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1. Motivation and Outline

1.1. Introduction

When holding a portfolio of stocks, every investor would like to maximize his expected

rate of return. But unfortunately, according to the basic principles of Portfolio theory, a

higher rate of return is closely linked to a higher risk, as there has to be a reason for an

issuer of bonds for example to pay a higher interest rate. The interest rate can be thought

of as composed of the risk free rate and a risk premium. But Portfolio theory (see section

2) also shows us, in which way diversification of a portfolio can lead to minimization of

risk while maintaining the same level of expected rate of return. However, on a stock

market, the future rate of return as well as the future volatility can only be estimated.

So the catch is: how to know exactly just how volatile a particular asset is, and what it’s

expected rate of return µ might be. Could it be possible to substitute the requirement

of perfect assessment of the assets one want’s to invest in with different, maybe more

accessible information? Even companies that earn money by means of trying to predict

risk and volatility of different investment vehicles have proven to not alway be reliable.

Our idea was to examine whether a set of simple rules would enable agents to invest

rationally—that is, mean variance efficient—in assets they had no information about

whatsoever. Instead, they would only be able to observe the choices made by others and

their respective success.

1.2. Outline

A popular piece of advice amongst market operators is “Stay with the trend, the trend is

your friend”. By simulating an agent based artificial financial market, we study whether

agents can optimize their respective portfolio towards an efficient composition when the

only information they have is the composition of the portfolios held by other agents, as

well as their respective “wealth”.

The simulated market will consist of N agents that can invest in an entirely risk less

and two risky assets. Their specific portfolio composition is thus equivalent to a point in a

three dimensional portfolio space (see section 4.2.1). The entire market is considered to be

large (i.e. consisting in total of NN >> N agents, of which N are modeled), meaning that

the investment choice of the agents modeled will not impact the prices of the respective

assets. Instead, the prices of the respective assets at each period are superimposed.

The core concept of this model is how the agents choose to change the weights of

the respective assets in their portfolio: A change of weighting in an agents portfolio

constitutes a change of position in portfolio space. This change of position is driven by

a “gravitational force” between the agents: each agent behaves like a body in space,

it’s mass corresponding to the total portfolio value and its position to how this value is
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distributed between the assets. The agents will thus eventually move towards the most

successful strategy. The choice of this interaction mechanism may seem arbitrary, but in

fact, it is just a way of modeling information exchange between the agents. To model

an uncertainty component in the information and at the same time provide the model

with a means to adapt, react and find new strategies, a Brownian motion component is

superposed onto the agents’ movement. At the end of a given number of simulation steps,

the chosen strategies of the agents are compared to what would have been a rational choice

if the agents had known the expected rate of return and standard deviation of the price

curves their assets were subject to.
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2. Portfolio Theory

2.1. Risk and Return

An asset’s return is defined as:

r(t) =
price(t+ 1)

price(t)
(2.1)

where t signifies a discrete timestep.

Rational investors always choose Mean-Variance efficient portfolios, i.e. for a given

volatility, the investor will maximize the portfolio’s expected rate of return.

We want to analyze the behavior of a rational investor in a market with two risky assets

A1 and A2 where A2 has a higher expected rate of return, but is also more volatile. For

our analysis, we need to define some measures of performance and risk for a portfolio of

two risky assets:

• The expected rate of return µp

µp = E(rp) = E(ω1r1 + ω2r2) = ω1E(r1) + ω2E(r2) (2.2)

where E(·) is the discrete expected value operator and ωi is the weight of asset i in

the portfolio (i.e., proportion of the total value of the portfolio invested in asset i).

µp is thus simply the weighted average of µ1 and µ2.

• The variance σ2
p and the standard deviation σp =

√
σ2
p

σ2
p = V ar(rp) = E

[
(rp − E(rp))

2
]

= E
[
〈ω1r1 + (1− ω1)r2 − (ω1E(r1) + (1− ω1)E(r2))〉2

]
= E

[
〈ω1(r1 − E(r1)) + (1− ω1)(r2 − E(r2))〉2

]
= ω2

1E
[
(r1 − E(r1))

2
]

+ (1− ω1)
2E
[
(r2 − E(r2))

2
]

+ 2ω2
1(1− ω1)E [(r1 − E(r1))(r2 − E(r2))]

= ω2
1V ar(r1) + (1− ω1)

2V ar(r2) + 2ω1(1− ω1)Cov(r1, r2)

(2.3)

where Cov(r1, r2) denotes the covariance between the two assets and is defined as:

Cov(r1, r2) = σ1,2 = E [(r1 − E(r1))(r2 − E(r2))]

The standard deviation is an (imperfect) measure for the risk of an asset or portfolio.

In our market, E(rA1) < E(rA2) and σ(rA1) < σ(rA2), because, as stated in section 1.1,

A2 will only be attractive to investment if a higher risk premium is payed.

3



2.2. Diversification

From the definitions given in section 2.1—in particular the non linear relationship between

portfolio risk and asset risks—one can deduce an interesting property: by holding a

combination of two assets, it can be possible to obtain a portfolio that is less volatile

than the least volatile asset in the portfolio. Diversification may even allow for the same

expected rate of portfolio return at a lower risk. This leads us to another important

measure of portfolio risk:

• The correlation coefficient ρ

ρ1,2 =
Cov(r1, r2)

σr1 · σr2
(2.4)

The correlation coefficient tells us how two assets are related to each other with re-

spect to the movement of their respective rates of return and indicates the possibility

of risk reduction by diversification.

One needs to be aware, however, that ρ only measures linear relations. Using equation

2.4, we can re-write the equation for the portfolio variance σ2
p 2.3 as:

σ2
p = ω2

1σ
2
r1

+ (1− ω1)
2σ2

r2
+ 2ω1(1− ω1)σr1σr2ρ1,2 (2.5)

A unitary correlation coefficient ρ1,2 = 1 would mean that there is a perfect positive linear

relation between the two assets, i.e., the rate of return of asset A2 at any given time would

be perfectly described by a positive linear function of the rate of return of asset A1:

r2(t) = a+ |b| · r1(t)

It is evident that in the case of ρ1,2 = 1, there is no possibility of risk reduction via

diversification. The lower limit of the portfolio risk will be the volatility of the least risky

asset.

