                CurrPlayerCurrentMove = 2;
             end
             
            if(i==3)
               if(rand<=1/3) 
                   CurrPlayerCurrentMove = 1;
                else CurrPlayerCurrentMove = 2;
               end
            end
             
            if(i==4)
               if(rand<=2/3) 
                   CurrPlayerCurrentMove = 2;
                else CurrPlayerCurrentMove = 1;
               end
            end
            
               
            
            % calculating the opponent player‘s move
             if(j==1)
                OpponentPlayerCurrentMove = 1;
             end
             if(j==2)
                OpponentPlayerCurrentMove = 2;
             end
             
            if(j==3)
               if(rand<=1/3) 
                   OpponentPlayerCurrentMove = 1;
                else OpponentPlayerCurrentMove = 2;
               end
            end
             
            if(j==4)
               if(rand<=2/3) 
                   OpponentPlayerCurrentMove = 2;
                else OpponentPlayerCurrentMove = 1;
               end
            end
           
          



            
            % updating the values for each strategy
            CurrentPlayerPayoff = CurrentPlayerPayoff + DD(CurrPlayerCurrentMove,OpponentPlayerCurrent
Move);
            OpponentPlayerPayoff = OpponentPlayerPayoff + DD(OpponentPlayerCurrentMove,CurrPlayerCur
rentMove);
     
        
        % updating the payoff in the payoff matrix
        if (i~=j)
            PayOff(i,j) = CurrentPlayerPayoff/T;
            PayOff(j,i) = OpponentPlayerPayoff/T;
        else
            PayOff(i,i) = ((CurrentPlayerPayoff + OpponentPlayerPayoff)/2)/T;
        end
 
        
        end
    end
end

% displaying the result
disp(PayOff)

meanpayoff =zeros(NoOfStrategy,1);
b = 0;
for i = 1:NoOfStrategy
    for j = 1:NoOfStrategy
    b = PayOff(i,j);
    meanpayoff(i) = meanpayoff(i) + b;
    end
end

% displaying the mean payoff
disp(meanpayoff/NoOfStrategy)



% This algorithm describes a dynamic behaviour of the diner‘s dilemma in the 
% sense that there is  a memory of the previous round influencing the 
% probability for cooperation or defection in the current round.

% parametric variables
% matrix with the diners dillema payoff scores (matrix choosen such that it
% corresponds to prisoner‘s dilemma)
PD = [5 0;6 1];

% This is the total number of times each player meets the other player, 
% that is the total number of times the players should interact with each 
% other.
T = 100000;

% non parametric variables
% The player matrix has 3 rows. Here is what each row means:
% 1-4 : The probabilities of cooperating is based on the previous moves
% according to the p-q representation. p = probability of cooperation if
% the other guy did cooperate in the previous round; q = probability of
% cooperation, if the other guy did defect in the previous round.
% Strategies considered 1 : ALLC. 2 : ALLD. 3:TFT 4:.prob. of coorp. = 1 if
% the other person did coorporate, but = 1/3 if the other guy did defect. 
% 5: prob. of coorp. = 1 if the other person did coorperate, but = 2/3 if the 
% other guy did defect.
% row 6: entries 2 2 means just that it does not behave according to a p-q
% model, but takes the opponent‘s previous decision.
% row 7:entries 3 3 means just that it does not behave according to a p-q
% model, but takes the opponent‘s previous decision, if it was more or
% equally succesfull, otherwise coorperation.
% row 8:entries 3 3 means just that it does not behave according to a p-q
% model, but takes the opponent‘s previous decision, if it was strictly more
% succesfull, otherwise coorperation.
% row 9:entries 3 3 means just that it does not behave according to a p-q
% model, but takes the opponent‘s previous decision, if it was strictly more
% succesfull, otherwise its previous decision.
% row 10:entries 3 3 means just that it does not behave according to a p-q
% model, but takes the opponent‘s previous decision, if it was  more or
% equally succesfull, otherwise its previous decision.
% row 11:entries 4 4 means just that it does not behave according to a p-q
% model, but takes the opponents previous decision, if it was more or
% equally succesfull, otherwise defection.
% row 12:entries 4 4 means just that it does not behave according to a p-q
% model, but takes the opponent‘s previous decision, if it was strictly more
% succesfull, otherwise defection.
% Notice: This model includes all considered strategies (with strategy
% 7,10,11).

