MERITOCRATIC MATCHING & **PUBLIC GOODS** GAMES

HEINRICH H. NAX (<u>HNAX@ETHZ.CH</u>) SEPTEMBER 10, 2014 *HOMO SOCI VS ECON WORKSHOP*

SOURCES

The material presented in this talk is based on joint work with

- Stefano Balietti
- Dirk Helbing
- Ryan Murphy

Results can be divided into two parts

- theory
- experiments

Please see

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2404280

WHAT IS "MERITOCRATIC MATCHING"?

WHAT DOES IT DO/ MEAN IN "PUBLIC GOODS GAMES"?

"MERITOCRACY": DEFINITIONS

Def.: "rule by those with merit/ rule rewarding merit"

- old concept with a surprisingly new name (Young 1958)
- present in early modern societies including China, Greece, Rome
- examples include selection of officials/ councilmen, military reward/ promotion schemes and access to education
- proposed by thinkers such as Confucius, Aristotle and Plato

Criticism: as identified, for example, in the book by Arrow, Bowles and Durlauf (2000) is the inherent

• inequality-efficiency trade-off (e.g. education)

"PUBLIC GOODS GAMES": VOLUNTARY CONTRIBUTIONS

- every player *i* chooses whether to contribute $(c_i = 1)$ or not $(c_i = 0)$
- given contributions, players are matched (how remains to be specified) into groups of fixed size s
- given contributions in each group *G*, for a *marginal per-capita rate of return (mpcr) r/s* ∈ (1/*s*, 1), a public good is provided and its return split equally so that *i*'s payoff is

$$u_i(c) = (1 - c_i) + \sum_{\substack{j \in G_i:\\i \in G_i}} mpcr * c_j$$

MERITOCRATIC MATCHING

- 1. actual contributions c_i are chosen by players
- 2. Gaussian *noise* with mean 0 and variance $1/\beta$ added to actual contributions
- 3. β is the index of meritocracy in the system
- 4. players are ranked by *noised contributions*
- 5. groups form according to the ranking (with random tie-breaking)
- 6. payoffs materialize based on actual contributions

β -MERITOCRATIC MATCHING

No meritocracy

Intermediate level of meritocracy

Perfect meritocracy

RELATED WORK

"STANDARD" VOLUNTARY CONTRIBUTIONS MECHANISMS

(here: $\beta \rightarrow 0$)

- basis: standard voluntary contributions game (Marwell and Ames 1979, Isaac et al. 1985)
- group matching: random group (re-)matching (Andreoni 1988)

Outcome: the only equilibrium is all free-ride.

GROUP-BASED MECHANISM (here: $\beta \rightarrow \infty$)

- basis: standard voluntary contributions game (Marwell and Ames 1979, Isaac et al. 1985)
- group matching: groups form according to rank (Gunnthorsdottir et al. 2010)

Outcome: if the *mpcr* is high enough, a new equilibrium in pure strategies emerges where the majority contributes and a small minority free-rides (Gunnthorsdottir et al. 2010, Theorem 1).

FURTHER

(comparable to general β)

- preference-assortative matching (Alger & Weibull 2013, Jensen & Rigos 2014)
- local reproduction/ local interaction (Hamilton 1964, Grund et al. 2013)

Outcome: "if process is sufficiently assortative, outcomes related to our high equilibria can emerge"...

MERITOCRATIC MATCHING: THEORY

theoretical results i: NASH EQUILIBRIA (see NAX ET AL. 2014, PROPOSITIONS 6-10)

If the *mpcr* is high enough, there may be new Nash equilibria:

SOME BEST REPLY EXAMPLES

Suppose n = 8, s = 4, mpcr = 0.5, $\beta \rightarrow \infty$;

i.e. two groups are matched under perfect merticracy

EXAMPLE 1: BEST REPLY

CONTRIBUTE (1)	FREE-RIDE (0)
1 > payoff 10	0
0	0
0	0
0	0
0	0
0	0 > payoff 20
0	0
0	0

EXAMPLE 2: BEST REPLY

EXAMPLE 3:

EXAMPLE 3: BEST REPLY

CONTRIBUTE (1)	FREE-RIDE (0)	
1	1	1
1	1	1
1 > payoff 40	1	1
1	0 > payoff 50	0
0	0	0
0	0	0 > payoff 20
0	0	0
	0	0
	р=0.2	
(Nr.) of 30		(0) = 26 < 40

BEST REPLY SPACE: "NEW EQUILIBRIA"

EVOLUTIONARY DYNAMICS

- suppose the game is repeated at time steps t=1,2,3,...
- consider
 - either replicator dynamics (e.g., as in Weibull 1993, Helbing 1996)
 - or **perturbed best reply dynamics** with a fixed population (e.g., as in Young 1993)

REPLICATOR EQUATION

Suppose the proportion of contributors evolves according to the following equation:

 $\partial p/\partial t = (1-p)p\left(\mathbf{E}\left[\phi_i(1|1_p)\right] - \mathbf{E}\left[\phi_i(0|1_p)\right]\right)$

theoretical results ii.a: STABILITY -ESS-(see NAX ET AL. 2014, LEMMA 1)

PERTURBED BEST REPLY

Suppose now the population does not grow. Instead the same *n* agents continue playing the game ad infinitum.