A perfectly negative correlation (ρ1,2 = −1), however, offers the possibility of maximum

risk reduction benefit from diversification, because the rates of return will always move

in the opposite direction.

r2(t) = a− |b| · r1(t)

Thus, one asset would allow an investor to perfectly “hedge” himself against the risk of

the other. A correlation of ρ = −1 is purely hypothetical and cannot be observed on the

markets.

If ρ were to be equal to zero, there would be no linear relationship between the assets.

Theoretically, this can only be the case if one of the assets’ standard deviation is equal to

zero. Benefits from diversification, however, would still be possible. These properties are
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illustrated by the plot of equation 2.5 for σ2
1 = .25 and σ2

2 = .5 in figure 1, showing the

portfolio variance as a function of the weight of asset 1 (ω1) and the correlation coefficient

ρ1,2

Figure 1: Portfolio variance as a function of asset weighting and correlation coefficient

2.3. The Efficient Frontier

Given two assets A1 and A2 with E(rA1) < E(rA2) and σ(rA1) < σ(rA2), we can plot the

locations of all possible portfolios composed of these two assets in the σp, µp plane.

σ2
p(µp, µ1, µ2) =

[
µp − µ2

µ1 − µ2

2
]
σ2
1 +

[
µ1 − µp
µ1 − µ2

]2
+2 ·

[
(µp − µ2)(µ1 − µp)

µ1 − µ2

]
·Cov(r1, r2) (2.6)

The resulting curve will be a lying parabola. It’s upper branch is called efficient frontier

(EF). All portfolios on the EF are mean-variance efficient—they maximize the rate of

return for a given risk. Portfolios on the lower branch are inefficient, an investor could

always reach a higher rate of return at the same risk. The choice of a portfolio by a

rational investor will always lie on the EF. It’s location on the EF depends on the risk

he investor is willing to take.

2.4. Efficient Portfolios with a Riskless Asset — the Capital Market

Line

If we introduce a riskless asset Af with a fixed rate of return rf into the market, the

hyperbola remains the same. What we change compared to the previous situation is, in

fact, the new possibility of riskless lending and borrowing. If we want to mark the new

asset in the σp, µp plane, it will have the coordinates (0, rf ). Now, any efficient portfolio

can be obtained as a linear combination of two funds: the risk free asset and the optimal

risky portfolio T , which is the portfolio on the tangency point between the hyperbola
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Figure 2: σp, µp plane, CML and the EF (from Wikipedia)

and a straight line passing through the risk-free rate. T is also referred to as the market

portfolio. The tangent line passing through the location of the riskless asset and the

market portfolio is called capital market line (CML). The CML is given by:

E(rc) = rf + σc
E(rm)− rf

σm
(2.7)

where the subscripts m and c denote properties of the market portfolio and a portfolio on

the CML, respectively.

A rational investor will buy a share of the market portfolio and a share of the riskless

asset—he will choose a point on the CML—depending on his risk aversion. In our model—

as described later in section 4.5—we evaluate the agents’ “performance” by plotting their

portfolios in the σp, µp plane and comparing them to the location of the CML which

we obtain from calculating the observed expected rate of return and observed standard

deviation of the individual assets.
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3. Spread of Information

3.1. Swarm Intelligence

Since the financial theories are explained know it would be interesting to know how such

a market with trading investors can be modeled in a proper way. How can a market and

asset prices be generated and provided to the actors. But the main question is how to

emulate the decisions an investor would make to maximize his profit.

These participators introduced in the previous sections can be modeled as agents with

an artificial intelligence. This artificial intelligence can be explained as the ability to follow

simple rules one provides to them. By following these boundary conditions the agents form

a swarm they can interact in with one another but also with their environment. As there

is no additional intervention to their activity these interactions lead to a global behavior

which pretends to be intelligent even though the individuals are doing that unconsciously.

This global behavior is thus called Swarm Intelligence (SI).

Depending on the rules one provides, the agents are able to adapt collectively – even

though they are acting self-seeking – to a provided situation (in our case the trend of

different assets). Hence, one can equalize SI with the collective adaption to local or

global circumstances. Therefore each agent should be able to respond to quality factors

in the environment (quality principle) (Kennedy et al., 2001).

These quality factors can be interpreted as informations. The ability of each agent to

respond to it can be taken as ability to gather informations, evaluate them and make a

decision. The spread of these informations can be asymmetric or perfect for each agent.

This has a big effect on the behavior of each individual of the swarm and therefrom on

the swarm itself. So one can imagine that it is very important to know how information

is distributed along the market to model these interactions.

But how should the responses to information of the investors be modeled in detail?

One approach called Gravitational Model is explained in the following section.

3.2. Gravitational Model

Since our market is assumed to be perfect in the spread of information the transmission

of these between agents can be modeled in several ways. Our approach is to handle the

agents and their information as masses in a multidimensional space (Rashedi et al., 2009).

The dimension n is directly linked to the number of assets one agent can choose from for

his portfolio. As the specific weights always sum up to 1 the space the agents are able to

interact in is characterized as a plane in Rn:

• Portfolio Space

x1 + x2 + x3 + ...+ xn = 1 (3.1)
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where xi is the weight of the ith asset in the individual portfolio.

These weights also specify the position of one agent in this space.

• Position of the jth Agent

Xj = [x1j , x
2
j , ..., x

n
j ] (3.2)

where Xj is a vector corresponding to the agent’s position.

One can easily see that the positions are directly determined by the composition of each

portfolio as the weight xji reflects the location in the jth dimension.