II Algorithm with memory, DD: [5 0; 6 1], strategies 1-12, 2-player



% Column 3 : The initial move of the strategy 1 if cooperated, 2 if
% defected 

StrategyTemplate = [
    1 1      1
    0 0      2 
    1 0      1
    1 1/3    1
    1 2/3    1
    2 2      1
    3 3      1
    3 3      1
    3 3      1
    3 3      1
    4 4      2
    4 4      2
    ];

% the mutation scale 
Mutation = 0.001;

% variable for storing the total number of strategies in question
NoOfStrategy = size(StrategyTemplate,1);

% the final payoff matrix (square matrix)
PayOff = zeros(NoOfStrategy,NoOfStrategy);

% variables for storing different moves
CurrentPlayerCurrentMove = 0;
CurrentPlayerPreviousMove = 0;
OpponentPlayerCurrentMove = 0;
OpponentPlayerPreviousMove = 0;
CurrentPlayerPayoff = 0;
OpponentPlayerPayoff = 0;

% variable used to display the mean playoff vs. time and the percentage of
% cooperation vs. time
Payoffattimet = zeros(NoOfStrategy,NoOfStrategy,T/100);
T2 = [1:T/100]‘;
meanpayoff2 =zeros(NoOfStrategy,T/100);
b2 = zeros(T/100,1);
b1 = zeros(T/100,1);
Cooppercentage1 =  zeros(NoOfStrategy,NoOfStrategy);
Cooppercentage2 = zeros(NoOfStrategy,NoOfStrategy,T/100);
Cooppercentage3 = zeros(NoOfStrategy,T/100);

% every strategy interacts with every other strategy
for i = 1:NoOfStrategy
    for j = 1:NoOfStrategy
        % initialisation
        CurrentPlayerCurrentMove = StrategyTemplate(i,3);
        OpponentPlayerCurrentMove = StrategyTemplate(j,3);



        CurrentPlayerPayoff = 0;
        OpponentPlayerPayoff = 0;
        
        % for a given duration of time  i.e. how many interactions take place
        for t = 1:T
            k = mod(t,100);
            t2 = floor( t/100 );
            
       % update the previous moves
       CurrentPlayerPreviousMove = CurrentPlayerCurrentMove;
       OpponentPlayerPreviousMove =  OpponentPlayerCurrentMove;
       
            % calculating the current player‘s move
            
           if(i==1)
                CurrentPlayerCurrentMove = 1;
            end
            if(i==2)
                CurrentPlayerCurrentMove = 2;
            end
             
            if(i==3)
               if(OpponentPlayerPreviousMove==1) 
                   CurrentPlayerCurrentMove = 1;
               else
                   CurrentPlayerCurrentMove = 2;
               end
               
            end
             
            if(i==4)
               if(OpponentPlayerPreviousMove==1) 
                   CurrentPlayerCurrentMove = 1;
                   else
                       if(rand<=1/3)
                           CurrentPlayerCurrentMove = 1;
                       else 
                           CurrentPlayerCurrentMove = 2;
                       end
               end
            end
            
            if(i==5)
               if(OpponentPlayerPreviousMove==1) 
                   CurrentPlayerCurrentMove = 1;
                   else
                       if(rand<=2/3)
                           CurrentPlayerCurrentMove = 1;
                       else 
                           CurrentPlayerCurrentMove = 2;
                       end
               end
            end     



            
            if(i==6)
                CurrentPlayerCurrentMove=OpponentPlayerPreviousMove;
            end
            