Suppose that, each period,

 each agent plays a myopic best reply to the previousperiod actions of the n-1 other players

with probability $1-\varepsilon$

• and the other action

with probability ε

ε being something like the "error rate"

STOCHASTIC STABILITY

Definition: A state is *stochastically stable* (Foster and Young 1990) if the stationary distribution as ε goes toward 0 places positive weight on that state.

theoretical results ii.b: STABILITY -STOCHASTIC STABILITY-(see NAX ET AL. 2014, LEMMA 3)

theoretical results iii: WELFARE (see NAX ET AL. 2014, PROPOSITION 3)

Say social welfare given inequality aversion parameter $e \in [0, \infty)$ is

$$W_e(u) = \frac{1}{n(1-e)} * \sum_{i \in \mathbb{N}} u_i^{1-e}$$

(When e = 1, assume $W_e(u) = \frac{1}{n} \prod_{i \in N} u_i$, i.e. the Nash product.)

 $W_e(u)$ is a variant of the function by Atkinson (1970) nesting

- Benthiam welfare if e = 0
- Rawlsian welfare if $e \to \infty$

Result: social planner setting β will set $\beta = 0$ only if very inequality averse, else $\beta = \beta_{stoch_stable}$.

Reason: depending on *e*, the near-efficient pure-strategy Nash equilibrium or the free-riding equilibrium is preferred (efficiency-inequality trade-off).

27 of 30

WELFARE ILLUSTRATIONS

With e > 10.3, the social planner requires efficiency gains of more than twice the amount lost by any player to compensate for the additional inequality...

MERITOCRATIC MATCHING: EXPERIMENTS

Experiments: SET-UP i/ii

- Experiments were conducted in May/ June 2014 @ DeSciL (involving 192 subjects in 12 sessions)
- In each session, 16 players played two of our games
- The *mpcr* was always 0.5 and the group size always 4
- The budget was 20 coins each round
- The game was repeated 40 rounds
- Players received full instructions and (anonymous) feedback about previous-period play
- Play was incentivized with real money (one coin=0.01 CHF)
- Games differed w.r.t. variance levels: 0, 3, 20, or ∞. (*Note*: when 20 or ∞, the near-efficient equilibrium does not exist.)

Experiments: SET-UP ii/ii

- Each player played two games; each one with a different variance level
- All possible ordered pairs of variance levels were played and made up a separate session
- A somewhat *hybrid* design: between-subject/ within-subject
- Each player experienced either a meritocracy increase or a meritocracy decrease
- **12 sessions** = 6 possible variance pairs * 2 orders each

EXPERIMENTAL EVIDENCE

CONTRIBUTIONS 1:

RANDOM

PERFECT

CONTRIBUTIONS 2:

Var3

Var20

RANDOM

PAYOFFS 2:

Var3

CONCLUSION

- Moderate levels of meritocracy in matching help enable new, near-efficient equilibria
- New equilibria are indeed also more stable if the mechanism is sufficiently meritocratic
- New equilibria are typically preferable w.r.t. social welfare even with substantial inequality aversion
- In practice, a "hint" of meritocracy may prove sufficient to reach more efficient outcomes with high contributions
- Realized inequality is substantially lower in higher meritocracy regimes

REFERENCES

- H. H. Nax, R. Murphy, D. Helbing. "Meritocratic matching stabilizes public goods provision" ETH Risk Center WP. 2014
- A. Gunnthorsdottir, R. Vragov, S. Seifert, K. McCabe. "Near-efficient equilibria in contribution-based competitive grouping" JPE 94. 2010
- J. Andreoni. "Why free ride? strategies and learning in public goods experiments" JPE 37. 1988.
- M. R. Isaac, K. F. McCue, C. R. Plott. "Public goods provision in an experimental environment" JPE 26. 1985.
- H. H. Nax, M. N. Burton-Chellew, S. A. West, H. P. Young. "Learning in a black box" Oxford University Department of Economics WP. 2013.
- M. Young. The Rise of the Meritocracy. 1958
- K. Arrow, S. Bowles, S. Durlauf. Meritocracy and Economic Inequality. 2000