The idea of the interaction follows the Newtonian law of gravity, where the force F

between two objects is described by their masses (m1 and m2) and the distance r between

them.

F = g
m1m2

r2
with g = 6.67428 ∗ 10−11

Nm2

kg2
(3.3)

This resulting force turns into a movement of both object. The acceleration of each is

described as the force divided by its mass.

a =
F

m
(3.4)

By integrating 3.4 twice one gets the object’s displacement dx in dependency of time.

For a specified time step dt the offset results in:

dx =
1

2

F

m
dt2 (3.5)

An example for the interaction between 4 masses is shown in the following figure

Figure 3: Attraction of mass 1 by three other masses resulting in the force F1 (Rashedi
et al., 2009)
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Applying this law to our problem one has to imagine the success of each agents choice

in portfolio composition as his mass. These masses interact between each other in the

spanned space. As one can see from equation 3.3 heavier masses have higher influence

than lighter ones. This means that agents with better portfolio choices have a higher

effect on agents with worse than vice versa, so the actors with less successful portfolios

will thereby move towards the compositions with higher profits. Since all agents and their

masses attract each other this effect causes a global movement towards the better choices

in portfolio composition (3.1).

This means related to a real market that each investor first informs himself about the

payoffs reached by other portfolios and then decides to adapt his own slightly to the more

profitable ones (quality principle). The individuals act clearly self-seeking as their only

intention is to optimize their own portfolios but looking at it from a distance the actors on

this market cooperate by using a direct form of communication to find the most profitable

choice (SI 3.1).

Considering a market with N agents and adding a time dependency one has to redefine

eq. 3.3 and 3.5 as follows:

• Force on the jth Agent at time t

Fj(t) =
N∑
k=1
k 6=j

Fjk(t) = g
N∑
k=1
k 6=j

mj(t)mk(t)

||Xj(t)−Xk(t)||3
(Xj(t)−Xk(t)) (3.6)

where Fj(t) is the Force exerted by all agents on the jth agent and ||Xj(t)−Xk(t)||
the distance between the jth and the kth agent.

• Displacement of the jth Agent induced by Fj(t) for a specific time step dt

dXj(t) =
1

2

Fj(t)

mj(t)
dt2 (3.7)

Additionally one can add random offsets to the calculated displacements in order to avoid

stagnation in one particular point. This would excite agents to give other solutions a

chance instead of just adapting to the first best one. The resulting displacement of one

agent could then be described as follows:

• Final displacement

dXres
j = dXj(t) +

1

mj(t)
randX (3.8)

where randX is a random vector added to the dislocation induced by Fj(t).

This random offset does not necessarily have to be regulated by the agents mass. But it

is recommended to add this moderation as one clearly wants the heavier masses to trust
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more in their choices than the lighter ones.

Assuming a given initial distribution of the agents in the space the procedure can be

summarized like followed:

1. calculate the forces acting on each agent with eq. 3.6 at a certain time t

2. determine the corresponding displacements applying eq. 3.7 for a specific timestep

dt

3. add a random offset to each displacement considering the agents mass at time t

4. update the masses of each agent looking at the profit they made with the new

portfolio composition at the time t+ dt

5. check if your end criterion is reached – if not go back to step 1

The end criterion can be varying. One possibility is to check whether the agents are

already arranged in one point. This makes sense since every next step of iteration would

not result in a high gain of improvement (only random offset). Another option is to check

if a certain wealth is achieved or as explained in 2.3 an efficient portfolio is reached by

one of the agents. However in our model (section 4) the criterion is just a time simulating

the days of trading in one year.
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4. Proposed Model

4.1. Price modeling with geometric Brownian motion

4.1.1. Geometric Brownian Motion

In order to be able to situate our simulations and results into a realistic environment,

the chart-development is simulated by a widely recognized model used in finance. The

asset-price is a state-value that corresponds ideally to the amount of money buyers are

willing to pay for what could be a share of a corresponding business. Its value fluctuates

along with supply and demand of the asset on the market. Depending on the size of

the market these parameters are linked to a innumerable number of events happening

on every possible timescale. Thus the prediction or reconstruction of the time-dependent

asset-price is not possible nor is that within the scope of our work. It is on the other

hand possible to simulate course developments that show the same characteristics as real

courses.

Brownian Motion is a time-continuous stochastic process closely related to normal dis-

tribution. Over a period of time the final displacement of an entity moving by Brownian

Motion is zero. This property is used to model stock prices with a given return and

variance, that still present similar characteristic fluctuations as a real chart.

A Geometric Brownian Motion is defined by the following differential equation:

dSt = µStdt+ σStdWt, t ∈ [0,∞] (4.1)

where St is the asset price at time t, µ is the expected rate of return, σ is the expected

variance, Wt corresponds to Brownian motion.

Integrating equation 4.1 with separation of the variables leads to:∫ t

0

dSu
Su

du = µt+ σWt (4.2)

A different approach of solving the equation using Ito’s lemma gets us the exact solution

of the GBM (Croce (2009)):

St = S0e
(µ− 1

2
µ2)t+σWt (4.3)

4.1.2. Implementation

Using the MATLAB class gbm and the function gbm.simBySolution we create sample

course developments for the simulation of the agent-based financial market.

% simulate random chart by geometric brownian motion
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GBM = gbm(diag(asset(1,:)), diag(asset(2,:)),’StartState’, S_start);

[S,~] = GBM.simBySolution(n_tsteps-1, ’DeltaTime’, dt);

where asset is a matrix containing the expected return of the assets in the first line and

their expected variance in the second line, the vector S start defines the initial asset

values, n tsteps is total number of timesteps simulated, dt is the timestep-length, and S

is a matrix giving the price for all asset and every timestep.