           
            if(i==7)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) <= PD(OpponentPlayerPrevio
usMove,CurrentPlayerPreviousMove))
                CurrentPlayerCurrentMove=OpponentPlayerPreviousMove;
                else CurrentPlayerCurrentMove =1;
                end
            end
            if(i==8)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) < PD(OpponentPlayerPrevious
Move,CurrentPlayerPreviousMove))
                CurrentPlayerCurrentMove=OpponentPlayerPreviousMove;
                else CurrentPlayerCurrentMove =1;
                end
            end
            
            if(i==9)
                if( PD(CurrentPlayerCurrentMove,OpponentPlayerCurrentMove) < PD(OpponentPlayerPrevious
Move,CurrentPlayerPreviousMove))
                CurrentPlayerCurrentMove=OpponentPlayerPreviousMove;
                else CurrentPlayerCurrentMove = CurrentPlayerPreviousMove;
                end
            end
            if(i==10)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) <= PD(OpponentPlayerPrevio
usMove,CurrentPlayerPreviousMove))
                CurrentPlayerCurrentMove=OpponentPlayerPreviousMove;
                else CurrentPlayerCurrentMove = CurrentPlayerPreviousMove;
                end
            end
            
            if(i==11)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) <= PD(OpponentPlayerPrevio
usMove,CurrentPlayerPreviousMove))
                CurrentPlayerCurrentMove=OpponentPlayerPreviousMove;
                else CurrentPlayerCurrentMove =2;
                end
            end
            if(i==12)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) < PD(OpponentPlayerPrevious
Move,CurrentPlayerPreviousMove))
                CurrentPlayerCurrentMove=OpponentPlayerPreviousMove;
                else CurrentPlayerCurrentMove =2;
                end
            end
            
            
              



            % calculating the opponent player‘s move
            if(j==1)
                OpponentPlayerCurrentMove = 1;
            end
            if(j==2)
                OpponentPlayerCurrentMove = 2;
            end
             
             if(j==3)
               if(CurrentPlayerPreviousMove==1) 
                   OpponentPlayerCurrentMove = 1;
               else
                   OpponentPlayerCurrentMove = 2;
               end
               
            end
             
            if(j==4)
               if(CurrentPlayerPreviousMove==1) 
                   OpponentPlayerCurrentMove = 1;
                   else
                       if(rand<=1/3)
                           OpponentPlayerCurrentMove = 1;
                       else 
                           OpponentPlayerCurrentMove = 2;
                       end
               end
            end
            
            if(j==5)
               if(CurrentPlayerPreviousMove==1) 
                   OpponentPlayerCurrentMove = 1;
                   else
                       if(rand<=2/3)
                           OpponentPlayerCurrentMove = 1;
                       else 
                           OpponentPlayerCurrentMove = 2;
                       end
               end
            end     
            
            if(j==6)
                OpponentPlayerCurrentMove=CurrentPlayerPreviousMove;
            end
            
            if(j==7)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) >= PD(OpponentPlayerPrevio
usMove,CurrentPlayerPreviousMove))
                OpponentPlayerCurrentMove=CurrentPlayerPreviousMove;
                else OpponentPlayerCurrentMove =1;
                end
            end
            if(j==8)



                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) > PD(OpponentPlayerPrevious
Move,CurrentPlayerPreviousMove))
                OpponentPlayerCurrentMove=CurrentPlayerPreviousMove;
                else OpponentPlayerCurrentMove =1;
                end
            end
            
            if(j==9)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) > PD(OpponentPlayerPrevious
Move,CurrentPlayerPreviousMove))
                OpponentPlayerCurrentMove=CurrentPlayerPreviousMove;
                else OpponentPlayerCurrentMove = OpponentPlayerPreviousMove;
                end
            end
            if(j==10)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) >= PD(OpponentPlayerPrevio
usMove,CurrentPlayerPreviousMove))
                OpponentPlayerCurrentMove=CurrentPlayerPreviousMove;
                else OpponentPlayerCurrentMove = OpponentPlayerPreviousMove;
                end
            end
            
            if(j==11)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) >= PD(OpponentPlayerPrevio
usMove,CurrentPlayerPreviousMove))
                OpponentPlayerCurrentMove=CurrentPlayerPreviousMove;
                else OpponentPlayerCurrentMove =2;
                end
            end
            if(j==12)
                if(PD(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove) > PD(OpponentPlayerPrevious
Move,CurrentPlayerPreviousMove))
                OpponentPlayerCurrentMove=CurrentPlayerPreviousMove;
                else OpponentPlayerCurrentMove =2;
                end
            end
            
           
            
         
            
       
            
            
            % updating the values for each strategy
            CurrentPlayerPayoff = CurrentPlayerPayoff + PD(CurrentPlayerCurrentMove,OpponentPlayerCurre
ntMove);
            OpponentPlayerPayoff = OpponentPlayerPayoff + PD(OpponentPlayerCurrentMove,CurrentPlayerC
urrentMove);
            
            % update percentage of cooperation such that 0 stands for cooperation and 1 for
            % decooperation
   



            Cooppercentage1(i,j) =  Cooppercentage1(i,j)+CurrentPlayerCurrentMove-1;
            
       
            % updating the payoff in the payoff matrix such that the payoff is the
            % total value, not yet divided by T
       
            PayOff(i,j) = CurrentPlayerPayoff;
         
      
            % used to display time evolution of average payoff values
            % (average values up to time t)
            %  to be able to calculate the meanplayoff for different strategies
            % used to display time evolution of cooperation percentage
            % (average values up to time t)
     
           if( k == 0)
            Payoffattimet(i,j,t2)= PayOff(i,j)/t;
         
           Cooppercentage2(i,j,t2) =100* (1-Cooppercentage1(i,j)/t);
           end
        
       

       end
    end
      
    
    
end

 % displaying the time development of the average payoff for each strategy
 for m = 1:NoOfStrategy
     for s = 1: (T/100)
                for l = 1:NoOfStrategy
                
                    
                     b1 = Cooppercentage2(m,l,s);
                     Cooppercentage3(m,s) = b1 + Cooppercentage2(m,l,s);
                     
                     b2 =  Payoffattimet(m,l,s);
                     meanpayoff2(m,s) =  meanpayoff2(m,s) + b2 ;
                end
     end
 end
% total percentage of cooperation
Totcoopperc = zeros(NoOfStrategy,1);
 for j= 1:NoOfStrategy
     Totcoopperc(i) =  Cooppercentage2(i,j,T/100)+Totcoopperc(i);
 end
     % Displaying the result
disp(Totcoopperc/NoOfStrategy)



 % displaying the result for the average cooperation percentage vs. time t
        for n = 1:NoOfStrategy
        figure;
        plot(T2, Cooppercentage3(n,T2)‘);
        set(gca, ‚Fontsize‘,16);
        xlabel(‚time t‘);
        ylabel(‚Average Cooperation percentage ‚);
        ylim([-5,105]);
        xlim([0,T/100]);
        end
 
% displaying the result for the average payoff vs. time t
        for n = 1:NoOfStrategy
        figure;
        plot(T2,meanpayoff2(n,T2)‘/NoOfStrategy);
        set(gca, ‚Fontsize‘,16);
        xlabel(‚time t‘);
        ylabel(‚Average Payoff up to  time t‘);
        ylim([0,4]);
        xlim([0,T/100]);
        end

% displaying the result
disp(PayOff/T)

% calculate the meanplayoff of the different results
meanpayoff =zeros(NoOfStrategy,1);
b = 0;
for i = 1:NoOfStrategy
    for j = 1:NoOfStrategy
    b = PayOff(i,j)/T;
    meanpayoff(i) = ( meanpayoff(i) + b) ;
    end
end

% displaying the result
disp(meanpayoff/NoOfStrategy)

 



% creating a payoff matrix for n=3 players according to the diner‘s dilemma
% game with the parameters h=9 (high price), g= 8 (joy of eating expensive
% menu), b=4 (joy of eating cheap menu) l = 3 (low price)
% no mutation is included

a = zeros(2,2,2);

% choosen such that the 2 stands for the high price menu, 1 for the low price menu

a(1,1,1)=1;
a(1,2,1)=-1;
a(2,1,1)=3;
a(2,2,1)=1;

a(1,1,2)=-1;
a(1,2,2)=-2;
a(2,1,2)=1;
a(2,2,2)=-1;

% total number of times each player meets the other player, that is total
% number of times the players should interact with each other
T = 100000;