4.1.3. Limits to the Model

As mentioned earlier this chapter, the implemented model computes the fluctuation by

normal distribution, meaning that low deviations occur with a considerably higher proba-

bility than high deviations. Recent studies show that this assumption is critical. Normal

distribution is not a good approximation of reality in financial markets1. The fluctuations

on real markets are highly divergent and “more random” than the approximation with

normal distribution. The Gaussian (normal distribution) model predicts a stock market

crash to happen approximately every millennium, whereas empirical studies show that

they occur every 38 years (Rachev and Mittnik (2006)). Considering this fact would im-

pose the implementation of a so-called fat-tail normal distribution, which is not done in

our application.

Still, since the current model is not designed to observe agent behavior during stock mar-

ket crashes, the used model is adequate for this analysis.

Also the asset prices are evaluated independently of the agents actions on the artificial

financial market. This simplification is appropriate assuming a relatively low transaction

volume compared to the total shareholder value of the fictional enterprises. Although we

did not further discuss an elaborate supply and demand model, this could be subject to

an extension of the model (Kuehn and Neu, 2008).

4.2. Portfolio Space and Coordinate Transform

4.2.1. Portfolio Space

In our modeled market three different assets are traded. So the portfolio of every agent

consists out of three parameters. No agent is allowed to store all or part of his capital

other than in his asset-portfolio. Thus the sum of the price of each asset times the number

of shares is the total capital an agent has invested and available for trade:

m1 +m2 +m3 = mtot (4.4)

1Benoit Mandelbrot (Rachev and Mittnik (2006))
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where mi is the value of the shares an agent holds of the ith asset, and mtot is the sum of

mi over the number of assets(3).

Dividing by the total capital(mtot) gives a new form of the equation:

x1 + x2 + x3 = 1 (4.5)

where xi is the weight of the ith asset in the individual portfolio. Since at every discrete

time t all values in 4.5 are defined for every agent, the agents actual portfolio composition

can be situated in a plane in <3(see fig.4).

Figure 4: Portfolio Space

4.2.2. Coordinate Transform

As a plane is sufficiently defined by two parameters it is self-evident to describe the

portfolio composition for example by:

~x =

x1
x2

 (4.6)

x3 = 1− x1 − x2 (4.7)

The plane corresponding to this projection is visible in fig.5a.

For the calculation of the gravitational forces between the agents(see 4.3) this transforma-

tion is not of great interest, we chose to perform a different transformation which enables

to proceed with the displacement calculation in new coordinates without considering any

geometric conversion caused by the transformation. After the position update the values

are transformed back into the original coordinates used in 4.5.

The used transformation rotates the portfolio plane to a plane parallel to the (x1, x2)-

plane with an offset x3,offset. This is performed by using a Givens rotation in the plane

defined by the normal vector ~n = [1− 1 0]T and the angle α = arccos 1√
3

(see fig:5b).
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(a) Portfolio Space with one possible transformation (b) Portfolio Space with rotated plane

Figure 5

G (α) =


1
2

(1 + cosα) 1
2

(cosα− 1) − 1√
2

sinα

1
2

(cosα− 1) 1
2

(1 + cosα) − 1√
2

sinα

1√
2

sinα 1√
2

sinα cosα

 (4.8)

is the Matrix defining the rotation, α1,2 will be ± arccos 1√
3

performing the transformation,

respectively the back transformation.

G(α1) ·


x1

x2

x3

 =


x1

1
2

(cosα1 + 1) + x2
1
2

(cosα1 − 1)− x3 1√
2

sinα1

x1
1
2

(cosα1 − 1) + x2
1
2

(cosα1 + 1)− x3 1√
2

sinα1

x1
1√
2

sinα1 + x2
1√
2

sinα1 + x3 cosα1



=


ν (x1, x2, x3)

η (x1, x2, x3)

x3,offset


(4.9)

where ν (x1, x2, x3) and η (x1, x2, x3) are the new coordinates used for further manipulation

and x3,offset is the offset of the plane and by definition constant (x3,offset ∼= 0.5774).

After the displacements have been calculated and applied, the transformation is performed

again in opposite direction, giving updated x1, x2 and x3 in the original portfolio space.

Note that portfolio compositions with negative weights are possible, as our model allows

unlimited short sales2.

2“In finance, short selling (also known as shorting or going short) is the practice of selling assets, usually
securities, that have been borrowed from a third party (usually a broker) with the intention of buying
identical assets back at a later date to return to the lender. The short seller hopes to profit from a
decline in the price of the assets between the sale and the repurchase, as the seller will pay less to buy
the assets than the seller received on selling them. Conversely, the short seller will incur a loss if the
price of the assets rises.”Wikipedia (2010)
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In the MATLAB-code the transformation of the portfolio coordinates is done by calling

the transform-function.

function [nu eta x_{3,offset}] = transform([x_1 x_2 x_3], logic)

where nu, eta and x1, x2, x3 are the new, correspondingly the old coordinates and logic

is a boolean with the value 1(true) to perform the transformation and value 0(false) for

the back transformation.

4.3. Gravitational Model for the Flow of Information

This part of the code is applying the gravitational model introduced in 3.2 to the masses

the agents reached in the last time period. Therefore two for-loops where implemented.

The first one just takes the ith agents and hands him to the second inner one. This

loop calculates the forces Fij corresponding to the attraction of the jth agent and the

displacement dXi resulting from it 3.2. After calculating this for every other agent it

returns the final displacement to the outer loop which switches to the next actor.

The first step to achieve this is to transform the received data in to the new coordi-

nates 4.2.2 since there is no need to consider the third dimension then. Subsequently

the distance between each agent is calculated by the differences of the position in each

coordinate:

diff_nu = n_ax(i,1)-n_ax(j,1);

diff_eta = n_ax(i,2)-n_ax(j,2);

r = sqrt(diff_nu^2+diff_eta^2);

where nax(i, 1) is the ith agents’s position in ν, nax(i, 2) the one in η and r the corre-

sponding absolute distance between agent i and j. It should be mentioned that there is

a condition for the distance r as when it is to small it is set to a value rMin. The reason

is that if a distance becomes to small the force (eq. 3.3) gets very strong and so does the

displacement of the agent. He overshoots the other agent’s position contradictory to the

fact that he should place there.