% non parametric variables
% The player matrix has 3 rows. Here is what each row means:
% 1-2 : The probabilities of cooperation is based on the previous move
% according to the p-q representation. p = probability of cooperating if
% the other guy did cooperate in the previous round; q = probability of
%cooperation, if the other guy did defect in the previous round
% strategies considered row 1 : ALLC. and  row 2 : ALLD. 
% row 3-8: first entries are random numbers of no importance,  meaning 
% that they do not behave according to a p-q model, further explanations
% above the particular strategies.
% Column 3 : The initial move of the strategy 1: if cooperated, 2 if defected
% cooperation means low price, defection high price
StrategyTemplate = [
    1 1      1
    0 0      2 
    2 2      1
    2 2      1
    2 2      1
    2 2      1
    2 2      1
    ];

III Algorithm with memory, DD: [5 0; 6 1], strategies  ALLC,  ALLD, Imitation1-3, reinforcement, best reply, 3-player



% variable for storing the total number of strategies in question
NoOfStrategy = size(StrategyTemplate,1);

% the final payoff matrix (cubic matrix)
PayOff = zeros(NoOfStrategy,NoOfStrategy,NoOfStrategy);

% variables for storing different moves
CurrentPlayerCurrentMove = 0;
CurrentPlayerPreviousMove = 0;
OpponentPlayerCurrentMove = 0;
OpponentPlayerPreviousMove = 0;
OpponentPlayer2CurrentMove = 0;
OpponentPlayer2PreviousMove = 0;
CurrentPlayerPayoff = 0;
OpponentPlayerPayoff = 0;
OpponentPlayer2Payoff = 0;

% variables used to display the mean playoff vs. time and the percentage of
% cooperation vs. time
Payoffattimet = zeros(NoOfStrategy,NoOfStrategy,NoOfStrategy,T/100);
T2 = [1:T/100]‘;
meanpayoff2 =zeros(NoOfStrategy,T/100);
b2 = zeros(T/100,1);

% every strategy interacts with every other strategy
for i = 1:NoOfStrategy
    for j = 1:NoOfStrategy
        for h = 1: NoOfStrategy
        % initialisation
        CurrentPlayerCurrentMove = StrategyTemplate(i,3);
        OpponentPlayerCurrentMove = StrategyTemplate(j,3);
        OpponentPlayer2CurrentMove = StrategyTemplate(h,3);
        CurrentPlayerPayoff = 0;
        OpponentPlayerPayoff = 0;
        OpponentPlayer2Payoff = 0;
      
        % for a given duration of time
        for t = 1:T
            k = mod(t,100);
            t2 = floor( t/100 );
            
        % update the previous moves
        CurrentPlayerPreviousMove = CurrentPlayerCurrentMove;
        OpponentPlayerPreviousMove =  OpponentPlayerCurrentMove;
        OpponentPlayer2PreviousMove =  OpponentPlayer2CurrentMove;
          
           % calculating the current players move
            
            if(i==1)
                CurrentPlayerCurrentMove = 1;



            end
            if(i==2)
                CurrentPlayerCurrentMove = 2;
            end
             % imitation
            if(i==3)
               if(OpponentPlayerPreviousMove==1 && OpponentPlayer2PreviousMove==1) 
                   CurrentPlayerCurrentMove = 1;
               else
                   CurrentPlayerCurrentMove = 2;
               end
               
            end
             % imitation
            if(i==4)
               if(OpponentPlayerPreviousMove==2 && OpponentPlayer2PreviousMove==2) 
                   CurrentPlayerCurrentMove = 2;
                   else
                     CurrentPlayerCurrentMove = 1;
               
               end
            end
            
            % imitation 
            if(i==5)
               if(OpponentPlayerPreviousMove+OpponentPlayer2PreviousMove==3) 
                   CurrentPlayerCurrentMove = 1;
               else  if(a(OpponentPlayerPreviousMove,CurrentPlayerPreviousMove,OpponentPlayer2PreviousM
ove)>=a(OpponentPlayer2PreviousMove,CurrentPlayerPreviousMove,OpponentPlayerPreviousMove))
                     CurrentPlayerCurrentMove= OpponentPlayerPreviousMove;
                     else  
                      CurrentPlayerCurrentMove= OpponentPlayer2PreviousMove;
                     end
               end
            end
            % reinforcement
            if(i==6) 
                if(OpponentPlayerPreviousMove>=OpponentPlayer2PreviousMove)
                    if(OpponentPlayerPreviousMove>=CurrentPlayerPreviousMove)
                    CurrentPlayerCurrentMove= OpponentPlayerPreviousMove;
                    else CurrentPlayerCurrentMove= CurrentPlayerPreviousMove;
                    end  
                else
                    if(OpponentPlayer2PreviousMove>=CurrentPlayerPreviousMove)
                    CurrentPlayerCurrentMove= OpponentPlayer2PreviousMove;
                    else CurrentPlayerCurrentMove= CurrentPlayerPreviousMove;
                    end
                end
            end
            
         
            % best reply (Notice: hch yields the higher payoff than cch)
            if(i==7)



                if(OpponentPlayerPreviousMove==OpponentPlayer2PreviousMove)
                    if(OpponentPlayerPreviousMove==1)
                        CurrentPlayerCurrentMove=1;
                    else 
                        CurrentPlayerCurrentMove=2;
                    end
                else 
                    CurrentPlayerCurrentMove=2;
                end
            end
           
                   
     
            
            if(j==1)
                OpponentPlayerCurrentMove = 1;
            end
            if(j==2)
                OpponentPlayerCurrentMove = 2;
            end
           
            if(j==3)
               if(CurrentPlayerPreviousMove==1 && OpponentPlayer2PreviousMove==1) 
                   OpponentPlayerCurrentMove = 1;
               else
                   OpponentPlayerCurrentMove = 2;
               end
               
            end
             
            if(j==4)
               if(CurrentPlayerPreviousMove==2 && OpponentPlayer2PreviousMove==2) 
                   OpponentPlayerCurrentMove = 2;
                   else
                     OpponentPlayerCurrentMove = 1;
               
               end
            end
            
            
            if(j==5)
               if(CurrentPlayerPreviousMove+OpponentPlayer2PreviousMove==3) 
                   OpponentPlayerCurrentMove = 1;
               else  if(a(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove,OpponentPlayer2PreviousM
ove)>=a(OpponentPlayer2PreviousMove,CurrentPlayerPreviousMove,OpponentPlayerPreviousMove))
                     OpponentPlayerCurrentMove= CurrentPlayerPreviousMove;
                     else  
                      OpponentPlayerCurrentMove= OpponentPlayer2PreviousMove;
                     end
               end
            end
            
            if(j==6) 



                if(CurrentPlayerPreviousMove>=OpponentPlayer2PreviousMove)
                    if(CurrentPlayerPreviousMove>=OpponentPlayerPreviousMove)
                    OpponentPlayerCurrentMove= CurrentPlayerPreviousMove;
                    else OpponentPlayerCurrentMove= OpponentPlayerPreviousMove;
                    end  
                else
                    if(OpponentPlayer2PreviousMove>=OpponentPlayerPreviousMove)
                    OpponentPlayerCurrentMove= OpponentPlayer2PreviousMove;
                    else OpponentPlayerCurrentMove= OpponentPlayerPreviousMove;
                    end
                end
            end
           
            if(j==7)
                if(CurrentPlayerPreviousMove==OpponentPlayer2PreviousMove)
                    if(CurrentPlayerPreviousMove==1)
                        OpponentPlayerCurrentMove=1;
                    else 
                        OpponentPlayerCurrentMove=2;
                    end
                else 
                    OpponentPlayerCurrentMove=2;
                end
            end
         
         
            if(h==1)
                OpponentPlayer2CurrentMove = 1;
            end
            if(h==2)
                OpponentPlayer2CurrentMove = 2;
            end
           
            if(h==3)
               if(CurrentPlayerPreviousMove==1 && OpponentPlayer2PreviousMove==1) 
                   OpponentPlayerCurrentMove = 1;
               else
                   OpponentPlayerCurrentMove = 2;
               end
               
            end
             
            if(h==4)
               if(CurrentPlayerPreviousMove==2 && OpponentPlayerPreviousMove==2) 
                   OpponentPlayer2CurrentMove = 2;
                   else
                     OpponentPlayer2CurrentMove = 1;
               
               end
            end
            
            
            if(h==5)