Then the force F induced by the two masses is determined and split up into the ν- and

η-components using an angle α:

F = gamma*m*M/r^2;

alpha = atan2(diff_nu,diff_eta);

F_nu = sin(alpha)*F;

F_eta = cos(alpha)*F;
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where gamma is one of our tuning parameters. It is chosen to be optionally adjustable

in order to control the magnitude of the attraction between the agents. Also it is to be

mentioned that all the masses used in this function are normalized by the highest and

the lowest one. They are additionally multiplied by a so called reward factor. This

factor is another tuning parameter as it should be possible to control the weighting of the

successes achieved in the previous round. This results in a higher inertia of agents with

better choices in portfolio composition.

mMax = max(A(:,4));

mMin = min(A(:,4));

m = 1+(A(i,4)-mMin)/(mMax-mMin)*rewardFact;

where A(i, 4) is the mass of the ith agent.

For the first time step of the program all agents have the same initial mass. This would

cause a division by 0 and thereby a infinite mass for each agent. To avoid this a if -

condition was added to the structure which skips this normalization in the first time

interval.

The next step is to calculate the displacement caused by the forces. This is done using

eq. 3.5 for each component:

d_nu = 0.5*F_nu/m*dt^2;

d_eta = 0.5*F_eta/m*dt^2;

Pos_nu = Pos_nu-d_nu;

Pos_eta = Pos_eta-d_eta;

where Posnu and Poseta are the updated positions in each coordinate after one time step.

The method implemented in the code differs from the one explained in 3.2. The structure

is inversed. Instead of summing up all the forces and calculating a total displacement

induced by it our code sums up the single displacements caused by each agent. Anyway

the effects are perfectly equal.

The new positions are then stored in a matrix which is handed to the function that

adds the random offset (eq. 3.2) and updates the agents new masses for the next time

step dt.

4.4. Randomization of Movement & Agent Update

To update the agents from time step t− 1 to t, the following steps have to be performed

in a loop that iterates over all agents:
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1. After the gravitational model has determined an offset in the new coordinates, this

change has to be passed on the agents.

2. As described in section 1.2, a stochastic motion component is added to the gravita-

tion offset.

3. The change of the assets respective prices from one period to the next will shift the

agents’ weighting of the assets in their portfolio. This change is computed and also

added, along with the new mass.

The first step is trivial and consists of the back transformation of the offset coordinates.

The stochastic motion component is best added in the new coordinates: For each agent,

an angle is drawn from the uniform distribution on the interval [0, 2π) and a radius from

the normal distribution with an agent specific standard deviation. The radius is scaled

by the inverse of the agent’s mass because we believe it to be reasonable that the more

successful an agent becomes, the less willing he is to “experiment” with new strategies

and the better the quality of information he will receive. A parameter ρ scales the radius

and allows to tune the influence of the stochastic motion. Angle and radius are first

transformed to Cartesian coordinates on the portfolio plane, and then, by a call to the

transform function back, to three dimensional portfolio space.

~o =
[
r · cos θ r · sin θ 0

]
A consistency check allows the definition of a limit to the amount of short sales the

agents are allowed to make. If the new weights exceed this limit, the process is iterated a

finite number of times. This also allows for an error check as the program will exit with

an error message if it could’t find acceptable weights. If successful, the offsets are added

to the agent’s weights.

The weighting change caused by price change is a bit tricky to calculate. First, the new

total portfolio value (“mass”) is calculated:

mass(t) =
∑

all assets i

ωi(t− 1)×mass(t− 1)× (1 + ri(t− 1)) (4.10)

where ri(t) is the rate of return of asset i at time t and ω(t) its weight in the agent’s

portfolio, respectively.

Next, the new weights are determined:

ωi(t) = ωi(t− 1)× mass(t− 1)

mass(t)
× (1 + ri(t− 1)) (4.11)

The update of the agent matrix is now complete.
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4.5. Post Processing

We now seek to compare both initial and final strategy to the optimal risk/return ratio

given by the modern portfolio theory. To be able to do so the following steps have to

be completed. As expected variance and return of the simulated charts do not exactly

coincide with the value we set earlier, these stochastic characteristics have to be deter-

mined. Then the actual correlation and covariance have to be calculated3. The efficient

frontier is defined by the properties of only the two risky assets2.3 and is calculated with

the function:

[X,Y,W]=portopt(R , cov , 1e4);

where X,Y are vectors defining the efficient frontier in a (σp,µp)-plane, R is the observed

annual return of the risky assets and cov is the covariance between them. 1e4 defines the

resolution of the X and Y vectors.

In the next step we calculate the differential quotients of every discrete point on the

efficient frontier(A high resultion as defined above is advantageous at this point.) and

identify the tagency portfolio, which enable us to draw the Capital Market Line2.4.

The investment strategy of every agent has to be situated in the expected return over

expected variance space:

[PortRisk, PortReturn] = portstats(muObs, covA, weightsA);

where PortRisk and PortReturn are columns containing the expected risk/variance and

return of every agent, muObs is the observed return of the simulated assets, covA the

covariance between the agents returns, and weightsA the final investment strategy for

every agent.

PortRisk and PortReturn are then plotted in the same figure as the CML and the

Markowitz bullet.

3The different charts are simulated completely independently which would result in a correlation matrix
equal to the idendity matrix, but as correlation is highly probable to happen during the simulated
time, this definition has to be redefined.
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5. Results

The presented results were all computed with the parameters given in table 5.1. The

effects of the tunable parameters are explained in 4.3 and 4.4 respectively. The choice

of the fixed values is of course the decision of the user. The actual configuration for our

approach is explained as follows:

• the number of agents operating on the market should be a trade-off between the

computational effort and the probability to converge on a meaningful solution.

• the number of simulated days is the number of trading days in a year.

• the initial agent portfolio value can be explained as the initial wealth of the agents.

But since the wealth equals the mass of each agent this value is irrelevant because

of the normalization of the masses (4.3).

• the number of assets available for portfolio composition is chosen to be three as it

is the best number for visualization (4.2.1)

Fixed Values Tuning Parameters

Number of Agents 500 Gravitational Constant γ

Number of simulated Days 250 Stochastic Offset Scale ρ

Initial Agent Portfolio Value 20 Reward Factor

Number of Assets 3 Short Sale Limit

Minimum Range of Attraction

Table 5.1: Model Parameters

5.1. Typical Simulation

For the simulation of the Price chart, we had to set expected return and expected variance

of the assets, according to how we wanted the price evolution to look like (see table 5.2).

Following is the analysis of a typical simulation, the used tuning parameters are given in

5.3.

Asset Expected Return Expected Variance

Fixed Interest Asset 0.02 0

Risky Asset 1 0.08 0.5

Risky Asset 2 0.18 1.5

Table 5.2: Available Assets
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Tuning Parameters Value

Gravitational Constant γ 4e− 6

Stochastic Offset Scale ρ 1.5

Reward Factor 100

Short Sale Limit 20

Minimum Range of Attraction 0.2

Table 5.3: Tuning Parameters

First, the agents start collecting in three to five subclusters after 50-100 days(see figure

6. These subclusters then merge until typically, only one remains after about 200 iterations

(see figure 7). The results show a clear migration towards the efficient Frontier - visible

in figure 8.

Figure 6: Weights and Price chart at time = 100 days

Figure 7: Weights at End of Simulation and Price chart
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Figure 8: µ and σ at Beginning and End of Simulation

5.2. Observations of the general Behaviour of the Model

• The model has difficulties following a rapid change of prices. This could be inter-

preted as the impact of a crisis on herding behaviour.

• The model is sensitive to its development in the beginning of the simulation.

• In a typical simulation, the agents will collect at the efficient frontier. This means

that they do not make use of the potential to sell the 1st asset short to buy more

of the 3rd.
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6. Conclusion

An agent based simulation of an artificial financial maket was implemented in MATLAB.

The agents were programmed to change their respective portfolio composition according

to a weighted average of the compositions of all other agents, the weight beeing their re-

spective success with their strategy. This was done by implementing a gravitational model

in portfolio space. The simulation results clearly indicate a migration of the agents from

randomly distributed initial portfolios to more efficient—that is, return maximizing for a

given risk—ones. The position of the final cluster indicates that this simulation predicts a

neglect of the opportunity to maximize return by short-selling the weak performing asset.

It is, howver, so close to the efficient frontier and market line that it is doubtful whether

any improvement beyond this point would be realistic, because the performance gauges

are stochastic proporties of the stock charts which change slightly on every iteration, only

converging to fixed values as time goes to infinity.

These results, however, have to be interpreted with care. The stability of the simulation

depends strongly on the tuning parameters. If the stochastic offset is too large or the

gravitational constant too low, no cluster will form. In the opposite case, the model will

converge on the first iteration and be entirely unable to adapt to changes in the prices.

This means that it would be very hard to mimic the behaviour of the agents in the real

market, because the “market gravitational constant” is unknown, so one does not know

whether the strategy would be successfull. This, however, can be said about nearly all

information available from which one might try to predict a successful strategy.

The results surely do not contradict the general advice “go with the trend” but rather

support it. Gathering information about the strategies of successful players is a good piece

of advice. Relying exclusively on that information, however, would make an investor voul-

narable to bursting price bubbles and other possible negative effects of hearding behaviour

on markets.
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7. Future Work

In Order to achieve a better approximation of the real market behavior several modifica-

tions could be implemented into the existing code.

First of all the price modeling introduced in 4.1 is unsatisfying since the development of

the chart is purely a stochastic function which does not reflect the trading that occurs on

the market. Supplementing it with a so called interactive GBM would add a dependency

of the demand to each asset chart. One approach is presented in Kuehn and Neu (2008).

Another simplification is the equality of the agents in matters of willingness to take

risks. Looking at a real market investors not always want to give portfolios a chance

which differ a lot from their own one. Applying this tendency may provide better solutions

since several agents would have the leaning to try out new choices in portfolio composition.

These could be more effective and successful than the best one achieved thus far on the

present market.

The next step would be a modification to the gravitational model (4.3). In Rashedi

et al. (2009) the possibility of cutting out the lightest masses in each time step so that

they can be attracted by the masses left but cannot attract them. This addition would

ignore the worst portfolio compositions in each round in order to avoid movement into

this direction – even if this effect is almost insignificant.

Also in order to check the compatibility of our model with real market data we would

like to input existing stock charts and see the behavior of the agents according to the

price history.
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A. MATLAB - Code

%--------------------------------------------%

%----Modeling Social Systems with Matlab-----%

%-----------------FS 2010--------------------%

%--------------------------------------------%

%--------Artificial Financial Market---------%

%--with Application to Portfolio Theory and--%

%-------------Herding Behaviour--------------%

%--------------------------------------------%

%-----C. Czech E. Kochmann S. Kuechlin-------%

%--------------------------------------------%

%--------------------------------------------%

clear all; close all; clc;

%--------------------------------------------%

%--------------------------------------------%

% model tuning

%--------------------------------------------%

%number of agents

nAgents = 500;

% gravitational constant

gamma = .002*1/nAgents;

%

rho = 1.5;

% short sale limit

maxShorts = 20;

% timestep

dt = 1;

% trading days p.a.

times = 250;

initVal = 20;

% reward factor

rewardFact = 100;

% expected annual returns and variances

asset = [.02 .08 .18; 0 0.5 1.5];
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% minimal distance to another agent

rMin = 0.2;

rMax = 20;