               if(CurrentPlayerPreviousMove+OpponentPlayer2PreviousMove==3) 
                   OpponentPlayer2CurrentMove = 1;
               else  if(a(CurrentPlayerPreviousMove,OpponentPlayerPreviousMove,OpponentPlayer2PreviousM
ove)>=a(OpponentPlayerPreviousMove,CurrentPlayerPreviousMove,OpponentPlayer2PreviousMove))
                     OpponentPlayer2CurrentMove= CurrentPlayerPreviousMove;
                     else  
                      OpponentPlayer2CurrentMove= OpponentPlayer2PreviousMove;
                     end
               end
            end
            
            if(h==6) 
                if(CurrentPlayerPreviousMove>=OpponentPlayerPreviousMove)
                    if(CurrentPlayerPreviousMove>=OpponentPlayer2PreviousMove)
                    OpponentPlayer2CurrentMove= CurrentPlayerPreviousMove;
                    else OpponentPlayer2CurrentMove= OpponentPlayer2PreviousMove;
                    end  
                else
                    if(OpponentPlayerPreviousMove>=OpponentPlayer2PreviousMove)
                    OpponentPlayer2CurrentMove= OpponentPlayerPreviousMove;
                    else OpponentPlayer2CurrentMove= OpponentPlayer2PreviousMove;
                    end
                end
            end
           
            if(h==7)
                if(CurrentPlayerPreviousMove==OpponentPlayerPreviousMove)
                    if(CurrentPlayerPreviousMove==1)
                        OpponentPlayer2CurrentMove=1;
                    else 
                        OpponentPlayer2CurrentMove=2;
                    end
                else 
                    OpponentPlayer2CurrentMove=2;
                end
            end
        
          
      
            % updating the values for each strategy
            CurrentPlayerPayoff = CurrentPlayerPayoff + a(CurrentPlayerCurrentMove,OpponentPlayerCurrent
Move,OpponentPlayer2CurrentMove);
            OpponentPlayerPayoff = OpponentPlayerPayoff + a(OpponentPlayerCurrentMove,CurrentPlayerCur
rentMove,OpponentPlayer2CurrentMove);
            OpponentPlayer2Payoff = OpponentPlayer2Payoff + a(OpponentPlayer2CurrentMove,CurrentPlayer
CurrentMove,OpponentPlayerCurrentMove);
            
       
     % updating the payoff in the payof matrix such that PayOff(i,j,h) is the
     % total payoff upt to time t, not yet divided by t
       
            PayOff(i,j,h) = CurrentPlayerPayoff;
         



      
       % used to display time evolution of average payoff values
            % (average values up to time t)
            %  to be able to calculate the meanplayoff for different
            %  strategies
     
           if( k == 0)
            Payoffattimet(i,j,h,t2)= PayOff(i,j,h)/t;
         
           
           end
        
       

        end
        end
    end
      
    
    
end

% calculating the time development of the average payoff for each strategy
 for m = 1:NoOfStrategy
     for t2 = 1: (T/100)
                for l = 1:NoOfStrategy
                    for p = 1:NoOfStrategy
                    
                  
                     
                     b2 =  Payoffattimet(m,l,p,t2);
                     meanpayoff2(m,t2) =  meanpayoff2(m,t2) + b2 ;
                    end
                end
     end
 end

 
% displaying the result for the average payoff vs. time t
        for n = 1:NoOfStrategy
        figure;
        plot(T2,meanpayoff2(n,T2)‘/NoOfStrategy/NoOfStrategy);
        set(gca, ‚Fontsize‘,16);
        xlabel(‚time t‘);
        ylabel(‚Average Payoff up to  time t‘);
        ylim([-1,1]);
        xlim([0,T/100]);
        end



% displaying the result
disp(PayOff/T)

% calculate the meanplayoff of the different results
meanpayoff =zeros(NoOfStrategy,1);
b = 0;
for i = 1:NoOfStrategy
    for j = 1:NoOfStrategy
        for p = 1:NoOfStrategy
    b = PayOff(i,j,p)/T;
    meanpayoff(i) = ( meanpayoff(i) + b) ;
        end
    end
end

% displaying the result
disp(meanpayoff/NoOfStrategy/NoOfStrategy)