%--------------------------------------------%

% generate a random chart

P = stockchart(asset, times, dt);

% convert the price history to daily returns

Ret = price2ret(P,1:times,’Periodic’);

% initialize agent matrix

A = initA(nAgents,initVal,times);

f = figure(’name’,’weights’);

set(f, ’position’, [400 300 1024 500]);

figure(1);

set(gca,’nextplot’,’replacechildren’);

for t =2:times

if t==2

newPos = first_grav_update(A(:,1:4,t-1), gamma, dt, rMin, rMax);

else

newPos = grav_update2(A(:,1:4,t-1), gamma, dt, rMin, rMax, rewardFact);

end

A(:,:,t) = update_agents(A(:,:,t-1),newPos,Ret(t-1,:),rho,maxShorts);

subplot(1,2,1);

scatter3(A(:,1,t),A(:,2,t),A(:,3,t),5*ones(nAgents,1),[0 0 1],’filled’);

view(135,45);

axis([-1 2 -1 2 -1 2]);

title(gca,[’frame number ’ int2str(t)]);

subplot(1,2,2)

plot(P(1:t,:));
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axis([0 times 90 140]);

title(’Price’)

F(t-1) = getframe(gcf);

end

post_process(asset,A,Ret,P);

movie2avi(movie(F), ’test.avi’,’compression’,’none’,’fps’,24)
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function S = stockchart(asset, n_tsteps,dt)

% initializing

n_days = 250; %trading days pa

asset(:,:)=(1+asset(:,:)).^(1/n_days)-1;

% simulate random chart by geometric brownian motion

GBM = gbm(diag(asset(1,:)), diag(asset(2,:)),’StartState’, [100 100 100]’);

[S,dummy] = GBM.simBySolution(n_tsteps-1, ’DeltaTime’, dt);

end
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function A = initA(nAgents,initVal,times)

A = zeros(nAgents,5,times);

transA = [-3+6*rand([nAgents,2]) repmat(0.5774,nAgents,1) ];

A(:,:,1) = [transform(transA,2) repmat([initVal,1],nAgents,1)];

end

First Gravitational Update

function newPos = grav_update2 (A, gamma, dt, rMin, rMax)

%transforming the A(t) data (portfolio composition) into new coordinates:

n_ax = transform (A(:,1:3),1);

N = size(A,1);

%calculating the displacement in new coordinates by force attraction for

%each agent:

newPos = zeros(N,3);

newPos(:,3) = n_ax(:,3);

for i = 1:N

%initial values for the displacement:

Pos_nu = n_ax(i,1);

Pos_eta = n_ax(i,2);

%calculating the attraction of each agent on the ith one:

for j = 1:N

if j==i

continue;

else

%force of attraction immitated by gravitation (for each

%coordinate:

diff_nu = n_ax(i,1)-n_ax(j,1);

diff_eta = n_ax(i,2)-n_ax(j,2);
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r = sqrt(diff_nu^2+diff_eta^2);

if r<=rMin

continue;

end

if r>= rMax

continue;

end

F = gamma*A(i,4)*A(j,4)/r^2;

alpha = atan2(diff_nu,diff_eta);

F_nu = sin(alpha)*F;

F_eta = cos(alpha)*F;

%displacement in effect of force (for each coordinate):

d_nu = 0.5*F_nu/A(i,4)*dt^2;

d_eta = 0.5*F_eta/A(i,4)*dt^2;

Pos_nu = Pos_nu-d_nu;

Pos_eta = Pos_eta-d_eta;

end

end

%saving the final displacement for each agent:

newPos(i,1) = Pos_nu;

newPos(i,2) = Pos_eta;

end
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function newPos = grav_update2 (A, gamma, dt, rMin, rMax, rewardFact)

%transforming the A(t) data (portfolio composition) into new coordinates:

n_ax = transform (A(:,1:3),1);

%determining the number of agents involved:

N = size(A,1);

%determining the most and less successful portfolio from the previous round:

mMax = max(A(:,4));

mMin = min(A(:,4));

%calculating the displacement in new coordinates by force attraction for

%each agent:

%initial matrix for new positions:

newPos = zeros(N,3);

%last coordinate stays equal in new coordinates

newPos(:,3) = n_ax(:,3);

for i = 1:N

%normalizing the ith agents mass and multiplying reward factor:

m = 1+(A(i,4)-mMin)/(mMax-mMin)*rewardFact;

%initial values for the displacement:

Pos_nu = n_ax(i,1);

Pos_eta = n_ax(i,2);

%calculating the attraction of each agent on the ith one:

for j = 1:N

%skipping the agents own mass

if j==i

continue;

else
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%normalizing the mass of the jth attracting agent:

M = 1+(A(j,4)-mMin)/(mMax-mMin)*rewardFact;

%differences in position for each dimension in new coordinates:

diff_nu = n_ax(i,1)-n_ax(j,1);

diff_eta = n_ax(i,2)-n_ax(j,2);

%absolute value of distance:

r = sqrt(diff_nu^2+diff_eta^2);

%controlling overshoot:

if r<=rMin

continue;

end

if r>= rMax

continue;

end

%force from gravitaion law for the ith and the jth mass:

F = gamma*m*M/r^2;

%direction of the force

alpha = atan2(diff_nu,diff_eta);

%splitting up into the composites in new coordinates:

F_nu = sin(alpha)*F;

F_eta = cos(alpha)*F;

%displacement in effect of force (for each coordinate):

d_nu = 0.5*F_nu/m*dt^2;

d_eta = 0.5*F_eta/m*dt^2;

%adding the displacement to the current position of the agent:

Pos_nu = Pos_nu-d_nu;

Pos_eta = Pos_eta-d_eta;

31



end

end

%saving the final displacement for each agent:

newPos(i,1) = Pos_nu;

newPos(i,2) = Pos_eta;

end

32



function A_new = update_agents(A,newPos,Ret,rho,maxShorts)

%-------------------------------------------------------------------------%

% the function "update_agents"

% 1. takes the new portfolio weights proposed by the gravitational

% model as input in matrix "newPos" and updates the portfolios accordingly

% 2. adds a stochastic component to the movement in "weighting space"

% by randomly off-setting the agents’ positions taking into account

% consistency restrictions (number of times the entire portfolio may be

% shorted in parameter "maxShorts"), the agents current "mass"/total

% asset value and their specific sigma. this is tuned by parameter "rho"

% 3. takes the price change of the stocks as return(t) (1x3)

% and updates the agents’ mass.

% this means that "trading" and price change occur at seperate times

% 4. returns the updated agent matrix A_new

%-------------------------------------------------------------------------%

% vector of old portfolio total values

oldMassV = A(:,4);

% 1.

newWeightsM = transform(newPos,2);

% 2.

% number of agents

nAgents = size(A,1);

% traverse matrix to add specific stochastic offset

% choose a random offset magnitude from normal distribution

% useing abs to get a positive value

% with agent specific sigma

% inversely proportional to agent’s mass

% "light" agents will then behave more erratic than "heavy"

% alpha is a tuning parameter to scale offsets

% choose a random offset direction as angle in weight eigenspace

% from uniform distribution on [0,2*pi]

for i = 1:nAgents
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mass = oldMassV(i);

% weights before stochastic component is added

newWeightsV1 = newWeightsM(i,:);

sigma = A(i,5);

consistent = 0;

% do this until a consistent offset ( all weights >= maxShorts)

% is found

count = 0;

while ~consistent

r = rho * (1/mass) * abs(normrnd(0,sigma));

theta = 2*pi*rand(1);

offset = [r*cos(theta) r*sin(theta) 0];

% consistecy is checked in cartesian coordinates

% vector containing new weights after adding the stochastic

% component

newWeightsV = newWeightsV1 + transform(offset,2);

count = count +1;

if count > 100000

disp(’error: couldnt find acceptable weights’);

return

end

if all(newWeightsV >= -1*maxShorts)

consistent = 1;

end

end

% finally update agent’s weighting
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newWeightsM(i,:) = newWeightsV;

end

% 3.

% update agent’s mass

pFact = Ret + [1 1 1];

% pfact is the price change as factor

% new mass is given by newmass = oldmass*sum(weight(i)*pfact(i))

newMassV = oldMassV.*(newWeightsM*pFact’);

% new weights are given by (asset i, agent j)

% newweight(i,j) = oldweight(i,j)*oldmass(j)/newmass(j)*pfact(i)

invMassFactM = repmat((oldMassV./newMassV),[1 3]);

pFactM = repmat(pFact,[nAgents 1]);

newWeightsM = newWeightsM.*invMassFactM.*pFactM;

% 4.

A_new = [newWeightsM newMassV A(:,5:end)];

end
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function [] = post_process(asset,A,Ret,~)

% observed mean annual return

muObs = (mean(Ret)+1).^250-1;

% obsorved annual standard deviation

sigmaObs = (std(Ret)+1).^250-1;

% EFFICIENT FRONTIER

% calculate covariance and return of risky assets

sigmaHyp = sigmaObs(2:end);

corrHyp = corr(Ret(:,2:3),Ret(:,2:3));

R = muObs(2:end);

cov2 = corr2cov(sigmaHyp , corrHyp);

% calculate efficient frontier data

[X,Y,W] = portopt(R , cov2 , 1e4);

% CAPITAL MARKET LINE

% calculate the derivate of the efficient frontier

diff = zeros(size(X));

for i=1:(length(X)-1)

diff(i) = (Y(i+1)-Y(i))/(X(i+1)-X(i));

end

% identification of tangency portfolio for CML

B = abs((Y-asset(1,1))./X - diff);

[~,i] = min(B);

% calculate agents portfolio coordinates resulting from simulation in figure

covCml = corr2cov(sigmaObs,corr(Ret,Ret));

[PortRisk, PortReturn] = portstats(muObs, covCml, A(:,1:3,end));

[PortRiskInit, PortReturnInit] = portstats(muObs, covCml, A(:,1:3,1));

% PLOT

f = figure(’name’,’mu-sigma’);

set(f, ’position’, [400 300 1024 500]);

% final distribution
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subplot(1,2,2);

axis([0 3 0 max(max(PortReturn),max(PortReturnInit))]);

hold on;

% draw markowitz bullet

line(X,Y)

% draw capital market line

line([0,(max(muObs)-asset(1,1))/diff(i)],[asset(1,1),max(muObs)])

% situate final portfolios in plot

plot(PortRisk,PortReturn,’.r’,’MarkerSize’,5)

title(’portfolios after simulation’)

xlabel(’standard deviation’)

ylabel(’expected return’)

hold off;

% initial distribution

subplot(1,2,1);

xlabel(’standard deviation’)

ylabel(’expected return’)

axis([0 3 ...

0 max(max(PortReturn),max(PortReturnInit))]);

hold on;

% draw markowitz bullet

line(X,Y)

% draw capital market line

line([0,(max(muObs)-asset(1,1))/diff(i)],[asset(1,1),max(muObs)])

% situate initial portfolios in plot

plot(PortRiskInit,PortReturnInit,’.b’,’MarkerSize’,5)

title(’portfolios at beginning (randomly distributed)’);

hold off;

end
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function B = transform(D, const)

if const == 1

alpha = acos(1/sqrt(3));

else

alpha = -acos(1/sqrt(3));

end

Rot = [0.5*(1+cos(alpha)) 0.5*(cos(alpha)-1) -1/sqrt(2)*sin(alpha);...

0.5*(cos(alpha)-1) 0.5*(1+cos(alpha)) -1/sqrt(2)*sin(alpha);...

1/sqrt(2)*sin(alpha) 1/sqrt(2)*sin(alpha) cos(alpha)];

B = D*Rot’;

end
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